Accountability, Responsibility and Robustness
in Agent Organizations

Matteo Baldoni[0000—0002—9294-0408] (IZI), Cristina Baroglio[0000-0002-2070—0616], and
Roberto MicaliZiO[OOOO—OOOl—9336»0651]

Universita degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, 1-10149 Torino (Italy)
firstname.lastname@unito.it

Abstract. Agent organizations are widely used for the design and development
of distributed systems. Agent organizations, however, lack of a systematic way to
treat exceptions. In this paper we introduce ARFIN organizations as a novel way
to conceptualize multiagent systems. We characterize ARFIN organizations in
terms of accountability and responsibility notions that complement the normative
system of a standard organization. ARFIN improves the robustness of the result-
ing system since it enables a systematic treatment of exceptions by detecting and
reporting them to the agent with the right capabilities for handling them.

Keywords: Accountability - Responsibility - Agent Organizations - Engineering
MAS.

1 Introduction

Agent organizations [16, 19, 11] are a well-known abstraction for modularizing the soft-
ware by functionally decomposing the organizational goal into subgoals. These are,
then, assigned to the agents by the organization through obligations. Obedience, how-
ever, cannot be given for granted. Agents will satisfy an obligation only when this is
functional to the achievement of their own goals, and faults may happen. This is not
itself an issue, the issue is that organizations provide no means for systematically tack-
ling the information that made execution deviate from what expected. An interesting
perspective is drawn by works, like [8, 6, 3], that argue that agent-based software should
be modularized in terms of the accountabilities that each agent autonomously takes on,
concerning the goals it is expected to pursue.

The problem has implications on software engineering in general and becomes more
relevant due to the fact that we witnessing an increasing spreading of “intelligent and
autonomous” software in many aspects of our everyday life. Indeed, we already entrust
software, sometimes even without noticing, with critical decisions in several scenarios.
Modern planes, for instance, are equipped with (software) autopilots that not only help
pilots in keeping the route, but even override the human pilots when their decisions
might endanger the safety of the aircraft. It is therefore evident that, when intelligent
software has the power to take decisions autonomously, we have a serious problem of
making such software accountable, that is, under given conditions it provides accounts
of what was achieved or what went wrong.



2 M. Baldoni et al.

Trying to make an existing software accountable might be an arduous task. It is con-
venient to think of accountability since the design throughout the development phases
of software. In this paper we present some preliminary results (see [3, 4]), and some in-
teresting perspectives about a novel way to conceptualize accountable software. Specif-
ically, we take into account software that is distributed in nature and that can be seen
as a multiagent system (MAS) organization (e.g., [1]): independent components (i.e.,
agents) acting concurrently and that cooperate for achieving a global goal. Agent orga-
nizations represent strategies of decomposing complex organizational goals into simpler
sub-tasks and allocating them to roles. By adopting roles in the organization, agents take
on responsibilities and execute the corresponding tasks in a distributed, coordinated and
regulated fashion.

Current models, although targeting open systems by allocating and enforcing rights
and duties to agents about the tasks to realize, lack an explicit representation of directed
relationships between the agents that allows the agents to identify who should give
restitution to whom for a certain state of the organization. Such a representation would
overcome a current lack of agent organizations, that is, even if agents who enter the
organization are under the regulation of norms, that stipulate their rights and duties, the
organization has no means for asking agents feedback about their conduct. Feedback
that, reported to those who have the claim right of obtaining it, can either be used for
certification purposes, or for tackling exceptional situations.

We claim that the realization of accountable software should be grounded on the
explicit representation of two fundamental concepts at the basis of human organizations:
accountability and responsibility.

2 ARFIN Organizations

We think of a MAS organization as a process being collectively executed by a number
of involved agents, who generally depend on one another for carrying out their activi-
ties. In their interaction agents produce and answer to institutional events, and need to
coordinate to accomplish the organizational goal. We now introduce the key concepts at
the core of an ARFIN MAS, which are accountability, responsibility, fitting, and norms.

According to Grant and Keohane [13], accountability implies that some actors have
the right to hold other actors to a set of standards, to judge whether they have fulfilled
their responsibilities in light of these standards, and to impose sanctions if they de-
termine that these responsibilities have not been met. They explain that accountability
presupposes a relationship between power-wielders and those holding them account-
able, where there is a general recognition of the legitimacy of (1) the operative stan-
dards for accountability and (2) the authority of the parties to the relationship (one to
exercise particular powers and the other to hold them to account). Still in [13], account-
ability mechanisms always operate after the fact (ex post), by exposing actions to view,
judging and sanctioning them. However, due to anticipation of sanctions, accountabil-
ity mechanisms can exert effects also ex ante, directing behavior towards the standard
[2]. In the light of this understanding, and building upon [3], we explicitly represent ac-
countabilities as A(z, y, r, u), meaning that x, the account-giver, is accountable towards
1y, the account-taker, for the condition u when the condition 7 (context) holds. Both r



Accountability, Responsibility and Robustness in Agent Organizations 3

and u are temporal expressions, given in precedence logic [20]. Each accountability
yields both a permission and an obligation: the permission to y to ask for an account of
u when the condition r is true, and the obligation to x to provide such an account when
vy has the claim right to ask for it. Through accountability z states its awareness of such
a permission and obligation, and this is enough for y to expect and call = to behave up
to such standard. This in turn produces a directed relationship between x and y, where
x is liable towards y of providing an account about « when the condition r holds. Note
that accountability does not create an obligation on x to accomplish u.

The second key component is responsibility, a polyhedric term; in particular, [22]
proposes an ontology relating six different responsibility concepts (capacity, causal,
role, outcome, virtue, and liability), stemming from the parable of “Smith the captain”
by the legal philosopher Herbert L.A. Hart. Roughly speaking, they respectively amount
to: doing the right thing, having duties, an outcome being ascribable to someone, a
condition that produced something, the capacity to understand and decide what to do,
something being legally attributable. We see responsibility assumption as a declaration,
by an agent, of being a recipient for (and being moved by) some institutional event.
Nevertheless, responsibility does not imply that the agent is expected to provide any
feedback, even when (as it is often the case) the agent is the one who is intended to an-
swer to the institutional event by carrying out some activity, by enacting some behavior,
or by trying to pursue a given goal.

Responsibility does not entail either that the agent has the capabilities for carrying
out a given task. Still, when the agent does have them, it may not always be willing to
act as expected, or it may fail in the attempt.

Institutional events are generated by a normative system, that is capable of gener-
ating obligations, permissions, and so forth, depending on the occurrences of events in
the physical and in the institutional world. Obligations, however, are not enough, see [8,
6], because agents not necessarily will accept them. Whenever the agent’s goals are in
conflict with the organization’s goals, and the expected sanction is acceptable, the agent
will ignore the obligation. Through responsibility assumptions (that are provided by the
agents themselves) we identify those agents who are receptive of the obligation, but it
is only by way of accountability (that is also provided by the agents) that it becomes
possible to hold agents to account for their execution. The link between responsibilities
and accountabilities is realized through the accountability fitting (fitting for short, [3]).
So, on the issuing of some obligation, not only will an agent be receptive, but under
given conditions, it will also be liable to a second agent who, by way of the permis-
sions granted by accountability, has the authority for asking the first agent an account.
Through the account it will be possible to identify lacks in the system — for instance,
an agent not having the capabilities for handling a case, or harm due to exposure to
unmanaged exogenous conditions.

For brevity, we refer to a MAS organization which includes all such elements as
an ARFIN organization. ARFIN organizations are particularly interesting for two main
reasons. First, because they meet the requirements that are posed on agent coordination
by agent autonomy. In absence of introspection, agent autonomy, in fact, calls for a way
of conceptualizing coordination where agents are clearly constrained in terms of respon-
sibilities (that they explicitly take on), and where agents establish directed relationships



4 M. Baldoni et al.

from one to another, that reflect the legitimate expectations the second principal has of
the first. Second, because they support system robustness. In [12], robustness in soft-
ware systems is defined as “the ability of a software to keep an ‘acceptable’ behavior,
expressed in terms of robustness requirements, in spite of exceptional or unforeseen
execution conditions (such as the unavailability of system resources, communication
failures, invalid or stressful inputs, etc.).” Casting such a definition in the context of or-
ganizations, an organization is robust when its agents can properly react to unexpected
events. The driver of such a process is the attempt to execute up to the preset standards,
possibly through self-regulation, by adapting either the execution or the organization
itself to initially unforseen cases. This process heavily relies on the accounts that the
involved agents are expected to produce.

3 Accountability and Responsibility for Exception Handling

Agent organizations are generally specified in terms of roles, which have to be adopted
by agents, fasks (e.g., actions, goals, interactions) assigned to roles through norms [9,
7]. Tasks are organized according to a functional decomposition that specifies how a
complex, organizational goal can be achieved by work distribution and coordination.
Current organizational models do not capture directly the notion of accountability and
responsibility as described above. In our opinion, this hampers the development of ro-
bust organization.

Specifically, our claim is that the fundamental role of accountability in software
development (together with responsibility) is the realization of robust systems. Follow-
ing [18], on software design, a useful question is “What events are coming in to our
system? Why? Because we have to design the software to handle these events [...] Ba-
sically, a software system reacts to three things: 1) external events from actors (humans
or computers), 2) timer events, and 3) faults or exceptions”. Robustness is achieved by
assuring, by design, that exceptional events, when occurring, are reported to the agents
who can handle them properly. Accountability fulfills this purpose because, by nature,
it brings about an obligation on the a-giver to give an account of what it does. The ac-
count, then, can be used by the a-taker to recover, when possible, from the exceptional
situation. Potentially, the a-taker could pass the account up to other agents for whom
it is an a-giver. We, thus, propose to complement the functional decomposition of the
organizational goal, that is the backbone of the underlying normative system, with a set
of accountability and responsibility specifications.

Considering an accountability A(z,y,r,u), if we think of a process being collec-
tively executed, we can say that when the r part of the process is done, then z becomes
accountable of the u part. When w is true, z is considered to have built a proof that can
be supplied to the account-taker. A proof, here, is what intended as a set of recorded
facts, that demonstrate the achievement of the specified condition. When, instead, u is
false, the agent is once again expected to provide a proof on request of what happened.
When r is false, instead, the condition under which the a-taker has the claim right to ask
for a proof do not hold anymore, and the a-giver will not have the obligation to provide
a proof on request. Instead, intuitively with R(z, q), = declares to accept to be consid-
ered in the position for causing ¢. This may imply that = has the capacity of producing



Accountability, Responsibility and Robustness in Agent Organizations 5

q directly, or that x can exert some control on some other agent that will bring about
q. We denote by A a set of accountabilities, calling it an accountability specification,
and by R a responsibility distribution, that is a set of responsibility assumptions that
complement the specification of an agent organization.

In general, the fact that a group of agents is compliant to a given fitting provides
robustness to the system of interacting agents. From an implementation perspective, it
is convenient to focus on the set of possible events that are relevant to the purpose of
provinding an account. We say that the a-taker is robust with respect to certain events
when, on their occurrence, it proactively provides an account to the a-giver, without
waiting to be asked for. Just to give a hint of the technical setting, we use residuation
[5] to compute the progress of both accountabilities and responsibility assumptions. Let
U be the universe of discourse (the set of events upon which temporal expressions are
formed). Let e be a sequence of events in{, then A(z, y, /e, u/e) denotes the residual
of A(z,y,r,u) with respect to e (intuitively what remains after the occurrence of the
sequence of events e). Residuation is the mechanism through which the permission and
obligation that are naturally involved in an accountability are triggered. When r/e = 0,
the accountability is no longer meaningful; when r/e = T, y has the permission to
ask = an account about u, and z, in case of a request, is obliged to provide such an
account, in particular when the condition is achieved (u/e = T) and when something
goes wrong (u/e = 0). In the first case, the account is w itself. In the second case,
instead, sequence e contains at least one event e which is complementary to some other
event in u: the occurrence of e prevents the satisfaction of . Upon request from y, x
will be obliged to provide an account about the unfulfillment of u, and hence it will be
obliged to disclose the occurrence of the exceptional event e.

Let us call actualization of a temporal expression ¢ any sequence e of events in U
such that ¢/e = T; we denote such an actualization as §.

Definition 1 (Accountability fitting [3]). Given an accountability specification A and
a responsibility distribution R, we say that R fits A, denoted by R ~~ A, if for each ac-
countability A(x,y,r,u) € A, there is a responsibility R(x, q) € Rsuch that (u/7)/q =
T, for some actualization q.

Intuitively, the fitting R ~» A relates a responsibility declaration R(z,¢) € R to
one (or even more) accountability relationship A(x,y,r,u) that is supported by that
responsibility via one of its actualizations. The fitting has an important consequence on
the design of the organization: when condition R ~+ A holds, there exists at least one
path, along the functional decomposition of the goal, that is covered by accountabilities
and responsibility assumptions [3]. This means that, along that path, there is always a
role that takes on a responsibility for a task, and accounts for it. Fitting guarantees that
an organization is specified coherently. In addition, it is also a specification of a robust
organization in the sense that exceptional events are reported.

We, then, propose to characterize fitting with the exceptional events that, for domain-
dependent reasons, are deemed critical. Let £ be a set of exceptional events, that is,
ENU = () and each event e € £ is complementary to some event in /. In general,
the same event e could be considered complementary to many events in /. Relation
F C U x £ maps events in U to their corresponding complementary ones in £. We



6 M. Baldoni et al.

say that an expression u is touched by an exception e € & if for at least one event w
occurring in u, (w,e) € F. By extension, an accountability relationships A(x, y, r, u)
is touched by the occurrence of event e when w occurs in u and (w,e) € F. Let
[R ~~ A]r be an accountability fitting characterized by F. An ARFIN organization is
compliant with [R ~~ A]r if, whenever A(z, y, r, u) € A is touched by an event e € &,
an account about u is requested to x by default.

4 Discussion

Normative multiagent systems (NorMAS) [17,7] have been widely studied in the re-
search area on MAS. According to [7] a NorMAS is: “a multiagent system together
with normative systems in which agents on the one hand can decide whether to follow
the explicitly represented norms, and on the other the normative systems specify how
and in which extent the agents can modify the norms”. Interestingly, norms specify
either institutional actions, or the conditions for the use of such actions, consequently
regulating the acceptable behavior of the agents in a system (“doing the right thing”
rather than “doing what leads to a goal” [21]). Agent organizations, such as those mod-
eled in MOISE [15], are a special case of NorMAS which basically rely on obligations
for the progression of the execution. Intuitively, the normative system is in charge of
issuing obligations to agents at the right times. If the agents accomplish their tasks, the
execution progresses toward the organizational goal. When agents fail to satisfy an obli-
gation, there is no mechanism for handling the failure. In most cases, a violation leads
to sanctioning the liable agent, but sanctions are deterrents, that should prevent an agent
from acting outside the norms, and do not support any recovery mechanism. Practically
adopted solutions are not always effective. In MOISE, for instance, the organization
keeps issuing to the same agent the unsatisfied obligation. If the causes of the failure
are outside the scope of the agent, however, re-emitting the obligation will not solve the
problem.

Commitment-based protocols, e.g. [23], provide an alternative for modeling coor-
dination. Roughly speaking, a commitment is a promise that a debtor does in favor
to a creditor that in case some antecedent condition is satisfied, the debtor will bring
about a consequent condition. When the antecedent holds, the commitment is detached,
and amounts to an obligation on the debtor to bring about the consequent. When the
consequent is no longer achievable, the commitment is violated. In such a case, the
creditor has the right to complain against the debtor, however, the creditor cannot hold
the debtor to provide an explanation. This lack of information hampers both the under-
standing of what has actually occurred, and any attempt of recovery from the failure.
The introduction of accountability to this picture would help to overcome such limits,
due to the obligation, on the a-giver, to provide feedback about the consequent under
certain conditions.

Both agent organizations and commitment-based protocols, thus, tend to be fragile
since exceptions cannot be handled systematically. The accountability fitting we have
discussed here, instead, supports robustness by allowing a systematic management of
exceptions. Notably, the fitting does not substitute the normative system, but rather the
fitting flanks the organization norms and the functional decomposition of its goal, as-



Accountability, Responsibility and Robustness in Agent Organizations 7

suring that, when necessary, it is possible to get information (e.g., explanations) out of
agents. Indeed, accountabilities create obligations to provide accounts for conditions of
interest, provided that some contextual conditions hold. The account is in first lieu cap-
tured by the a-taker, who can try to recover from the failure or, as a second possibility,
forward the account to its a-taker (if any). Responsibilities play their part in the picture:
when an agent enacts a role and assumes all the responsibilities that come along, the
agent declares to be aware of the duties it may be asked to accomplish within the or-
ganization. In software terms, the agent declares to have a plan that is triggered by an
institutional event (e.g., the issuing of an obligation), and that will bring about any task
falling under its responsibilities. Of course, this is just a declaration from the agent, not
a verification of its correct behavior.

Also [10] recognizes the value of accountability in the development of software
and makes a proposal that is complementary to ours. Specifically, the authors focus on
the issue of answer production in presence of an accountability relationship, a problem
that involves: how to properly define the temporal window to consider? Which pieces
of information are relevant and, thus, are to be kept in this temporal interval? Which
questions are suitable to be asked in this setting? The account giving agent produces
an answer in terms of its internal mechanisms. What that proposal does not provide
is the organizational view of the system of interacting agents and they do not tackle
robustness and exceptions.

ARFIN organizations set the ground for developing a mechanism for handling ex-
ceptions in agent-based systems. A reference strategy is the one exploited in the actor
model (e.g., [14]): an actor usually creates other child-actors assigning them specific
tasks. When a child-actor cannot handle a situation and gets an exception, it usually
reports the exception to its parent actor. The rationale is that the parent actor is the one
interested of having the task done, and possesses the right information to handle the ex-
ception properly. In an agent-based system such a mechanism is not directly applicable
for agents are independent entities, and are not related by a parent-child relationship.
Accountabilities can fill in this gap.

Acknowledgements

The authors would like to thank Olivier Boissier for the stimulating discussions.

References

1. Aldewereld, H., Boissier, O., Dignum, V., Noriega, P., Padget, J. (eds.): Social Coordination
Frameworks for Social Technical Systems, Law, Governance and Technology Series, vol. 30.
Springer International Publishing (Aug 2016). https://doi.org/10.1007/978-3-319-33570-4,
https://hal-emse.ccsd.cnrs.fr/emse-01355372

2. Anderson, P.A.: Justifications and precedents as constraints in foreign policy decision- mak-
ing. American Journal of Political Science 25(4) (1981)

3. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, R., Tedeschi, S.: accountabil-
ity and responsibility in agent organizations



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Baldoni et al.

. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Accountability and

Agents for Engineering Business Processes. In: Bordini, R.H., Dennis, L.A., Lesperance,
Y. (eds.) Proc. of the 7th International Workshop on Engineering Multi-Agent Systems,
EMAS 2019, held in conjuction with AAMAS 2019. Montreal, Canada (May 13-14 2019),
http://cgi.csc.liv.ac.uk/ lad/emas2019/

. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P. Composing and Verifying

Commitment-Based Multiagent Protocols. In: Wooldridge, M., Yang, Q. (eds.) Proc. of
24th International Joint Conference on Artificial Intelligence, IICAI 2015. Buenos Aires,
Argentina (July 25th-31th 2015), http://ijcai-15.org/

. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational Account-

ability in MAS Organizations with ADOPT. Applied Sciences 8(4) (2018)

. Boella, G., van der Torre, L.W.N., Verhagen, H.: Introduction to normative multiagent sys-

tems. In: Normative Multi-agent Systems. Dagstuhl Seminar Proceedings, vol. 07122 (2007)

. Chopra, A K., Singh, M.P.: From social machines to social protocols: Software engineering

foundations for sociotechnical systems. In: Proc. of the 25th Int. Conf. on WWW (2016)

. Coutinho, L.R., Sichman, J.S., Boissier, O.: Modelling dimensions for agent organizations.

In: Handbook of research on multi-agent systems: Semantics and dynamics of organizational
models, pp. 18-50. IGI Global (2009)

. Cranefield, S., Oren, N., Vasconcelos, W.: Accountability for practical reasoning agents. In:

AT 2018: 6th International Conference on Agreement Technologies. LNCS (2018)

Craven, R., Sergot, M.J.: Agent strands in the action language nc+. J. Applied Logic 6(2),
172-191 (2008)

Fernandez, J.C., Mounier, L., Pachon, C.: A model-based approach for robustness testing.
In: Proceedings of the 17th IFIP TC6/WG 6.1 International Conference on Testing of Com-
municating Systems. pp. 333-348. TestCom’05 (2005)

Grant, R.W., Keohane, R.O.: Accountability and Abuses of Power in World Politics. The
American Political Science Review 99(1) (2005)

Haller, P., Sommers, F.: Actors in Scala - concurrent programming for the multi-core era.
Artima (2011)

Hiibner, J.E., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using
the MOISE. IJAOSE 1(3/4), 370-395 (2007). https://doi.org/10.1504/IJAOSE.2007.016266,
https://doi.org/10.1504/IJAOSE.2007.016266

Jones, A.J.L., Sergot, M.J.: A formal characterisation of institutionalised power. Logic Jour-
nal of the IGPL 4(3), 427443 (1996)

Jones, A.J., Carmo, J.: Deontic logic and contrary-to-duties. In: Gabbay, D. (ed.) Handbook
of Philosophical Logic, pp. 203-279. Kluwer (2001)

Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd Edition). Prentice Hall PTR, Upper Saddle River, NJ,
USA (2004)

Sergot, M.J.: A computational theory of normative positions. ACM Trans. Comput. Log.
2(4), 581-622 (2001)

Singh, M.P.: Distributed Enactment of Multiagent Workflows: Temporal Logic for Web Ser-
vice Composition. In: The Second International Joint Conference on Autonomous Agents
& Multiagent Systems, AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia,
Proceedings. pp. 907-914. ACM (2003)

Therborn, G.: Back to norms! on the scope and dynamics of norms and normative action.
Current Sociology 50, 863-880 (2002)

Vincent, N.A.: Moral Responsibility, Library of Ethics and Applied Philosophy, vol. 27,
chap. A Structured Taxonomy of Responsibility Concepts. Springer (2011)

Yolum, P., Singh, M.P.: Commitment Machines. In: Intelligent Agents VIII, 8th Int. WS,
ATAL 2001. LNCS, vol. 2333, pp. 235-247. Springer (2002)



