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We describe a generative approach that enables concurrent typestate-oriented programming in Java
and other mainstream languages. The approach allows programmers to implement objects exposing
a state-sensitive interface using a high-level synchronization abstraction that synchronizes methods
with the states of the receiver object in which those methods have an effect. An external tool takes
care of generating all the boilerplate code that implements the synchronization logic. Behavioral
types are used to specify object protocols. The tool integrates protocol conformance verification with
the synchronization logic so that protocol violations are promptly detected at runtime.

1 Introduction

Beckman et al. [2] report that objects with a state-dependent interface are common in Java applications.
Typical examples of such objects are iterators (which can be advanced only if they are not finished), files
(which can be read or written only when they are open), and locks (which can be released only if they have
been previously acquired). Implementing and using objects with a state-dependent interface is difficult
and error prone, to the point that researchers have investigated specific methodologies – such as typestate-
oriented programming (TSOP for short) [1, 10] – to help software development. TSOP is based on a
set of programming abstractions supporting the design of objects with state-dependent interfaces and a
behavioral type system ensuring that methods invoked on an object belong to the interface corresponding
to that object’s state. Crafa and Padovani [6] have extended TSOP to a concurrent setting, showing that
the Objective Join Calculus [8] is a natural formal model for (concurrent) TSOP because of its built-in
support for join patterns. In fact, join patterns make it possible not only to explicitly associate methods
with states (which is one of the disinguishing features of TSOP as conceived by Aldrich et al. [1]) but
also to synchronize methods and states: the process invoking a method that is not available in an object’s
current state is suspended until the object moves into a state for which that method is available again.

While the feasibility of Crafa and Padovani’s approach to concurrent TSOP is partially witnessed
by a proof-of-concept type checker for the Objective Join Calculus [18, 17], applying it to mainstream
programming languages presents two substantial problems. (P1) The few languages that feature built-in
join patterns – notably JoCaml [9], Cω [3, 16], Join Java [14] and JErlang [20] – are mostly experimen-
tal languages serving specialized communities and/or have not been maintained for a long time. Library
implementations of join patterns [21, 22, 13, 24, 27] have similar issues. (P2) Retrofitting Crafa and
Padovani’s type system into an existing language is conceptually and technically challenging. The ongo-
ing efforts on the implementation of Linear Haskell [4] show that this is the case even when retrofitting
a streamlined substructural type system in the controlled setting of a pure functional language.

The main contribution of this work is a practical approach that makes concurrent TSOP immediately
applicable to Java and, in fact, to virtually every programming language. The approach is necessarily
based on compromises. We address problem (P1) using code generation: the programmer writing a
Java class using our approach specifies the join patterns that synchronize states and methods by means
of standard Java annotations [11]; an external tool generates the boilerplate code that implements all
the synchronization logic. As a result, we avoid any dependency on join patterns in the programming
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language or in external libraries. We address problem (P2) trading compile-time with runtime protocol
conformance verification. The programmer provides a protocol specification for the class, again in the
form of a Java annotation, and the same external tool generates the code that detects all protocol vio-
lations at runtime if (and as soon as) they actually occur. This way, we bypass the non-trivial problem
of reconciling fundamentally different type systems, at the cost of delayed detection of programming
errors. From a technical standpoint, we also contribute a refinement of Le Fessant and Maranget’s [7]
compilation scheme for join patterns that uses behavioral types to identify object protocol violations
and to prune the state space of the automaton – called matching automaton – that performs join pattern
matching.

The rest of the paper is organized as follows. We start recalling the key features of concurrent TSOP
with join patterns [6] through a simple example of concurrent object (Section 2). Then, we describe
the construction of the matching automaton (Section 3), which is instrumental to the subsequent code
generation phase (Section 4). We conclude in Section 5.

The tool has been implemented and used to generate all the code and automata shown in the paper.
Its source code is publicly available [19].

2 Example

We illustrate the basics of concurrent TSOP in the Objective Join Calculus [8, 6] by modeling a promise
or completable future variable (the terminology varies depending on the language). We can think of a
completable future variable as a one-place buffer that must be written (or completed) once (this is the
view of the variable that is sometimes called promise [12]) and that can be read any number of times,
concurrently. We find this specific example appropriate because it is a relatively simple concurrent object
that exposes a state-sensitive interface and whose protocol uses all the connectives of the type language
we are about to discuss. Below is the definition of a future object of type Efuture:

object future : Efuture[ EMPTY & put(x) . future!FULL(x)
| FULL(x) & get(user) . future!FULL(x) & user!reply(x) ]

future!EMPTY
(1)

Messages sent to the future object are stored into its mailbox. The object understands four kinds of
messages, each identified by a tag: EMPTY and FULL model the state of the object while put and get its
operations. Thus, an EMPTY message in the future’s mailbox (denoted by a term future!EMPTY) means
that future has not been completed yet, whereas a FULL(x) message in the future’s mailbox means that
future has been completed with value x. The behavior of the object is given by the two reactions J .P
within brackets. When (some of) the messages in the object’s mailbox match the join pattern J of a
reaction, the matched messages are atomically consumed and those on the right hand side of the reaction
are produced. Above, the first reaction specifies that a future in state EMPTY accepts a put operation
carrying an x argument and changes its state to FULL(x). The second reaction specifies that a future in
state FULL(x) accepts a get operation carrying an argument user. The reaction leaves the state of the
object unchanged (the message FULL(x) is restored into the future’s mailbox) and additionally stores
reply(x) into user’s mailbox, from which the user of the completable future variable can retrieve the
value of x. The last line of the definition (1) acts as a constructor that initializes future to state EMPTY.

As defined, future does not react to message patterns of the form EMPTY & get(user) or FULL(x) &
put(y). After all, an uncompleted future variable cannot provide its value and a completed future
variable should not be completed again. Nonetheless, the two scenarios differ crucially: trying to read
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an uncompleted future variable is alright (simply, the request will remain pending until the variable is
completed), whereas trying to complete a future variable twice is just wrong. To tell the two cases apart
we need a protocol specification for completable future variables. The protocols (or types) E, F we
consider are generated by the grammar

E,F ::= 0 | 1 | m | ∗m | E+F | E ·F

and are akin to regular expressions defined over tags m, except that iteration is limited to single tags and
‘·’ is shuffling. Formally, we define the semantics of a protocol as the set of strings of tags inductively
generated by the equations below

J0K = /0
J1K = {ε }

JmK = {m}
J∗mK = {mn | n ∈ N}

JE+FK = JEK∪ JFK
JE ·FK = {u1v1 · · ·unvn | u1 · · ·un ∈ JEK,v1 · · ·vn ∈ JFK}

where ε denotes, as usual, the empty string, mn is the string made of n occurrences of m, and we write
ui and v j to denote arbitrary, possibly empty strings of tags. A type specifies the legal ways of using
an object. In particular, the only legal way of using an object of type m is to send an m-tagged message
to it, whereas an object of type ∗m can be sent an arbitray number of m messages. An object of type
E+ F can be used either as specified by E or as specified by F, whereas an object of type E · F must
be used as specified by both E and F. For example, an object of type EMPTY · put must be sent both
an EMPTY message and also a put message, in whichever order. The constants 0 and 1 have a subtle
semantics. The only legal way of using an object with type 1 is not using it, because J1K contains the
empty string only. Concerning 0, there is no legal way of using an object with that type, because J0K is
empty. Even not using such an object is illegal! This seemingly bizarre interpretation of 0 is actually
key in the construction of the matching automaton, as we will see in Section 3. In the following, we
write E= F if JEK= JFK. In particular, E ·F= F ·E. By using shuffling instead of sequential composition
we deprive types of any information concerning the order in which messages are supposed to be sent to
objects. There are two motivations for this choice. First, it is often impossible to determine the order of
messages sent to an object by concurrent (hence, independent) processes. Shuffling allows us to easily
overapproximate an object protocol while ignoring any ordering constraint. Second, we will use types in
the construction of the matching automaton, whose main purpose is to detect when a reaction can fire.
According to the semantics of the Objective Join Calculus [8], only the presence – not the order – of
messages in the mailbox matters in this respect.

As an example of object type, we define Efuture thus:

Efuture
def
= ∗get · (EMPTY ·put+FULL) (2)

This type specifies that a completable future variable is always either EMPTY or FULL (cf. the ‘+’
connective), that it can be completed once when it is EMPTY (cf. the innermost ‘·’ connective), and that
it may receive an arbitrary number of get messages (cf. the ‘∗’ connective) regardless of its state (cf.
the outermost ‘·’ connective, allowing any interleaving of the get messages with respect to all the other
messages).

We assume a well-formedness condition on types, requiring that every starred tag occurring in them
does not occur also unstarred. This assumption simplifies the technical development and does not appear
to impact the expressiveness of types in describing interesting object protocols.
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Figure 1: Matching automaton for the join patterns of the future variable.

3 From join patterns to matching automata

In this section we describe a compilation scheme from join patterns to matching automata. A matching
automaton is a particular kind of finite-state automaton (FSA) whose purpose is to efficiently detect when
one of the object’s reactions can fire and if a protocol violation has occurred. To do so, the matching
automaton keeps track of the state of the object’s mailbox as messages are stored in it. The compilation
scheme we are about to illustrate is close to the one given by Le Fessant and Maranget [7], except that
we use the behavioral type associated with a join pattern to prune the state space of the resulting FSA.
We illustrate the compilation scheme using the definition of future (1) as guiding example. The resulting
matching automaton is shown in Figure 1.

From the join pattern being compiled we determine a signature Σ of message tags, those understood
by the object, which is also the alphabet of the resulting matching automaton. The signature usually
coincides with the set of tags occurring in the type of the object. In the case of future we have Σ =
{EMPTY,FULL,get,put}. Tags are assumed to be totally ordered, for instance lexicographically.

The states of the automaton are n-tuples of counters α1 · · ·αn that provide an approximate description
of the content of the object’s mailbox. The length n of the tuple is the cardinality of Σ and the i-th counter
αi of the tuple is an element of N∪{$} that corresponds to the i-th tag mi ∈ Σ according to the tag total
order. A counter αi ∈ N means that there are exactly αi messages with tag mi in the mailbox, whereas a
counter αi = $ means that there is at least one message with tag mi in the mailbox. We use the behavioral
type of the object to determine the form of counters. We say that a message m is unbounded in E if ∗m
occurs in E and that it is bounded otherwise. It is easy to show that, for every bounded message m in E,
there exists N ∈ N such that every trace in JEK contains at most N occurrences of m, in which case we
say that m is N-bounded. We choose counters of the form k ∈ {0, . . . ,N } for N-bounded messages and
of the form 0 or $ for unbounded messages. As we will see shortly, the distinction between bounded and
unbounded messages is needed for handling the automaton’s transitions. In Efuture, EMPTY, FULL and put

are 1-bounded and get is unbounded. The initial state of the automaton is 0 · · ·0, describing an empty
mailbox. For ease of reference, the states in Figure 1 are followed by a unique index in parentheses.

The automaton has two kinds of transitions. Receive transitions (the solid arrows in Figure 1) cor-
respond to the arrival of a message in the object’s mailbox. For example, the future’s automaton has an
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EMPTY-tagged transition from state 0000 to state 1000 recording the fact that, if the future’s mailbox is
empty and an EMPTY message arrives, we end up in a mailbox configuration that has exactly one EMPTY
message and no other message. Consume transitions (the dashed arrows in Figure 1) correspond to the
firing of a reaction, which causes the consumption of the messages occurring in the join pattern from the
object’s mailbox. Consume transitions are slightly more difficult to handle than receive transitions. The
residual number of bounded messages after a consume transition can be computed exactly by decrement-
ing the corresponding counters in the starting state. On the contrary, the counter describing the residual
number of an unbounded message after a consume transition can be 0 or $ depending on whether all
such messages have been consumed or if at least one remains in the mailbox. For example, in Figure 1
there are two such transitions from state 01$0 leading to states 0000 and 00$0 depending on whether the
consumed get message was the last one with such tag in the mailbox or not. The implementation of the
automaton deterministically chooses which consume transition to follow by means of a runtime check.
The fewer unbounded messages there are in a type, the fewer runtime checks are necessary, the more
efficient the code of the matching automaton is (more on this in Section 4). We label consume transitions
with an n-tuple indicating which messages are consumed, hence the reaction that fires.

This basic construction admits a few refinements which help reducing the size of the resulting FSA.
For example, Le Fessant and Maranget [7] observe that, under the assumption that a reaction fires as soon
as possible, receive transitions departing from states with outgoing consume transitions are useless. In-
deed, as the messages consumed by the reaction are removed from the mailbox, the automaton will move
to a state describing a mailbox configuration with strictly fewer messages. As we will see in Section 4,
this refinement is not applicable in our setting because our implementation of the matching automaton
does not always guarantee such prompt firing of transitions. Another refinement not considered by Le
Fessant and Maranget [7] is made possible by the use of behavioral types. The attentive reader may
have noticed that there is no state corresponding to the tuple 1100 in the FSA of Figure 1. This is not
an oversight: the tuple 1100 describes a mailbox configuration containing both an EMPTY message and
also a FULL message, but this configuration is not found in JEfutureK. If such configuration is reached, the
object should notify the user (e.g. through an exception) of the fact that its protocol has been violated
rather than trying to handle the situation in some way.

To identify illegal states we need an operator on types that is closely related to Brzozowski derivative
for plain regular expressions [5] and that is inductively defined thus:

0[m] = 0
1[m] = 0

m[m′] =

{
1 if m= m′

0 otherwise
(∗m)[m′] =

{
∗m if m= m′

0 otherwise
(E+F)[m] = E[m]+F[m]
(E ·F)[m] = E[m] ·F+E ·F[m]

In words, E[m] describes the language of traces obtained by removing a single occurrence of m from
those traces of E that have at least one. Note that E[m] = 0 if no trace of E contains at least an occurrence
of m. As we will see shortly, this property is key for identifying illegal states.

The next step is to annotate each state of the FSA with a type, as follows: the initial state is annotated
with the type assigned to the object by the programmer. If a state s1 annotated with E has an outgoing
transition labeled m to another state s2, then s2 is annotated with E[m]. Since there may be distinct
paths leading to the same state in the FSA, one may wonder whether this annotation procedure is well
defined. It is possible to show that the annotation for each state is unique modulo type equivalence. This
follows from three facts: (1) the FSA is constructed in such a way that distinct minimal paths (of receive
transitions) between two states only differ for the order of tags, (2) the order of derivatives is irrelevant,
namely E[m][m′] = E[m′][m] for all E, m and m′ and (3) type well-formedness ensures that E[m] = E if m is
unbounded in E. To illustrate, let us annotate a few states of Figure 1. The initial state is annotated with
Efuture. From this state we can reach the state 1000 with an EMPTY-labeled transition, hence we annotate
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1 @Protocol("*get ·(EMPTY ·put + FULL)")

2 class Future<A> {

3 @State private void EMPTY();

4 @State private void FULL(A x);

5 @Operation public A get();

6 @Operation public void put(A x);

7 @Reaction private void when_EMPTY_put(A x) { this.FULL(x); }

8 @Reaction private A when_FULL_get(A x) { this.FULL(x); return x; }

9 public Future() { this.EMPTY(); }

10 }

Figure 2: Java implementation of a completable future variable (source code).

1000 with Efuture[EMPTY] = ∗get · put. From 1000 we can reach the state 1001 with a put-labeled
transition, hence we annotate 1001 with Efuture[EMPTY][put] = (∗get ·put)[put] = ∗get. Note that there
is another path from 0000 to 1001 labeled with put,EMPTY and that Efuture[put][EMPTY] = ∗get. Now
consider the state 1100. This state could be reached from 0000 along a path labeled with EMPTY,FULL.
We compute Efuture[EMPTY][FULL] = (∗get · put)[FULL] = 0. The fact that we have obtained 0 means
that the state 1100 describes a configuration of the mailbox that violates the type Efuture. In general, every
state for which the type annotation is (equivalent to) 0 is illegal and can be eliminated. Figure 1 shows
the FSA without illegal states.

The elimination of illegal states is not just an optimization aimed at reducing the size of the resulting
FSA, but plays a key role for the soundness of our approach, which is based on a mixture of compile-time
and runtime checks. We have stated that the matching automaton should recognize all and only those
mailbox configurations that are legal according to the behavioral type of the object so that, in case or
protocol violation, a suitable exception can be thrown. With the above construction, a protocol violation
is promptly detected as a missing receive transition from the current state of the FSA.

4 Code generation

A Java programmer using our concurrent TSOP approach for implementing a completable future variable
writes the code shown in Figure 2. What we see there is a syntactically-valid Java class with a few Java
annotations (in magenta) that are specific to our approach. All the boilerplate code that stores incoming
messages, matches join patterns and watches for protocol violations is automatically generated from
this code. Before looking at the generated code, we trace the correspondence between the Java code in
Figure 2 and the Objective Join Calculus constructs in (1).

The @Protocol annotation on line 1 specifies the behavioral type associated with the class and
corresponds to the type Efuture in (1). As we have discussed in Section 3, this type is necessary to build
the matching automaton corresponding to the join patterns in the class. The type refers to the name of
the Java methods declared on lines 3–6, which correspond to messages in the Objective Join Calculus.
Sending a message to an object in the Objective Join Calculus amounts to invoking the corresponding
method in Java where the arguments of the method are those of the message, with some exceptions
discussed shortly. The body of these methods will be generated automatically.

Methods corresponding to messages have either a @State or an @Operation annotation. Methods
of the first kind, such as EMPTY and FULL, model state messages from which we do not expect to receive
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an answer. For this reason, the return type of state methods is always void. Methods of the second
kind, such as get and put, model operations on the object from which we (usually) expect to receive an
answer (possibly just a signal meaning that the operation is complete). In the Objective Join Calculus,
messages like get carry an explicit continuation that the object uses to answer the request. The Java
idiom to communicate results is through returned values instead of explicit continuations. For this reason,
operation methods usually have one less argument compared to the corresponding message and their
return type is different from void, as in the case of get. The put method is a notable exception. The
corresponding message does not have a continuation argument because no answer is expected from a
put message. However, our code generator relies on the fact that each join pattern combines exactly one
operation method and zero or more state methods. Because of this requisite (also found in Cω [3]), put
is qualified as an operation method even if does not return any significant result. The void return type is
the obvious choice for operation methods like put that do not return anything.

Methods defined on lines 7–8 have a @Reaction annotation, meaning that they correspond to re-
actions in the Objective Join Calculus. The name of a reaction method reveals the structure of the join
pattern it represents and is built from the when prefix followed by the tags of the messages in the join
pattern separated by underscores. So, the method names when_EMPTY_put and when_FULL_get re-
spectively correspond to the join patterns EMPTY & put(x) and FULL(x) & get(user). The argument list
of a reaction method is the concatenation of the argument lists of the joined messages (without explicit
continuations), whereas its return type is that of the one and only operation method that appears in the
pattern. For example, when_FULL_get has a single argument (coming from FULL) and return type A

(the same of get). The body of a reaction method is the Java transposition of the corresponding process
in the Objective Join Calculus reaction. The body of when_EMPTY_put changes the state of the object
to FULL by invoking the corresponding method. The body of when_FULL_get restores the state of the
object to FULL and then returns the content of the future variable to the client. The constructor (line 9)
is unremarkable.

We use Java access modifiers to control the visibility of methods: methods corresponding to state
messages are private to enforce the fact that, as in the original presentation of TSOP [1], state tran-
sitions can only be triggered from within the class; methods corresponding to operations are public,
for these provide the public interface to the object; reaction methods are private, since they will be
invoked by the automatically generated code that fires reactions (more on them later).

We now illustrate how our generator expands the source class in Figure 2 into a fully functional class.
Because of space limitations, we can only focus on a few bits of generated code, shown in Figure 3.

First of all, the generator adds some fields (lines 1–6) to enforce exclusive access to instances of the
class, to represent the state of the matching automaton, and to represent message queues. Mutual exclu-
sion is guaranteed by a reentrant lock (line 1) and by condition variables associated with the operation
methods (try_get and try_put on lines 2–3). It would also be possible to use implicit locks and the
built-in synchronization facilities of Java, but using explicit locks is more flexible and sometimes results
in better performing code. The state of the FSA is represented as a field of type int that contains the
indexes shown within parentheses in Figure 1. Its initial value 0 corresponds to the initial state of the
FSA. The concrete representation of message queues depends on whether messages are bounded and/or
have arguments. Bounded messages without arguments do not need a queue, for all we need to know
is their number in the mailbox and this number is encoded accurately in the state of the FSA. For this
reason, there are no fields corresponding to EMPTY and put messages. For unbounded message without
arguments the queue is just a counter field of type int that tracks the number of those messages in the
mailbox. Note that get is one of such messages (line 6). Indeed, the argument of the get message is an
explicit continuation that disappears in Java. For 1-bounded messages with a single argument the queue
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1 private ReentrantLock lock;

2 private Condition try_get;

3 private Condition try_put;

4 private int state = 0;

5 private A queue_FULL = null;

6 private int queue_get = 0;

7

8 private void FULL (A x) {

9 lock.lock();

10 queue_FULL = x;

11 switch (state) {

12 case 0:

13 state = 5;

14 lock.unlock();

15 break;

16 case 7:

17 state = 6;

18 try_get.signal();

19 lock.unlock();

20 break;

21 default:

22 lock.unlock();

23 throw new IllegalStateException();

24 }

25 }

26 public A get () {

27 lock.lock();

28 queue_get++;

29 switch (state) {

30 case 0: state = 7; break;

31 case 1: state = 2; break;

32 case 4: state = 3; break;

33 case 5: state = 6; break;

34 case 9: state = 8; break;

35 default: break;

36 }

37 while (true)

38 switch (state) {

39 case 6: {

40 final A x = queue_FULL;

41 queue_FULL = null;

42 queue_get--;

43 state = queue_get == 0 ? 0 : 7;

44 lock.unlock();

45 return when_FULL_get(x);

46 }

47 default:

48 try_get.awaitUninterruptibly();

49 }

50 }

Figure 3: Java implementation of a future variable (generated code).

coincides with the value of the argument (whether the message is present or not is encoded in the state of
the FSA). This is the case of FULL, whose field has the same type as its argument (line 5). In all the other
cases we use a real queue. There is no message with such properties in the example we are considering,
hence no example of such field. Analogous optimized representations for message queues have been
described in the literature [8, 27].

We now turn the attention to the generated body of method FULL, bearing in mind that invoking this
method means sending a message FULL to the object. The method enters the critical section (line 9)
and stores its argument in the corresponding queue (line 10). The following switch implements the
transitions of the FSA by analysing and updating the state field. There are two receive transitions
labeled FULL in Figure 1. The first one (lines 12–15) moves the FSA from state 0 to state 5. Since 5 is
not a firing state (it has no outgoing consume transitions), we just leave the critical section and quit the
method. The second transition (lines 16–20) moves the FSA to the firing state 6. If this happens, another
process has previously invoked get and is waiting for the future variable to be resolved. Thus, we notify
the condition variable try_get to wake such process before leaving the critical section. Note that, after
the notification and before the awoken process is scheduled to run, other processes may invoke a method
(e.g. get) on the object and successfully enter the criticial section. For this reason, our compilation
technique differs from the one of Le Fessant and Maranget [7] in that it does not guarantee that reactions
fire as soon as possible. To conclude the description of the FULL method, the default case of the
switch deals with protocol violations (lines 21–23). In this case, the FULL method has been invoked
in a state in which this message was not expected to arrive. The violation is notified with an exception
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thrown just outside the critical section (line 23).
The code generated for operation methods is more complex, because it involves not only updating

the state of the FSA, but also detecting and executing reactions that fire. Let us have a look at the get

method, whose body is divided into two parts. The first part (lines 27–36) stores the get message (by
incrementing the corresponding counter) and updates the state of the FSA. This part is similar in structure
to the generated body of state methods like FULL, except for two differences. First, the default case
(line 35) corresponds to the loops in Figure 1, which do not change the state of the FSA. In particular, the
behavioral type that we are considering allows get messages to arrive at any time, hence get messages
are never a cause of protocol violation, unlike FULL messages. Second, no condition variable is notified,
even if the FSA ends up in a firing state, because it is the very process executing this code that takes care
of executing the code corresponding to the reaction (cf. line 33).

The second half of the method contains the code that detects and executes a firing reaction (lines 37–
49). The state of the FSA is repeatedly checked: as long as the state is a non-firing one, the method
suspends and waits to be awoken (line 48); when a firing state is detected (line 39), the messages con-
sumed by the firing reaction are removed from the corresponding queues and their arguments (if there
are any) are stored in local variables (lines 40–42). The state of the FSA is then updated to account for
the removal of messages from the mailbox of the object (line 43). Unlike previous state updates, this one
requires a runtime check: in Figure 1, there are two outgoing consume transitions from the firing state 6,
depending on whether the residual number of get messages in the mailbox is 0 or not. In the first case,
the FSA goes back to the initial state. In the second case, the FSA moves to state 7. Finally, the method
leaves the critical section (line 44) and invokes the appropriate reaction method (line 45).

5 Concluding Remarks

We have presented a generative approach enabling concurrent TSOP in Java, thus providing a practical
implementation of the concurrent TSOP methodology whose theoretical foundations have been studied
in previous work [6]. Our approach makes very few assumptions on the host programming language and
is therefore easily portable to other mainstream languages. En passant, we have described a refinement
of Le Fessant and Maranget’s [7] compilation scheme for join patterns using behavioral types and have
shown an implementation technique of join patterns that integrates smoothly with – and takes advantage
of – Java without relying on libraries or language extensions. Specifically, we use the native sequential
composition and return instead of explicit continuations for imposing an order in the execution of code
and for returning the result of operations.

Compared to the theoretical study of Crafa and Padovani [6], here we have adopted a simpler type
language where only the tag of messages – and not the type of their arguments – is reported in an object
protocol. This simplification is made possible by the fact that our approach defers typestate checking
at runtime, thus rendering the type of message arguments unimportant. Besides, the use of sequential
composition in place of explicit continuations reduces the need of message arguments with complex
(behavioral) types and results in a more natural programming style. Another difference concerns the
semantics of types, which is given here in terms of traces instead of multisets [6]. Nonetheless, the two
semantics induce the very same notion of type equivalence.

Plaid [25, 26] and StMungo [15] are notable implementations of TSOP. Plaid supports TSOP natively,
whereas StMungo relies on external tools for analysing annotated Java code. The main advantage of Plaid
and StMungo compared to our approach is that they are able to provide static protocol conformance
guarantees, whereas our approach shifts most of the typestate checking at runtime. However, neither
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Plaid nor StMungo support concurrent TSOP.
Many ideas for further developments stem from this work. For example, the runtime information on

the state of the matching automaton could enable forms of error recovery that notoriously clash with static
analysis. The same information might also be useful to implement a gradual type system for concurrent
TSOP [23, 28]. Finally, we are aware that lock-based compilation of join patterns à la Le Fessant and
Maranget [7] does not scale well to large numbers of processes. Unfortunately, scalable implementations
of join patterns [27] are not based on matching automata, making it difficult to detect protocol violations.
Whether scalability and runtime protocol checking can be reconciled remains to be established.
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