
MethylFASTQ: a tool simulating bisulfite
sequencing data

Giulia Piaggeschi�

Dept. of Computer Science
University of Turin

Turin, Italy

giulia.piaggeschi@unito.it

Nicola Licheri�

Dept. of Computer Science
University of Turin

Turin, Italy

licheri@di.unito.it

Greta Romano
Dept. of Computer Science

University of Turin
Turin, Italy

grromano@unito.it

Simone Pernice
Dept. of Computer Science

University of Turin
Turin, Italy

pernice@di.unito.it

Laura Follia
Dept. of Computer Science

University of Turin
Turin, Italy

laura.follia@unito.it

Giulio Ferrero
Dept. of Computer Science

University of Turin
Turin, Italy

giulio.ferrero@unito.it

Abstract—DNA methylation is a DNA modification playing an
important role in several diseases, including cancer. The gold-
standard technique for measuring DNA methylation is Bisulfite
Sequencing (BS). The treatment with bisulfite alters the sequence
of DNA making the analysis of BS data computationally difficult.
There are many tools for analysing BS data but the choice
of which to use is difficult due to the extensive biological and
technical variability of the data. Synthetic and real datasets can
be exploited to evaluate the tool performance and to obtain an
accurate data analysis. Today, Sherman is the only available tool
to generate BS synthetic datasets. However, this tool does not
report any information about the methylated cytosines.
For this purpose, in this paper we present MethylFASTQ, an
easy-to-use bioinformatics tool that generates synthetic bisulfite
datasets in FASTQ format. MethylFASTQ works in parallel
manner using producer-consumer approach. It returns:
i) a complete dataset in FASTQ format simulating the results of
a BS experiment
ii) a report file storing the information about the methylation
level of the dataset (i.e. methylated cytosines).
First, we test MethylFASTQ performances with an increasing
number of concurrent processes and we report the comparison
of MethylFASTQ with respect to Sherman tool. Then, we also
describe an application of synthetic datasets generated with our
tool and we use them as input for two bisulfite mapping and
methylation calling tools.
Finally, we propose MethylFASTQ as a tool to generate synthetic
bisulfite sequencing data.

Index Terms—DNA methylation, Next Generation Sequencing
(NGS), synthetic dataset, parallel computing

I. INTRODUCTION

DNA methylation (DNAm) is the addiction of a methyl

group to a DNA molecule. The DNA sequence is composed

by four bases: adenine (A), thymine (T), cytosine (C) and

guanine (G). The most common form of DNA methylation is

the methylation of cytosine which form the 5-methylcytosine

(5mC) and it affects a high number of cytosines present in the

� These authors contributed equally

genome [1]. Methylation changes the activity of DNA without

changing its base sequence.

The changes in patterns and levels of DNA methylation are

associated with several diseases as cancer and genetic disor-

ders [2]. The gold-standard technique used to study DNAm

is the Whole Genome Bisulfite Sequencing (WGBS) that

allows to measure methylation in the whole human genome.

Conversely, targeted bisulfite sequencing (targeted-BS) allows

to sequence the specific genomic regions. Both approaches

belong to Next Generation Sequencing (NGS) techniques, a

set of advanced technologies that allow the identification of a

DNA sequence. The bisulfite treatment converts unmethylated

Cs into Ts, while the other bases remain unaffected. Bisul-

fite conversion alters about 90% of cytosines present in the

genome. At this point, distinguishing between Cs converted

into Ts and a Ts originally present in the DNA molecule is

computationally demanding [1]. On top of that, it is difficult

to distinguish a converted C from: i) a stochastic sequencing

error occurring during all the sequencing steps; ii) a Single

Nucleotide Polimorfisms (SNPs). SNPs are base mutations of

the genome that differ among individuals. The presence of

SNPs in the samples increases the level of variability of the

above data.

Since BS experiments are time and money consuming, the

use of synthetic sequencing data (i.e. the creation of a dataset

that simulates different biological and technical situations

of a BS experiment) has become increasingly popular for

assessing and validating bioinformatics tools. Simulations can

also be used to evaluate software performances, for debugging

purposes and to develop new computational tools [3].

II. RELATED WORKS

The bioinformatics tools can be benchmarked using real

and/or synthetic sequencing data. However, tools validation

with real data is essential. Unfortunately, this is a difficult

task because the true positive values are unknown and they

334

2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

2377-5750/19/$31.00 ©2019 IEEE
DOI 10.1109/PDP.2019.00056

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302323855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are masked by the extensive biological noise and by the

variability of the data. These limitations complicate the use

of real data for assessing the accuracy of tools and other

performance measures [3]. Synthetic data generator tools allow

the production of data with predefined parameters by defining

the true positive values.

Furthermore, synthetic datasets allow the generation of a high

volume of data in an inexpensive and fast way compared to

costs and time needed to create real datasets in laboratory.

Synthetic data generators create FASTQ files starting from a

given reference genome. FASTQ file is the de facto standard

format to store biological data that are sequenced by NGS

techniques. FASTQ format describes each read (i.e. substring

of DNA) through three fields: the sequence id that specifies

the unique identifier of the read; the base sequence that is

the ordered sequence of bases; and the quality score that is a

measure of quality associated to each base of the sequence.

Synthetic data generators allow to specify a variety of pa-

rameters, such as the NGS technique, the read length, the

sequencing mode, the coverage and quantity of sequencing

errors. The coverage parameter represents the number of times

that a single base is sequenced or the number of reads aligned

over a single base.

In literature there are several tools that simulate NGS data in

FASTQ format, such as ART [4] and CuReSim [5]. However,

tools for BS data are still lacking. At the best of our knowl-

edge, Sherman is the only one tool that allows to simulate

bisulfite sequencing [6]. Sherman is a Perl script that generates

bisulfite sequencing data in FASTQ format.

Sherman allows the creation of single- and paired-end reads.

The number of reads, their length and read quality can be set

as tool parameters. SNPs and sequencing errors can also be

set and specified. Bisulfite conversion can be regulated with

two parameters, which provide the conversion rate in specific

DNA contexts (i.e CG and non-CG contexts).

III. METHYLFASTQ

A. Tool overview

MethylFASTQ is a tool written in Python that gener-

ate synthetic bisulfite sequencing data in FASTQ format. It

is highly customizable because MethylFASTQ is organism-

independent and experiment-independent. MethylFASTQ is

designed to simulates the sequencing process, following the

bisulfite sequencing experiment work-flow (Figure 1).

Given a reference genome sequence as input, the user can

create single-end or paired-end reads of directional and non-

directional NGS libraries. The single-end mode consists in the

production of one read in one direction (i.e. Forward read) for

each DNA fragment. Otherwise, the paired-end mode consists

in the production of two reads in two directions (i.e. Forward

and Reverse reads) for each DNA fragment.

In the non-directional protocol, all four possible bisulfite

DNA fragments are sequenced at the same frequency. In the

directional protocol, the sequencing reads will correspond to

a bisulfite converted version of either the original forward or

reverse DNA fragments.

Genome Fragmentation

Denaturation

Bisulfite
treatment

TRUE

FALSE

Is library
directional? Sequencing

Amplification

double-
stranded

fragments

single-

stranded
fragments

Reads

Parameters:

fragment length
coverage

Parameters:

read length
sequencing mode

Fig. 1. Bisulfite Sequencing workflow. The genome of interest is fragmented
in a number of double-stranded pieces of known length. Fragment strands
are separated through denaturation and then, single-stranded fragments are
bisulfite-treated. Amplification produces reverse complement of treated frag-
ments, which are sequenced in the non-directional protocol. Sequencing step
processes bisulfite fragments and produces a set of reads of known length.

MethylFASTQ also allows to simulate both WGBS experiment

and targeted-BS data. Two files are returned: a FASTQ file(s)

and a methylation call file. In case of single-end sequencing, a

single FASTQ file is produced. Differently, in case of paired-

end sequencing two FASTQ files are produced which contain

respectively the forward and reverse reads. The methylation

call file contains the information about the sequenced cy-

tosines.

Two experimental modes are implemented: 1) in the WGBS

mode the user can optionally provide a list containing the

chromosome names that have to be sequenced. If no list is

provided the entire reference genome will be sequenced; 2)

in targeted-BS mode the user must provide a tabulated file

containing the genome regions to be sequenced. This file will

contain the chromosome number and the indexes of first and

last base for each region that will be sequenced. Moreover,

the user may define the fragment size (i.e the reads length)

and the depth of coverage. Methylation can be set through

three context-based probabilities: CG, CHG and CHH (where

H= A,T or C). The user can also specify probabilities about

SNPs and sequencing errors. All the reads which cover a

specific base will report the mutated base with a quality is

not discernible from a non-mutated base.

Each read in the FASTQ file has an unique record ”id” which

provides information about its true mapping position in the

reference genome. Specifically, the record ”id” of a generic

read has the form chr:pos:strand, where:

• chr is the chromosome from which the fragment has been

extracted;

• pos is the position of the first base in the chromosome;

• strand identifies the DNA strand. It can be either forward

(+) or reverse (-);

Regarding the methylation call file, it is a file which presents

a line for each covered cytosine. Each line has the form chr
pos strand ctx nmeth ntot beta, where:

• chr is the chromosome in which the cytosine is located;

• pos is the index of the cytosine in the chromosome

(starting from 0);

• strand is the strand, it can be either forward (+) or reverse

(-);

• ctx is the cytosine context, it can be either CG, CHG or

CHH;

335

• nmeth represents how many times the cytosine appears

as methylated;

• ntot represents how many times the base was sequenced;

• beta is the beta value of cytosines, defined as the ratio

nmeth/ntot.

B. Software architecture

MethylFASTQ is modularized in three different modules.

1) methylfastq module contains the list of command

line arguments and the main class MethylFASTQ.

This class checks the input parameters and reads the

input reference genome file, starting sequencing either

in WGBS mode or targeted-BS mode.

2) sequencing module implements the sequencing pro-

cedures by means of two classes. The first class,

called ChromosomeSequencer, splits an entire

chromosome record in subsequences. These are in-

dependently sequenced by the second class, called

FragmentSequencer.

3) dna module contains auxiliary classes that implement

different types of DNA sequences, such as double- and

single-stranded fragment or single- and paired-end reads.

MethylFASTQ architecture follows the well-known

producer-consumer software design pattern. The producer’s

job (Figure 2) is to generate the data and to send it to the

consumer. Conversely, the consumer (Figure 3) has to consume

the received data one at time. Parallelization is process-based

and utilizes the built-in module multiprocessing, which

supports spawning processes and assigning them a job through

a function. Inter-process communication is performed using a

FIFO queue implemented in multiprocessing module,

which is process-safe and thread-safe. A process attempting

to get an element from an empty queue is blocked until an

element is available. In a similar way, a process attempting

to put an element in a full queue is blocked until a free slot

is available.

The parent process acts as the consumer, whereas the

producers are represented by the child processes.

MethylFASTQ works with a chromosome sequence at a time.

Chromosome substrings separated by unspecified bases, repre-

sented by ‘N’ characters, are located and extracted. Extracted

substrings are split in order to equally distribute the workload

among a number of parallel processes.

The load balancing step starts by calculating the total

size of the extracted substrings and their average length (m̄)

that should be assigned to each process. Sequences length

m̂ ≥ m̄, longer than the average value, are splitted into M
substrings of length m̄ and one of length r, where M, r
are chosen such that m̂ = m̄ ·M + r with 0 ≤ r < M .

The resulting substrings are sorted with respect to their

length in descending order, so that shorter substrings will be

processed after the longer ones.

Finally, the user can define a set of processes (workers) that

will elaborate the substrings. Sequences with their offsets are

distributed among the workers and sequenced in a parallel

manner.

Data generated by the workers can be of three types:

1) a list of single-end reads in FASTQ format;

2) a list of paired-end reads in FASTQ format, where the

generic paired-end read is a pair;

3) a list storing the methylation information about covered

cytosines of the sequenced substring;

so that each kind of data can be stored in a different file.

Workers instantiate a FragmentSequencer object using

as input parameters the chromosome substring and its initial

and final offsets. Random SNPs are set on the string, using the

SNP rate parameter given by the user. Then, cytosines on both

strands of the sequence are indexed. Cytosines information are

stored in a hash table, where the cytosine position into the

fragment acts as a key and a Cytosine object is the cor-

responding value. This object contains the strand and context

information, as well as two values that take into account how

many times that base is covered by a read, and how many

times it appears methylated.

Numerous overlapping fragments are extracted from the

sequence, so that each base is covered (on average) by a

number of reads equal to the chosen depth of coverage. A

methylation is generated w.r.t. a probability based on the

context (CG, CHG, CHH). Single- or paired-end reads, de-

pending on the chosen sequencing mode, are then extracted

from bisulfite strands and stored into a buffer. If the non-

directional library has been chosen, reads are also extracted

from reverse complement of the bisulfite fragment strands.

Whenever the number of reads in the buffer is greater than

a certain threshold, it is flushed in the shared queue, so that

the parent process can permanently store them in a file. Reads

generation involves sequencing error set up and the creation

of the relative FASTQ record. Setting up the sequencing errors

changes each base with a probability given as input. Quality

score associated to changed bases is drastically lowered.

FASTA file scanning and FASTQ record creation are accom-

plished using BioPython package [7].

IV. RESULTS

In this section are described the results from: (1) the

application of MethylFASTQ to generate different synthetic

datasets with associated execution times; (2) the comparison

between MethylFASTQ and Sherman tools performances; (3)

the application of MethylFASTQ synthetic datasets in the

BS analysis pipeline performed using two BS data mapping

and methylation caller tools (BSMAP [8] and Bismark [9]).

The experiments were performed on a 48-core AMD Opteron

6176 CPUs at 2.3 GHz with 503 GB of RAM.

A. MethylFASTQ performances

The measure of the execution time is an indicative quan-

tification of software performance. Indeed, the time needed

to complete a task is dependent on the machine workload.

336

Fig. 2. Producer process. Cytosines of the chromosome substring are
indexed. Several overlapping substrings are extracted from the chromosome
substrings. For each of them, methylation is set and relatives information are
stored in the index. Then, the bisulfite fragment is produced and reads are
extracted from it. Reads are stored in a local buffer which is periodically
flushed in the queue. When fragments extraction terminates, the consumer
pushes in the queue the cytosines information and its execution ends.

Fig. 3. Consumer process. The chromosome sequence is splitted in non-
overlapping substrings, which are further divided by the load balancing
algorithm. Obtained substrings are assigned to N producer processes. Then,
the consumer waits for items to be available in the queue and elaborate them.
When all substrings have been sequenced, the consumer terminates.

As reported in Table I the average execution time for the

generation of each dataset increases in proportion with the

features complexity. Indeed, the lower execution time was

obtained for creating the dataset with single-end reads of

directional library while the generation of paired-end reads

of non-directional library was the most expensive execution.

As reported in Figure 4 the MethylFASTQ execution time

rapidly drops as the number of parallel processes increases.

The execution time using one process was longer than ten

hours, while with two processes the execution time was halved,

and finally dropped to minutes with seven and eight processes.

Sequencing Library Generation time (min)

single-end directional 15
single-end non-directional 24
paired-end directional 25
paired-end non-directional 44

TABLE I
AVERAGE TIME COMPUTED CONSIDERING 10 RUNS USED TO CREATE THE

DATASETS USING EIGHT PARALLEL PROCESSES. ALL THE DATASETS ARE

EXTRACTED FROM CHROMOSOME 21 OF HG19 REFERENCE AND HAS 10X

COVERAGE. FOR EACH EXPERIMENT, 10 METHYLFASTQ EXECUTIONS

HAVE BEEN PERFORMED AND THE AVERAGE TIME HAS BEEN

CALCULATED. TIMES ARE EXPRESSED IN MINUTES.

100

200

5 10 15 20
Number of processes

Av
er

ag
e

C
PU

 ti
m

e
(m

in
)

Fig. 4. MethylFASTQ execution times performances. Average time of
10 runs to create a dataset as the number of parallel processes increases. The
dataset is extracted from human chromosome 21. It is a non-directional library
with paired-end reads with 10x coverage.

B. Comparison between MethylFASTQ and Sherman tools

We compared the performance of MethylFASTQ and the

already published Sherman tool [6] (Figure 5). Both tools

generate bisulfite synthetic data in high customizable way

and they allow the setting of the reads length, the single-

end/paired-end mode and the directionality of the libraries.

In addition, they allow the setting of the bisulfite conversion

rate for all the cytosines and the simulation of different reads

quality scores as well as the number of random SNPs in each

read. The final output of both these tools is a FASTQ file,

however, Sherman does not produce a report file related to

methylation calling for each sequenced cytosine. Sherman also

does not allow the simulation of a targeted-BS experiment but

only a WGBS, because it is not possible to select a set of

specific fragments from the reference genome.

The results of the tools comparison show that when both

tools run with one process Sherman performs better in terms

of execution time than MethylFASTQ (Figure 5). This is

probably due to the double step of MethylFASTQ that is:

(i) apply the methylation function on genome substrings and

save them

(ii) produce a report file storing the information of data

methylation profile.

Since Sherman is not a parallel tool, the below comparison of

337

execution times will show the performances of MethylFASTQ

using up to eight processes, while Sherman runs in sequential

mode. The results are different when MethylFASTQ runs with

an increasing number of processes. Indeed, the run of Methyl-

FASTQ with two processes obtains comparable execution time

with respect to Sherman. Instead, with a further increase of

the processes number, MethylFASTQ performs better than

Sherman, due to the parallelization.

0

500

1000

0 10 20 30
Number of reads (x 1M)

Av
er

ag
e

C
PU

 ti
m

e
(m

in
)

Method
MethylFASTQ with 1p
MethylFASTQ with 2p
MethylFASTQ with 4p
MethylFASTQ with 8p
Sherman

Fig. 5. Comparison between Sherman and MethylFASTQ tools. Average
times to produce datasets of seven different sizes by Sherman and Methyl-
FASTQ. MethylFASTQ has been run with 1, 2, 4 and 8 producer processes.
Datasets were extracted from human chromosome 21 of human genome hg19.
They are non-directional libraries with paired-end reads.

C. MethylFASTQ helps on the comparison of bisulfite aligners
and methylation callers

The synthetic datasets generated with MethylFASTQ were

used as input for a comparative analysis between BSMAP

[8] and Bismark [9] performances on the alignment and the

methylation calling tasks. These tools follow two different

approaches for BS reads mapping: BSMAP applies an ap-

proach based on the hashing technique; it masks cytosines

in the reference genome to allow bisulfite mismatches. Con-

versely, Bismark converts both reads and reference in 3-

letter sequences and then it applies an algorithm based on

the Burrows-Wheeler transform [10]. Methylation calling is

performed by methylation extractors included in BSMAP and

Bismark packages. All the tools have been tested using their

default settings.

The alignment percentage and the recall on identified CG

sites were used as performance measurements. The alignment
percentage considers only the uniquely mapped reads (i.e

those reads that are mapped in only one position with a

minimum number of mismatches). In case of paired-end reads

the reads are aligned if both the extremities are properly

mapped. The recall is the fraction of true positive values

correctly identified as methylated CG sites. It is defined as:

TP/Pos, where, TP is the number of CG sites identified by

the tool and Pos is the total number of CG sites.

Ten synthetic datasets with different combinations of parame-

ters have been generated to evaluate the tools performances as

the library settings and the reads quality level change (Table

II).

Sample Aligned reads Recall
ID num. reads BSMAP Bismark BSMAP Bismark

SD1 7.024.152 98.45% 98.68% 98.19% 99.13%
SD2 7.023.824 98.53% 98.37% 93.88% 99.10%
SD3 7.018.280 98.58% 94.95% 89.41% 99.13%
SD4 7.019.916 98.04% 41.37% 95.36% 93.89%
SD5 7.021.892 98.46% 98.65% 96.46% 97.40%
SD6 7.016.484 98.50% 98.55% 94.51% 97.34%
SD7 7.017.776 98.47% 98.58% 94.80% 95.74%
SD8 7.017.556 98.55% 95.55% 89.18% 88.40%
SD9 7.021.028 93.52% 15.46% 74.32% 49.82%

SD10 7.022.140 94.86% 19.77% 63.11% 37.91%

min 7.016.484 93.51% 15.46% 63.11% 37.91%
max 7.024.152 98.58% 98.68% 98.19% 99.13%
avg 7.020.305 97.6% 76% 88.92 85.79%

TABLE III
ALIGNMENT AND METHYLATION EXTRACTION PERFORMANCES ON
THE SYNTHETIC DATASETS. MAPPING AND METHYLATION CALLING

RESULTS ON SYNTHETIC DATASETS OF BSMAP AND BISMARK TOOLS.

The comparison between alignment performances using these

synthetic datasets show that BSMAP is stable as the sequenc-

ing error rate or the presence of SNPs increases (Table III).

The alignment percentages have little variability, even for low

quality datasets. Conversely, Bismark alignment performances

vary dramatically with the increase of sequencing errors/SNPs

rate. However, the alignment performances have not a great

impact on the methylation extraction. Indeed, using low quality

datasets with associated low alignment percentages, the methy-

lation extraction works properly. An example is the synthetic

dataset 9 (SD9) for which Bismark aligns only 15% reads

obtaining a recall of 50% (Table III).

ID num. reads SNP rate Error rate num. CG sites

SD1 7.024.152 0.1% 0.1% 766.422
SD2 7.023.824 0.1% 1.0% 766.748
SD3 7.018.280 0.1% 2.0% 766.398
SD4 7.019.916 0.1% 5.0% 766.698
SD5 7.021.892 0.3% 0.1% 777.718
SD6 7.016.484 0.3% 0.5% 778.154
SD7 7.017.776 0.5% 0.1% 789.096
SD8 7.017.556 1.0% 1.0% 817.514
SD9 7.021.028 2.0% 5.0% 873.480

SD10 7.022.140 5.0% 2.0% 1.038.142

TABLE II
CONSTRUCTION PARAMETERS OF THE USED SYNTHETIC DATASETS.
ALL THE DATASETS ARE EXTRACTED FROM CHROMOSOME 21 OF HG19

REFERENCE. THEY ARE NON-DIRECTIONAL DATASETS WITH PAIRED-END

READS OF LENGTH 150 BASES USING A 10X COVERAGE. DATASETS WERE

GENERATED FROM HUMAN CHROMOSOME 21 OF HUMAN GENOME HG19.

V. CONCLUSION

In this paper we present MethylFASTQ a new parallel tool

to generate bisulfite synthetic datasets. MethylFASTQ allows

us to generate both reads and a report file of methylation call,

which contains information about methylated cytosines. We

showed that our tool helps to find the weaknesses of two

mapping and bisulfite caller tools, Bismark and BSMAP. In the

future, we will implement MethylFASTQ in C/C++ language

338

in order to switch from multiprocessing to multithreading,

enhancing software performances.

AVAILABILITY AND IMPLEMENTATION

MethylFASTQ is released under the GNU GPLv3 li-

cense. It is freely available at https://github.com/qBioTurin/

MethylFASTQ.

REFERENCES

[1] Katarzyna Wreczycka, Alexander Gosdschan, Dilmurat Yusuf, Björn
Grüning, Yassen Assenov, and Altuna Akalin. Strategies for analyzing
bisulfite sequencing data. Journal of biotechnology, 261:105–115, 2017.

[2] Christoph Bock. Analysing and interpreting dna methylation data.
Nature Reviews Genetics, 13(10):705, 2012.

[3] Merly Escalona, Sara Rocha, and David Posada. A comparison of tools
for the simulation of genomic next-generation sequencing data. Nature
Reviews Genetics, 17(8):459, 2016.

[4] Weichun Huang, Leping Li, Jason R Myers, and Gabor T Marth. Art: a
next-generation sequencing read simulator. Bioinformatics, 28(4):593–
594, 2011.

[5] Ségolène Caboche, Christophe Audebert, Yves Lemoine, and David Hot.
Comparison of mapping algorithms used in high-throughput sequencing:
application to ion torrent data. BMC genomics, 15(1):264, 2014.

[6] F. Krueger. Sherman - bisulfite-treated Read FastQ Simula-
tor. https://www.bioinformatics.babraham.ac.uk/projects/sherman/. Ac-
cessed: 2018-09-20.

[7] P. J. A. Cock et al. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422–1423, mar 2009.

[8] Yuanxin Xi and Wei Li. Bsmap: whole genome bisulfite sequence
mapping program. BMC bioinformatics, 10(1):232, 2009.

[9] Felix Krueger and Simon R Andrews. Bismark: a flexible aligner
and methylation caller for bisulfite-seq applications. bioinformatics,
27(11):1571–1572, 2011.

[10] Micheal Burrows and David Wheeler. A Block-Sorting Lossless Data
Compression Algorithm. Technical report, DIGITAL SRC RESEARCH
REPORT, 1994.

339

