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Statement of translational relevance  46 

Despite the wide range of therapies approved for treatment of breast cancer, 47 

mortality of patients due to metastatic spread has not been yet been addressed. 48 

The development of metastasis targeting treatments is essential in decreasing 49 

breast cancer related deaths in long term. Here we describe a vaccine based 50 

therapeutic approach targeting tumor antigen Cripto-1 expressed on tumor cells. 51 

We show that vaccination with Cripto-1 encoding DNA elicits an anti-Cripto-1 52 

directed immune response that consequently controls metastasis. Cripto-1 53 

expression has also been found on cancer stem cell like cells. Cancer stem cells 54 

are highly resistant to chemo and radiotherapy. They can be the cause for 55 

relapse and metastases due to their persistence after standard treatment. The 56 

anti-Cripto-1 directed immune response was able to eliminate cancer stem cells. 57 

Taken together, our data shows great potential of targeting tumor associated 58 

antigen Cripto-1 in controlling metastasis and eliminating cancer stem cells.  59 

 60 

61 
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Abstract 62 

Purpose: Metastatic breast cancer is a fatal disease responding poorly to 63 

classical treatments. Cancer vaccines targeting antigens expressed by metastatic 64 

breast cancer and cancer stem cells have the potential to become potent anti-65 

cancer therapies. Cripto-1 is an onco-fetal protein frequently overexpressed in 66 

invasive breast cancer and cancer-initiating cells. In this study, we explored the 67 

potential of a Cripto-1 encoding DNA vaccination to target breast cancer in 68 

preclinical models.  69 

Experimental Design: BALB/c mice and BALB-neuT mice were treated with a 70 

DNA vaccine encoding for mouse Cripto-1 (mCr-1). Mice were challenged with 71 

murine breast cancer 4T1 cells or TUBO spheres, or spontaneously developed 72 

breast cancer in the BALB-neuT model. Tumor growth was followed in all mouse 73 

models and lung metastases were evaluated. In-vitro assays were performed to 74 

identify the immune response elicited by vaccination.   75 

Results: Vaccination against mCr-1 reduced primary tumor growth in the 4T1 76 

metastatic breast cancer model and significantly reduced lung metastatic 77 

burden. The primary tumors in the BALB-neuT model are Cripto-1 negative. 78 

Consequently, we did not observe protection regarding the primary tumors. 79 

However, vaccination significantly reduced lung metastatic burden in this model. 80 

Spheroid cultured TUBO cells, derived from a BALB/neuT primary tumor, obtain 81 

cancer stem cell like phenotype and upregulate m-Cr-1. We observed reduced 82 

tumor growth in vaccinated mice after challenge with TUBO spheres.  83 

Discussion: Our data indicates that vaccination against Cripto-1 results in a 84 

protective immune response against mCr-1 expressing and metastasizing 85 
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tumors. Targeting Cripto-1 by vaccination is a promising potential 86 

immunotherapy for treatment of metastatic breast cancer. 87 

 88 

 89 

Introduction 90 

Breast cancer is the most common cancer among women in western countries 91 

and incidence rates have been rising in developing countries in the last years (1). 92 

Breast cancer is a heterogeneous disease and understanding molecular 93 

dysregulations has resulted in identification of novel therapeutic targets. The 94 

development of kinase inhibitors and Her2 targeting monoclonal antibodies led 95 

to increased survival rates among breast cancer patients, in particular in patients 96 

with local disease (2). However, relapse and metastases remain a hurdle to 97 

therapy and are the most common causes of death among women with breast 98 

cancer (3). Metastases derive from disseminated tumor cells, where epithelial 99 

mesenchymal transition (EMT) is a required process for the occurrence of 100 

metastasis at distant sites (4). Which cells in particular undergo this process and 101 

have greater potential to metastasize is not fully understood. Cancer stem cells 102 

(CSC) have been proposed to be one source of metastasis in breast cancer, and 103 

circulating tumor cells in patients with metastatic breast cancer express EMT 104 

markers and display a stem cells phenotype (5,6).            105 

In recent years, immunotherapy has become of interest in cancer therapy and 106 

has been successfully used to treat metastatic disease (7). The term 107 

immunotherapy summarizes diverse modalities of immune-based treatments, 108 

including checkpoint blockade, vaccines and adoptive transfer of immune cells. 109 

Checkpoint blocking antibodies targeting PD-1 and CTLA-4 are currently in 110 
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clinical trials (NCT02129556, NCT02892734) for metastatic breast cancer. 111 

CTLA-4 and PD-1 blockade exhibits two distinct mechanisms of action with PD-1 112 

blockade restoring function of anergic T cells and CTLA-4 expanding the T cells 113 

repertoire (8).         114 

Until now, therapeutic vaccines in cancer have been less successful. The success 115 

of antitumor vaccines is highly dependent on the choice of antigen and co-116 

stimulating agents as well as mode of delivery (9). Vaccines have the great 117 

potential to boost pre-existing anti-tumor immunity, and to activate tumor 118 

eliminating effector cells.   For breast cancer, several different vaccines targeting 119 

Her2 are currently in clinical trials (NCT01570036, NCT01152398, 120 

NCT02276300, NCT00194714), and we have conducted a pilot trial with a full 121 

length non-transforming Her2 DNA (10). For treatment of metastatic breast 122 

cancer, it is of particular interest to target antigens expressed on CSC and 123 

metastasizing cells. 124 

Cripto-1 (Cr-1) is an onco-fetal protein re-expressed in the majority of human 125 

tumors, including breast cancer (11). In breast cancer, Cr-1 expression in tumor 126 

cells is negatively correlated with survival (12). Cr-1 is a GPI-anchored cell 127 

surface protein essential in embryonic development. The protein co-localizes 128 

with several receptors and is involved in Nodal, TGFβ, and Wnt/βcatenin 129 

signaling among others (13). In tumors, Cr-1 has been shown to be involved in 130 

cell proliferation and migration, EMT and angiogenesis (14). In addition, Cr-1 131 

plays an important role in the maintenance of embryonic stem cells and is a 132 

target gene of the transcription factors Nanog and Oct4 in stem cells. Indeed, Cr-133 

1-positive cells were found to be Nanog- and Oct4-positive and able to form 134 

spheres in vitro (15). Studies on CSC in melanoma and prostate cancer have 135 
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shown that Cr-1 expression is associated with an undifferentiated phenotype 136 

(15,16). The expression of Cr-1 on CSC together with its role in intracellular EMT 137 

signaling makes it a potential antigen for metastasis and CSC targeting in breast 138 

cancer.  139 

We have previously shown that vaccination against Cr-1 elicits a protective 140 

immune response in C57BL/6 mice and results in reduced tumor burden upon 141 

subcutaneous challenge with murine melanomaB16F10 cells. Intravenous (i.v.) 142 

challenge with B16F10 in mice vaccinated with plasmids encoding murine Cr-1 143 

(pmCR) resulted in significant reduction of lung metastatic foci (17).          144 

Here we describe that vaccination induced an anti-Cr-1 directed humoral 145 

response that protects from metastasis burden in the aggressive orthotopic 4T1 146 

and the spontaneous BALB-neuT breast cancer mouse models.  Further, we show 147 

Cr-1 specific clearance of breast CSC in vivo. Anti-Cr-1 vaccination could 148 

potentially be of great benefit for patients with breast cancer, reducing the risk 149 

of relapse and disease progression.   150 

151 
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Material and methods 152 

Cell lines 153 

4T1 luciferase expressing cells (4T1) TS/A and D2F2 cell lines was maintained in 154 

RPMI 1640 supplemented with L-glutamine and 10% heat-inactivated FBS (Life 155 

technologies). TUBO cell line (18) was maintained in DMEM supplemented with 156 

20% FBS (Sigma-Aldrich). Murine Cripto-1(mCr-1)-expressing 4T1 (4T1mCr-1) 157 

cells were generated by transducing 4T1 cells with lentiviral particles (Amsbio).  158 

mCr-1-expressing cells were FACS sorted, see Flow cytometric analysis, and 159 

further selected with Geneticin (Life technologies). 160 

Spheroid culture 161 

TUBO and 4T1 single-cell suspensions were seeded in DMEM-F12 supplemented 162 

with 20 ng/ml EGF, 20 ng/ml FGF, 5 μg/ml insulin, 0.4 % BSA (Peprotech, Sigma 163 

Aldrich) at a concentration of 6 x 104 cells/ml in ultra-low attachment plates 164 

(Corning). The resulting spheroids were monitored daily and passed using 165 

enzymatic and mechanical dissociation every 3-5 days. Cells were re-seeded at 6 166 

x 104.  Spheroid cultures were passaged 3 times and passage 1 (P1), 2 (P2) and 3 167 

(P3) were collected for further experiments.  168 

Mice 169 

BALB/c mice were either purchased from ScanBur and maintained at the 170 

Department of Microbiology, Tumor and Cell Biology (Karolinska Institutet, 171 

Stockholm, Sweden) or bred and maintained at the Molecular Biotechnology 172 

Center (University of Torino, Torino, Italy). BALB-neuT mice were bred and 173 

maintained at the Molecular Biotechnology Center (University of Torino, Torino, 174 

Italy). Mice were handled in accordance to regional Animal ethics committees 175 

(Stockholms Norra Djurförsoksetiska Nämnd Avdelning 2, Sweden N426/11, 176 
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N239/14; University of Torino ethical committee authorization number 177 

837/2015-PR). 178 

Plasmid  179 

Mouse Cr-1(NM_011562.2) encoding plasmid was generously donated by Bianco 180 

C et al., (NCI NIH Bethesda) (19) and the coding sequence was subsequently 181 

cloned into the pVAX11 vector (Invitrogen) to obtain pmCr-1. pmCr-1 and 182 

pVAX11 were expanded in E.coli (TOP10, Invitrogen) grown in LB medium 183 

containing Kanamycin selection (50 μg/ml). Plasmids were purified using 184 

GigaPrep Endofree Kit (Qiagen).  185 

4T1mCr-1 orthotopic model 186 

BALB/c mice were vaccinated at 8 and 10 weeks of age by intradermal injection 187 

of 40 μg of plasmid in PBS followed by electroporation with plate electrodes 188 

(IGEA). Electroporation protocol has been previously described (17). In week 12, 189 

2x105 4T1mCr-1 cells diluted in 50 μl PBS were injected into the mammary fat 190 

pad. Tumors were measured by palpation twice per week and tumor volume was 191 

calculated using the formula (π/6) x L x W x H (20). Mice were sacrificed 3 weeks 192 

after tumor challenge and primary tumors were excised and weighed. Tumors 193 

were snap frozen in OCT. For lung colony formation assay, single-cell 194 

suspensions were prepared from harvested lungs, seeded in 15 cm dishes and 195 

cultured in RPMI supplemented with L-glutamine, 10% FBS, 1% PenStrep, 6-196 

Thioguanine (Sigma Aldrich). Medium was changed every 3-4 days. Upon colony 197 

formation, cells were fixed with 4% formaldehyde and stained with hematoxylin. 198 

Colonies were evaluated by counting. 199 

 BALB-neuT model 200 
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BALB-neuT mice were vaccinated with prime and boost at 10 and 12 weeks of 201 

age, respectively, by intramuscular injection of 50 μg of plasmid in saline. The 202 

injection was followed by electroporation using IGEA array needle electrode. 203 

Mice were inspected weekly for the presence of tumors, whose dimension was 204 

reported as mean tumor diameter. When mice reached a total number of 10 205 

mammary tumors, or a tumor reached a threshold size of 10 mm mean tumor 206 

diameter, mice were progressively culled, lungs were harvested and fixed in 207 

paraffin followed by staining with hematoxylin and eosin. Lung metastases were 208 

counted on a Nikon SMZ1000 stereomicroscope (Mager Scientific). The metastatic 209 

index was calculated by dividing the number of metastatic foci by the sum of the 210 

diameter of all primary lesions.  211 

TUBO P3 model 212 

BALB/c mice were vaccinated at 8 and 10 weeks of age by intramuscular 213 

injection of 50 μg plasmid in saline. The injection was followed by 214 

electroporation using IGEA array needle electrode. Two weeks after the second 215 

vaccination mice were challenged subcutaneously (s.c.) with 2x104 TUBO P3 216 

spheroids as described (21). Mice were inspected weekly for the presence of the 217 

tumor, whose dimension was reported as mean tumor diameter. Overall survival 218 

was reported as the time required by the tumor to reach the threshold of 10 mm 219 

mean tumor diameter, according to ethical guidelines.  220 

Antibodies 221 

See supplemental table 1. 222 

Serum 223 
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Serum was collected for analysis and in vitro studies 2 weeks after the second 224 

vaccination. Sera from all mice in each group within one experiment were 225 

pooled.  226 

Western Blot 227 

Cell lysates were prepared from fresh cell culture or snap frozen cell pellets 228 

stored at -80°C with 1 M RIPA buffer (150mM NaCl, 1% Triton-X 100, 0.5 % 229 

sodium deoxycholate, 0.1% SDS, 50 mM NaF, 50mM Tris-HCl ph 7.4)  and 1x 230 

protease (Roche). Protein concentrations were determined with Pierce BCA 231 

protein assay (Thermo Scientific) prior to loading onto gel. 20 μg protein lysates 232 

were reduced with 1x NUPAGE Reducing agent (Invitrogen) and 1x NuPage LDS 233 

Sample Buffer (Invitrogen) and loaded on 10% NuPAGE Bis-Tris acrylamide gels 234 

(Invitrogen). Proteins were transferred to PVDF membrane with methanol wet-235 

transfer. Primary antibodies were incubated overnight at 4°C and secondary 236 

antibodies for 1h at RT. Membranes were developed using Pierce ECL Western 237 

Blotting Substrate reagent kit. Luminescence was detected using LAS-1000 CCD 238 

camera system (Fujifilm, Tokyo, Japan).  239 

Flow cytometric analysis 240 

For flow cytometric analysis, single cell suspensions were prepared and 2x105 241 

cells were stained per sample. Cr-1 specific antibodies in serum of pmCr-1 242 

vaccinated mice were detected by cell surface staining of 4T1mCr-1 with serum 243 

from pmCR-1 vaccinated mice. For FACS sorting, transduced 4T1 cells were first 244 

stained with pmCr-1 serum and then with anti-mIgG-PE. pVAX1 serum was used 245 

as a negative control staining. For IgG subclass analysis, 4T1mCr-1 binding 246 

serum derived antibodies were detected with anti-mIgG-FITC, anti-mIgG1-FITC, 247 

anti-IgG2a-FITC and anti-IgG2b-FITC.  For unstained control, cells were only 248 
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stained with secondary antibodies. Percentage of IgG1, IgG2a and IgG2b were 249 

calculated by dividing mean fluorescent intensities (MFIs) by the sum of MFI for 250 

IgG1, IgG2a and IgG2b after subtraction of MFI of unstained cells. All samples 251 

were acquired either on LSRII (BD) or Novocyte (ACEA) and analyzed using 252 

FlowJo (Tree Star). 253 

In vivo imaging 254 

In vivo imaging was done with IVIS SpectrumCT (PerkinElmer) using D-Luciferin 255 

(Life Technologies).  5 µg D-Luciferin per gram mouse was injected i.p. and 256 

allowed to disseminate in the mouse for two minutes followed by anesthesia 257 

with Isoflurane at 3% for three minutes prior to transfer onto the heated, 37oC, 258 

SpectrumCT platform (Perkin Elmer) for imaging and analyzed using Living 259 

Image Software (Perkin Elmer).  260 

Lung colony assay 261 

Lungs from 4T1mCr-1 bearing mice were harvested and kept in cooled PBS 262 

supplemented with 10% FBS. Lungs were individually mechanically and 263 

enzymatically digested in RPMI supplemented with 5% FBS, 2 mg/ml Dispase, 264 

100 μg/ml DNase I, 200 μg/ml Collagenase IV for 30 min at 37oC. Cell suspension 265 

was filtered using a 70 μm filter (Fisher Scientific). Removal of red blood cells 266 

was done using RBC lysis buffer (BioLegend) and followed by suspension in 267 

supplemented RPMI-1640 media containing 6-Thioguanine (60 µM) and seeded 268 

in 150 mm cell culture dishes (Corning). After 10 days, cells were washed with 269 

PBS, followed by formaldehyde fixation and Hematoxylin Harris (VWR, 351945S) 270 

staining for 5 minutes. Primary tumors were excised and weighed. To evaluate 271 

lung metastasis, colonies were enumerated and metastatic index was calculated, 272 

MI = number of colonies/primary tumor weight.  273 
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Antibody dependent cellular cytotoxicity (ADCC) assay 274 

4T1mCr-1 and 4T1 cells were harvested and labeled with 51Cr (Perkin Elmer). 275 

After labeling, target cells were incubated for 10 minutes at 4°C with 10 µl of 276 

serum from pmCr-1 or pVAX1 vaccinated mice. 5x103 cells per well were then 277 

plated in 96-well plates without washing. wt BALB/c mice were sacrificed and 278 

splenocytes isolated. NK cells were purified with magnetic beads by DX5-positive 279 

selection (Miltenyi Biotech). NK cell fraction and negative fraction were titrated 280 

onto target cells. 25 l of co-culture supernatant were harvested after 4 and 16 h 281 

onto LUMA plates (Perkin Elmer). Radioactivity was detected in beta-counter 282 

(Perkin Elmer).  283 

Statistical analysis 284 

Data was analyzed with Prism 7 (GraphPad software). All in vivo data is shown 285 

as mean ± SD. Tumor growth, metastatic index and tumor growth rate were 286 

compared using Mann-Whitney test. Tumor weights were compared with 287 

unpaired t-test. Survival data were compared with log rank test. For NK cell 288 

cytotoxicity, 5 independent experiments are displayed and compared with 289 

paired t-test.  p-values < 0.05 were considered statistically significant.  290 

 291 

Results 292 

Vaccination with mouse Cripto-1-encoding DNA plasmid reduces metastatic 293 

burden and primary tumor growth in 4T1 metastasis model 294 

We aimed to understand if vaccination with pmCr-1 would elicit a protective 295 

immune response in a model of murine metastatic breast cancer. We screened 296 

four mouse mammary carcinoma cell lines on BALB/c background for Cr-1 297 



14 
 

expression by western blot. Weak bands of Cr-1 were found in 4T1, TUBO and 298 

TS/A, while D2F2 was negative for mCr-1 expression (Supplemental Fig. 1). As a 299 

first approach to establish the protective potential of mCr-1 vaccination-induced 300 

immune responses over the dissemination of mammary cancer cells in BALB/c 301 

models, we generated a stable mCr-1 expressing 4T1 transfectant (4T1mCr-1), 302 

which was used as a model for spontaneous lung metastasis (Supplemental Fig. 303 

1). BALB/c mice were vaccinated with pmCr-1 or control pVAX1 plasmids prior 304 

to implantation of 4T1mCr-1 cells into the mammary fat pad. Primary tumor 305 

growth was evaluated by in vivo luciferase activity detection at day 14 (Fig. 1A) 306 

and twice per week through palpation (Fig. 1B). At day 23 after tumor 307 

inoculation, mice were sacrificed and primary tumor weight measured (Fig. 1C). 308 

Primary tumor size and weight were significantly reduced in pmCR-1- compared 309 

to pVAX1-vaccinated mice. Furthermore, pmCR-1 vaccination greatly reduced 310 

spontaneous metastasis to the lungs as evaluated by a colony formation assay 311 

(Fig. 1D). Cr-1 vaccination results in anti-tumor immunity capable of controlling 312 

tumor growth and inhibiting metastatic spread.  313 

Cripto-1 specific humoral response 314 

It was previously shown that DNA vaccination in BALB/c mice can elicit a 315 

humoral response (22). We therefore evaluated the humoral response after 316 

vaccination with pmCR-1(23,24). Serum of pmCR-1-vaccinated mice was found 317 

to contain antibodies that stained specifically mCr-1 expressing 4T1 cells (Fig. 318 

2A), while no signal was observed on 4T1 cells. We found that the majority of 319 

these antibodies belonged to IgG2a and IgG2b subclasses (Fig. 2B). In mice, these 320 
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subclasses are responsible for mediating ADCC by NK cells, macrophages and 321 

neutrophils. 322 

  323 

Cripto-1 directed antibody dependent cellular cytotoxicity 324 

NK cells play a major role in the success of antibody-based immunotherapy. For 325 

several clinically successful therapeutic antibodies, including anti-Her2, anti-326 

EGFR and Anti-CD20, NK cells mediated cytotoxicity is a known mechanism of 327 

action (25).                                          328 

To confirm that Cr-1 specific antibodies can mediate ADCC, we tested if serum 329 

from pmCR-1-vaccinated mice increases cytotoxicity by NK cells. NK cells were 330 

purified from BALB/c splenocytes with magnetic bead selection and co-cultured 331 

with 4T1mCr-1 or 4T1 cells in the presence of pmCr-1 or pVAX1 serum. We 332 

found that pmCr-1 serum significantly increased lysis of 4T1mCR-1 cells by NK 333 

cells (Fig. 2C, D). No cytotoxic activity was detected by splenocytes depleted of 334 

NK cells (data not shown). To show that ADCC is Cr-1 specific we co-cultured NK 335 

cells with 4T1 cells in presence of serum from pmCr-1 and pVAX1 vaccinated 336 

mice. No difference in 4T1 lysis by NK cells was observed in presence of pmCr-1 337 

serum compared to pVAX1 serum (Fig. 2E). 338 

 339 

Reduced lung metastasis after vaccination in the BALB-neuT mouse model 340 

We additionally wanted to test if pmCr-1 vaccination has therapeutic effect in a 341 

more clinically relevant model (26). The BALB-neuT mouse model is genetically 342 

engineered to develop spontaneous cancerous lesions in the mammary tissue. 343 

We evaluated Cr-1 expression in the breast tumors of the model and only found 344 

low expression in tumors of 8 mm mean diameter (Suppl. Fig. 2) with no Cr-1 345 
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expression in smaller tumors. Mice were vaccinated at 10 and 12 weeks of age, 346 

but this did not result in difference in tumor outgrowth (data not shown) nor did 347 

it affect tumor incidence in this mouse model (Fig. 3A). Consequently, we did not 348 

observe survival benefits (Fig. 3B) until mice were sacrificed according to the 349 

ethical regulations.  At sacrifice, lungs were evaluated for the presence of 350 

metastasis. Micrometastases derived from the primary tumors can be found in 351 

the lungs within 8 weeks of primary tumor occurrence (27). 352 

Lungs from pmCR-1- and pVAX1-vaccinated mice were sectioned, stained with 353 

hematoxylin and eosin and metastatic foci enumerated.  We found that 354 

metastatic burden was significantly reduced in pmCR-vaccinated BALB-neuT 355 

mice (Fig. 3C). We observed that both the number of foci as well as metastatic 356 

size was reduced (Fig. 3C, D).   357 

 358 

Vaccination results in protective immune response targeting cancer stem cells 359 

Since targeting Cr-1 inhibits metastases, which can be caused by CSC, and Cr-1 360 

expression has previously been associated with CSC in melanoma, colon and 361 

breast cancer CSC (5,28-30). We therefore wanted to evaluate if Cr-1 vaccination 362 

elicits a protective immune response against Cr-1 expressing CSC. It has been 363 

shown that the murine mammary carcinoma cell line TUBO acquires CSC 364 

phenotypic markers when passaged 3 times as spheres (P3 TUBO cells) (21,31). 365 

Over the three passages in spheroid culture of TUBO, we observed a gradual 366 

increase in expression of Cr-1 (Fig. 4A). These TUBO P3 cells were s.c. injected in 367 

vaccinated BALB/c mice. We observed a decreased growth rate as a result of 368 

pmCR-1 vaccination. The time to reach the mean tumor size of pmCr-1 group (4 369 

mm in diameter) was significantly longer in pmCr-1- compared to pVAX1-370 
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vaccinated mice (Fig. 4B). In addition, we found that 3 out of 11 mice in the 371 

pmCr-1 group were completely tumor free more than 60 days after tumor 372 

inoculation (Fig. 4C).  In comparison, all mice in pVAX1 treatment group 373 

developed tumors within 47 days. Vaccination targeting Cr-1 also resulted in a 374 

trend towards improved survival (p=0.078) (Fig. 4D).   375 

 376 

Discussion 377 

The metastatic process of tumors is complex and until today not fully 378 

understood. Two critical cellular processes are crucial for the occurrence of 379 

metastasis, which are EMT and mesenchymal-epithelial transition (MET) (32). 380 

EMT enables cells to survive without cell-cell contact, to migrate and to 381 

extravasate from the primary tumor. At the site of distant metastasis MET is 382 

required for cells to establish metastatic colonies and grow out.  Cr-1 is 383 

expressed in cells undergoing EMT and higher expression of this protein has 384 

been found in more aggressive types of human breast cancer (12,33). 385 

We have previously reported that Cr-1 is an immunogenic antigen and that 386 

vaccination against Cr-1 results in protective anti-tumor immune responses 387 

against murine melanoma. In this model, a strong protective effect against 388 

pulmonary metastases was observed upon i.v. challenge with metastatic B16F10 389 

cells (17). It is of considerable importance to study the vaccine in a model 390 

recapitulating the complete metastatic cascade from tumor cells undergoing 391 

EMT at the primary tumor site to MET at the site of metastasis. We therefore 392 

chose to study this process in the 4T1 orthotopic breast cancer model and in 393 

Her2 transgenic BALB-neuT mice. When 4T1 cells are orthotopically injected 394 

into the mammary fat pat, they spontaneously metastasize (34,35). Similarly, the 395 
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BALB-neuT mice develop autochthonous mammary tumors that early 396 

metastasize and colonize the lungs (27). These models enable the study of EMT 397 

and MET in vivo. Due to low endogenous Cr-1 expression, we overexpressed 398 

murine Cr-1 in 4T1 cells (Suppl. Fig. 1). We observed that Cr-1 vaccination 399 

reduced metastatic burden in both the orthotopic 4T1 and the spontaneous 400 

BALB-neuT breast cancer model (Fig.1D and 3C, D). Control of the primary 401 

tumor was only seen in the Cr-1 overexpressing 4T1 model. This is in line with 402 

the lack of Cr-1 expression in the primary tumors of the BALB-neuT model 403 

(Suppl. Fig. 2). 404 

We observed that the pmCr-1 vaccination induced an anti-mCr-1 humoral 405 

response in the BALB/c mouse model, while we were not able to identify anti-406 

mCr-1 antibodies in the pVAX1 vaccinated mice (Fig. 2A). Further did the 407 

majority of Cr-1 targeting antibodies belong to the IgG2a subclass (Fig. 2B), able 408 

to bind murine activating Fcγ receptors with relatively high affinity. In view of 409 

these results, we aimed at understanding the role of NK cells in Cr-1 vaccination-410 

induced tumor control. Collectively, our data pointed at a critical role for NK 411 

mediated ADCC in pmCr-1-vaccinated mice (Fig. 2). These results are 412 

reminiscent of our earlier findings, where we have shown that Her2-vaccination 413 

in BALB/c mice initiated a humoral anti-Her2 immunity and consequently killing 414 

of Her2-positive tumor cells by NK cells (22).  In vitro cytotoxicity data 415 

demonstrated that lysis of Cr-1 expressing cells by NK cells was increased in the 416 

presence of serum from pmCr-1-vaccinated mice (Fig. 2C and D), pointing at a 417 

major role for ADCC in the tumor elimination. Hereby we were able to show one 418 

mechanism of vaccination-induced tumor elimination by NK cells. 419 
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In a previous study we have shown that anti-Cr-1 vaccination in C57Bl/6 mice 420 

induced an in vitro detectable cytotoxic T cell response (17). After vaccination, 421 

Cr-1 specific cytotoxic T cells have not been detected in vitro in BALB/c 422 

splenocytes (data not shown). Although these results do not entirely rule out a 423 

possible role for T cells in the observed in vivo tumor protection, they argue for a 424 

difference in immune response between BALB/c and C57Bl/6 mice upon DNA 425 

vaccination. In a study performed by Radkevich-Brown et al. Her2 DNA 426 

vaccination elicited a humoral immune response in Her2 transgenic BALB/c 427 

mice. In a direct comparison, Her2 vaccination induced significantly lower levels 428 

of Her2-specific antibodies in C57Bl/6 mice than in the BALB/c mice (36). The 429 

differences observed are to be explained with the genetic differences of the mice 430 

strains and can be translated to our findings in the BALB/c and C57Bl/6 mice 431 

after Cr-1 DNA vaccination (17).  432 

Cr-1 expression is potentially limited to CSC, a few cells undergoing EMT in the 433 

primary tumor, and metastasizing cells. De Castro et al. recently described Cr-1 434 

expression in EMT-like areas in the JygMC(A) breast cancer model. In contrast, 435 

no Cr-1 expression was detected in metastatic lesions in the lung (37).      436 

Vaccination against Cr-1 could potentially interrupt the metastatic process at an 437 

early stage and thereby prevent the establishment of metastases at distant sites.  438 

In CSC of several tumor types, Cr-1 expression has been confirmed (15,38,39).      439 

We have found that spheroid cultures of murine breast cancer cells, which are 440 

considered to be enriched in CSC, upregulate Cr-1 expression (Fig 4A) 441 

(21,30,31). Subcutaneously injected TUBO P3 cells grew out in all BALB/c mice 442 

within 6 weeks after injection. After vaccination against Cr-1, 27% of mice did 443 

not develop tumors (Fig. 4C). In the remaining mice, we observed a reduced 444 
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tumor growth rate (Fig. 4B and C). Immune responses induced by Cr-1 445 

vaccination specifically target Cr-1-positive CSC and control tumor burden.  446 

In patients, high levels of Cripto-1 expression in the tumor have been associated 447 

with decreased survival and could be correlated to advanced disease (12). In 448 

addition, Cripto-1 has been found in the serum of breast cancer patients, 449 

suggesting its potential function as a biomarker (40). For lung cancer, it was 450 

reported that serum levels of Cripto-1 correlated with tumor stage (41). These 451 

reported clinical findings associate increase expression of Cripto-1 with 452 

metastasis and worse survival in breast cancer patients.  453 

It is crucial for patient survival to eliminate tumor cells that can cause relapse 454 

and metastasis to potentially prolong patient survival. New therapeutic 455 

strategies, which can specifically target both CSC and metastases, have the ability 456 

to reduce the risk of relapse and disease related death in cancer patients. 457 

Immune targeting therapies have shown a great potential in treatment of 458 

metastatic diseases (42). It is crucial to identify novel immunogenic antigens that 459 

can be targeted by immunotherapies. We propose that Cripto-1 is a suitable 460 

candidate for immunotherapy in breast cancer patients, targeting a different 461 

subset of breast cancer cells than in our previous Her2 DNA vaccine clinical trial 462 

(10). We have shown that targeting Cripto-1 in breast cancer mouse models 463 

reduced metastasis and targeted CSC. For patients, a DNA vaccine targeting 464 

Cripto1 could potentially translate into increased disease free and overall 465 

survival.  466 

 467 

468 
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Figure 1 621 

 622 

 623 

Tumor growth and metastatic spread in orthotopic 4T1mCr-1 breast cancer model 624 

 625 

Orthotopic injection of 2x105 4T1mCr-1 cells in pmCr-1- or pVAX1- vaccinated 626 

BALB/c mice. Mice were sacrificed on day 23 after tumor inoculation. A, 627 

Luciferase expression at day 14 after tumor inoculation. 4 representative mice 628 

are displayed. B, Volume of primary tumors. Mice in pVAX1 (n=5) and pmCr-1 629 

(n=5)  group were palped twice per week until experimental endpoint on day 23. 630 

Error bars represent standard deviation; * p=0.0321, **** p<0.0001 (Mann-631 
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Whitney test). C, Primary tumor weight at day 23. Error bars represent standard 632 

deviation; **** p<0.0001 (unpaired t-test). D, Single cell suspension of lung 633 

tissue was seeded in petri dish and cultured in selection medium. At day 10, 634 

colonies were fixed and counted. Metastatic index (MI) was calculated by MI= 635 

number of colonies/primary tumor weight. Error bars represent standard 636 

deviation; **** p<0.0001 (Mann-Whitney test). 637 

638 
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Figure 2 639 

 640 

Humoral response induced by pmCr-1 vaccination in BALB/c mice 641 

 642 

BALB/c mice were vaccinated with pmCr-1 or pVAX1. Two weeks after the boost 643 

vaccination, serum was collected for analysis. A, 4T1mCr-1 and 4T1 cells were 644 

incubated with serum from pmCr-1 and pVAX1. Surface binding serum 645 

antibodies were detected with anti-mIgG-FITC antibody. Cells were analyzed on 646 

flow cytometer. B, Subclasses of antibodies in pmCr-1 serum binding Cr-1 were 647 

detected with secondary anti-mIgG1-FITC, anti-mIgG2a-FITC, anti-mIgG2b-FITC. 648 

Cells were analyzed by flow cytometry.  C, NK cells cytotoxicity against 4T1mCr-649 
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1 cells in the presence of pmCr-1 or pVAX serum. Assay supernatants were 650 

harvested after 4h and 16h for analysis. D, NK cell cytotoxicity against 4T1mCr-1. 651 

Summary of 5 individual experiments after 4h co-culture at 9:1 effector to target 652 

ratio; * p=0.0158 (Paired t test). E, NK cell cytotoxicity against 4T1. Summary of 653 

5 individual experiments after 4h co-culture at 9:1 effector to target ratio.  654 

655 
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Figure 3 656 

 657 

Metastatic spread in Her2/neu driven spontaneous breast cancer model BALB-658 

neuT 659 

BALB-neuT mice were vaccinated at 10 weeks and 12 weeks with pmCr-1 or 660 

pVAX1. Mice were followed over time and sacrificed upon ethical endpoint.  A, 661 

Tumor incidence in pVAX1 (n=6 ) and pmCr-1 (n=6) vaccinated BALB-neuT 662 

mice.  B, Survival of pVAX1 (n=6) or pmCr-1 (n=6) vaccinated BALB-neuT mice.  663 

Mice were sacrificed upon ethical endpoints. C, Metastatic burden in the in 664 

pVAX1 (n=5) and pmCr-1 (n=5) mice.  Metastatic index is calculated by 665 

MI=number of foci/sum of the diameter of all primary lesions. Error bars 666 

represent standard deviation; * p=0.021 (Mann-Whitney test). D, Light 667 
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microscopy image of the lung sections after hematoxylin and eosin staining, 10x 668 

magnification.    669 

670 
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Figure 4 671 

 672 

Vaccination induced immune response is targeting breast cancer stem cells  673 

P3 TUBO cells were s.c. injected in pmCr-1 or pVAX1 immunized BALB/c mice. A, 674 

Western Blot for Cr-1 in spheroid passaged TUBO cell line. B, Tumor growth rate 675 

in pmCr-1 (n=11) and pVAX (n=11) vaccinated mice. Error bars represent 676 

standard deviation; * p=0.0453 (Mann-Whitney test). C, Individual tumor growth 677 

curves for pmCr-1 and pVAX until day 61. D, Survival curves for mice immunized 678 

with pmCr-1 or pVAX1 after s.c. challenge with TUBO P3. p=0.078 (Mantel-Cox 679 

test). 680 
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