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Extracellular vesicles (EVs) carry various molecules involved in
intercellular communication and have raised great interest as
drug delivery systems. Several engineering methods have
been investigated for vesicle loading. Here, we studied the elec-
troporation of EVs isolated from plasma to load antitumor mi-
croRNAs (miRNAs). First, we optimized the transfection pro-
tocol using miRNA cel-39 by evaluating different parameters
(voltage and pulse) for their effect on vesicle morphology,
loading capacity, and miRNA transfer to target cells. When
compared with direct incubation of EVs with miRNA, mild
electroporation allowed more efficient loading and better pro-
tection of miRNA from RNase degradation. Moreover, electro-
poration preserved the naive vesicle cargo, including RNAs and
proteins, and their ability to be taken up by target cells, sup-
porting the absence of vesicle damage. EVs engineered with
antitumor miRNAs (miR-31 and miR-451a) successfully pro-
moted apoptosis of the HepG2 hepatocellular carcinoma cell
line, silencing target genes involved in anti-apoptotic pathways.
Our findings indicate an efficient and functional miRNA
encapsulation in plasma-derived EVs following an electropora-
tion protocol that preserves EV integrity.
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INTRODUCTION
Extracellular vesicles (EVs) are a heterogeneous population of mem-
brane-surrounded particles released by all virtually living cells. They
primarily include microvesicles, released through budding of plasma
membrane, and exosomes derived from the endosomal compart-
ment.1 EVs are fundamental players in cell-to-cell communication,
being natural carriers of a complex cargo that includes proteins,
lipids, and nucleic acids. The discovery of EVs as natural vehicles of
functional nucleic acids has raised great interest in their use as drug
delivery carriers for gene therapy.2 In particular, increasing efforts
have been made to exploit EVs as carriers of microRNAs (miRNAs).
These molecules are well-known crucial regulators of biological pro-
cesses and represent promising powerful tools for therapeutic inter-
ventions against several diseases. Negatively regulating the expression
of multiple target genes, miRNAs modulate several processes,
including cell cycle, apoptosis, migration, inflammation, and angio-
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genesis.3 miRNA dysregulation is actively involved in cancer patho-
genesis and progression, representing a promising targeting for
therapeutic strategies. In this setting, miRNAs function either as on-
comiRs, promoting cancer growth, or as tumor suppressors, inhibit-
ing cancer development.4 It has been shown that miRNA alterations
robustly contribute to the progression of hepatocellular carcinoma
(HCC), one of themost flagrantly aggressive and invasive human can-
cers.5 Several tumor suppressor miRNAs were demonstrated to
inhibit HCC progression, such as miR-337, miR-214-5p, miR-31,
miR-223, miR-451a, and miR-199a-3p.6–11 However, miRNAs are
susceptible to environmental degradation in the human body, with
the consequent loss of their biological activity. This remains a major
obstacle to their clinical applicability.12 Thus, EVs represent a prom-
ising vehicle for therapeutic miRNA delivery because they are easily
packaged in EVs because of their small size and are protected from
enzymatic degradation.13

In recent years, evidence has demonstrated the feasibility of engineer-
ing EVs to deliver therapeutic molecules.14 Different methods of nu-
cleic acid loading in EVs have been investigated, including passive
loading such as incubation or active loading such as electroporation,
sonication, transfection, extrusion, saponin permeabilization, and
hypotonic dialysis.15–18 Recently, Zhang et al.18 showed successful
miRNA loading following a calcium chloride-mediated transfection
or electroporation in EVs for in vitro and in vivo delivery. However,
transfection has been reported to be associated with the presence of
contaminating transfection reagents in samples.19 Electroporation
was shown to be superior in EV loading in comparison with sonicat-
ion, incubation, extrusion, saponin permeabilization, and hypotonic
dialysis.16,20 Electroporation of plasma-derived EVs has been success-
fully investigated to transfer small interfering RNA (siRNA) in mono-
cytes and lymphocytes.21 On the other hand, incubation was reported
to maintain EV size and morphology better than sonication and
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freeze-thaw cycles.22 However, recent evidence suggests that EV elec-
troporation for loading of nucleic acids may be inefficient because of
protocol variability andmolecular aggregation.23,24 In fact, the forma-
tion of aggregates of insoluble nucleic acids could reduce their uptake
and activity, leading to inefficacy of loaded EVs on target cells.23,25

Moreover, electroporation may trigger the aggregation of EVs and
change their morphological features, highlighting the importance of
electroporation protocol optimization to allow efficient particle
engineering.24,26,27

In this study, we compared miRNA loading of EVs from human
plasma of healthy donors using electroporation and incubation pro-
tocols. We optimized the electroporation protocol by evaluating
different parameters (voltage and pulse) on vesicle morphology,
loading capacity, protection from enzymatic degradation, loss of
EV endogenous content, and miRNA transfer to target cells. More-
over, we evaluated the functional delivery of selected miRNAs by en-
gineering EVs with antitumor miRNAs to promote apoptosis of
HepG2 HCC cell line.

RESULTS
Optimization of Electroporation Protocol to Load miRNA in EVs

We used, as a potential vehicle for miRNA delivery, EVs isolated from
human plasma of healthy donors because they were per se ineffective
on target cells used in this study. To define the most efficient electro-
poration protocol, we electroporated EVs (EVe) with different elec-
troporation parameters, using different voltages (500, 750, and
1,000 V) and different numbers of pulses (1 or 10 pulses) of 20 ms.
We engineered EVs with a synthetic miRNA (cel-39) derived from
Caenorhabditis elegans, which is easily detectable in human EVs
and cells. Electroporation was compared with simple incubation of
EVs and miRNAs (EVi+miRNA).

Because electrical fields can induce EV aggregation, EVs were exam-
ined using NanoSight (NTA) (Figures 1A–1C) after electropora-
tion.24 The analysis of EV size, as mean and mode parameters, among
all electroporation protocols did not show differences between elec-
troporated and control EVs (Figure 1A). However, deeper investiga-
tion of EV size distribution revealed a shift of EV profile after
electroporation with the protocol using 1,000 V and 10 pulses,
with a significant increase in median size compared with control
EVs (Figure 1B). This shift was not observed with other electropora-
tion protocols (Figure 1C).

To assess the efficiency of loading protocols, we evaluated the accu-
mulation of the miRNA cel-39 in EVs. First, the total RNA content
analysis revealed a significantly increase when EVs were electropo-
rated with higher voltages (750 and 1,000 V) and 10 pulses compared
with control EVs. In particular, the setting with 750 V and 10 pulses
allowed major RNA enrichment (Figure 1D). The measurement of
miRNA cel-39 expression by qRT-PCR showed high miRNA loading
in EVs using all protocols (Figure 1E). Unlike incubation, almost all
electroporation protocols induced significant miRNA cel-39 accumu-
lation, with the best efficiency using higher voltages (750 and 1,000 V)
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and 10 pulses. Next, we compared all protocols evaluating the capac-
ity of engineered EVs to transfer the exogenous miRNA in target
cells. miRNA expression was measured in tumor endothelial cells
(TECs) after 24 h of EV treatment using qRT-PCR assay. As shown
in Figure 1F, electroporation protocols with higher voltages (750
or 1,000 V) and more pulses allowed significant accumulation of
miRNA cel-39 in recipient cells. Interestingly, the middle electropo-
ration setting (750 V and 10 pulses) induced major miRNA transfer
rather than the highest protocol (1,000 V and 10 pulses), indicating
its superiority in EV functional loading.

Because reduced miRNA transfer may be due to miRNA aggregation
or EV damage, wemore closely investigated the 750 or 1,000 V and 10
pulse settings. NanoSight analysis demonstrated that both electropo-
ration protocols did not increase particle number in comparison with
control EVs and that there was clear EV degradation after treatment
with 0.1% Triton, indicating the absence of miRNA aggregates (Fig-
ure 2A). Transmission electron microscopy analysis showed a
spheroid morphology of purified EVs and EV damage after the elec-
troporation with 1,000 V and 10 pulses but not with the mild protocol
(750 V and 10 pulses) (Figure 2B). EV alteration following the 1,000 V
and 10 pulse protocol was also correlated to reduced uptake by target
cells in comparison with incubation and the mild electroporation
protocols (Figure 2C). On the basis of these results, the mild electro-
poration protocol using 750 V and 10 pulses was considered the most
suitable and efficient method and was selected for subsequent
experiments.

Finally, we determined loading efficiency using a calibration curve,
comparing the miRNA amount used to engineer EVs and that de-
tected in EVs after engineering. The optimized electroporation proto-
col (750 V and 10 pulses) allowed efficiency of 31.63 ± 5.94% in
comparison with the simple incubation of about 7.97 ± 4.27%, corre-
sponding to a mean of 21.09 ± 3.96 or 5.31 ± 2.85 molecules/EV,
respectively.

Engineered EV Incorporation into Target Cells and miRNA

Protection from Enzymatic Digestion

Successful miRNA loading was confirmed through fluorescence-
activated cell sorting (FACS) analysis. To this purpose, EVs were
engineered with an Alexa Fluor 555-labeled control miRNA. The
measurement of signal intensity revealed significant miRNA
enrichment following electroporation in EVs (EVe+miR), in com-
parison with naive EV, EVs electroporated alone (EVe), and EVs
incubated with miRNA (EVi+miR) (Figure 3A). Next, we also
evaluated engineered miRNA uptake in target TECs after 24 h of
treatment using FACS analysis (Figure 3B). miRNA transfer to
cells reflected direct loading in EVs, with more significant miRNA
transfer after the electroporation protocol in comparison with
incubation.

To further evaluate miRNA loading, we measured the accumulation
of the miRNA cel-39 in EVs using qRT-PCR with increasing miRNA
doses (Figure 3C). We engineered the same number of EVs with
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Figure 1. Comparison of Electroporation Parameters to Load miRNA cel-39 in EVs

EVs derived from plasma were electroporated (EVe) with different parameters, voltages and pulses, or simply incubated (EVi) with miRNA cel-39. Size analysis of engineered

EVs by NanoSight measured the mean and mode size (A) and the particle size distribution in EV population (B and C) in all samples. The median size of control EVs (EV) and

EVs electroporated using 1,000 V and 10 pulses (1,000 V 10 p) is shown in EV size distribution (B). The size profile of control EVs and all other engineering protocols is also

shown (C). (D) After engineering, total RNA was extracted from all samples and quantified. The total RNA content in EVs was evaluated in comparison with naive EVs. ANOVA

with Dunnett’s multiple-comparisons test (n = 3). (E) qRT-PCR analysis of engineered miRNA cel-39 relative expression in EVs following different loading protocols. Kruskal-

Wallis ANOVA with Dunn’s multiple-comparisons test versus control EVs (n = 3). (F) miRNA cel-39 expression in target TEC cells after 24 h of treatment with engineered EVs

(2.5� 109 EVs/mL). miRNA cel-39 RQ value is shown in recipient cells comparing samples with untreated cells (Cell). ANOVA with Tukey’s multiple comparisons test (n = 3).

EVs were loaded with a miRNA dose of 10 pmol. Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01, and ****p < 0.001.
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different doses of miRNA cel-39: 5, 10, or 20 pmol. NanoSight anal-
ysis did not show an increase in particle number, suggesting an
absence of miRNA aggregation with all miRNA doses (data not
shown). Measurement of miRNA relative expression demonstrated
more efficient loading in EVe+cel-39 than EVi+cel-39 for all tested
doses. As expected, using the electroporation protocol, increasing
miRNA dose clearly induced a correlated increase in loading. For
the incubation protocol, in contrast, the increase in miRNA amount
did not correspond to a loading increase, suggesting saturation of
miRNA bound to EV surface.

EVs are extensively reported to protect their cargo from the microen-
vironmental degradation mediated by RNase enzymes. We tested
Molecul
loaded miRNA resistance to RNase A by comparing EVi+cel-39
and EVe+cel-39 (Figure 3D). Analysis of miRNA expression using
qRT-PCR allowed the measurement of miRNA protection, as the
amount of miRNA detected after RNase treatment in comparison
with untreated samples. As shown in Figure 3D, miRNA electropo-
rated in EVs was significantly more protected by enzymatic digestion
compared with incubation, with a rate of about 70% in comparison
with 25%, respectively. These data were also confirmed on bio-
analyzer analysis (Figure 3E).

Taken together, these results confirmed the superiority of the electro-
poration protocol in EV loading and the protection of engineered
miRNA in comparison with the incubation protocol.
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Figure 2. Evaluation of miRNA Aggregates and EV Damage following

Different Electroporation Settings

(A) EVs and miRNA cel-39 were incubated (EVi+cel-39) or electroporated (EVe+cel-

39) using 750 or 1,000 V and 10 pulse settings. NanoSight analysis of control EVs or

engineered EVs treated or not with 0.1% Triton X-100 (n = 3). (B) Representative

transmission electron microscopy of control EVs, EVs electroporated with 750 V

and 10 pulse setting (EVe 750V 10p) or 1,000 V and 10 pulse setting (EVe 1,000V

10p). Three experiments were performed with similar results (scale bar, 100 nm). (C)

EVs labeled with a PKH-26 dye for membrane staining were engineered with miRNA

cel-39 and used to stimulate target TEC cells for 24 h (4.2� 109 EVs/mL). EV uptake

was evaluated using FACS as percentage of EV membrane-staining signal

compared with untreated cells (CTL�) (n = 3). ANOVA with Turkey’s multiple-

comparisons test. *p < 0.05 and **p < 0.01.
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Electroporation Does Not Affect EV Cargo

Permeabilization of EV membrane induced by electroporation may
induce the leakage of molecules contained in EVs, altering their cargo
and biological function. To determine whether electroporation could
modify endogenous EV content, we analyzed RNA, miRNA, and
protein cargo in control EVs and EVs electroporated in the presence
or absence of miRNA cel-39 (EVe+cel-39 and EVe, respectively) (Fig-
ure 4).28 First, total RNA content was similar in EVs and EVe,
suggesting the absence of RNA loss after engineering (Figure 4A).
As expected, we detected a significant increase in the total RNA cargo
in EVe+cel-39 compared with EVs and EVe (Figure 4A). Because the
136 Molecular Therapy: Methods & Clinical Development Vol. 13 June 2
RNA cargo of EVs is various, we decided to evaluate the miRNA con-
tent because these small molecules are suitable to cross membrane
pores during electroporation, both entering EVs, as miRNA cel-39,
or exiting them. Thus, we performed qRT-PCR analysis of a panel
of miRNAs expressed in plasma-derived EVs.29–31 Electroporation
in the presence or absence of miRNA cel-39 did not significantly alter
miRNA endogenous expression compared with EVs (Figure 4B), con-
firming the absence of RNAmolecule loss after electroporation. Next,
we evaluated EV protein content without observing a decrease of
the total amount of protein associated with EVe and EVe+cel-39
(Figure 4C). To more closely investigate the EV protein cargo,
evaluation of classical vesicular protein markers was performed using
western blot (Figure 4D). Analysis of tetraspanins CD63, CD81, and
CD9, the integrin b1 (CD29), and tumor susceptibility gene 101
(TSG101) among all samples indicated the absence of protein
content alteration in EVe and EVe+cel-39 compared with EV. Finally,
to evaluate whether electroporation could qualitatively alter protein
composition of EV membrane markers, FACS analysis was per-
formed. Our results did not show significant variation in the
expression of surface markers between EVs, EVe, and EVe+cel-39
(Figure 4E), suggesting that electroporation preserves EV membrane
protein composition.

Taken together, these data demonstrated that electroporation did not
modify endogenous EV cargo, including total RNAs, miRNAs, total
proteins, and vesicular markers. Moreover, also the expression of sur-
face markers was preserved after electroporation, supporting the
safety of electroporation protocol on EV composition.

Biological Activity of EV Engineered with Antitumor miRNAs on

HepG2

Next, we tested the functionality of engineered miRNAs to provide an
antitumor effect of EVs. We engineered EVs with antitumor miRNAs
and evaluated their capacity to induce apoptosis in a HCC cell line,
HepG2 cells. For this purpose, we electroporated plasma-derived
EVs, biologically inactive in our model, with two synthetic miRNAs
(miR-451a and miR-31-5p) which we previously demonstrated to
promote apoptotic signals in HepG2.32 We evaluated cell apoptosis
after 24 h of treatment with EVs (2.5 � 109 EVs/mL), comparing
the activity of EVs electroporated with an antitumor miRNA with
controls: untreated cells (CTL�), naive EVs, EVs electroporated
alone (EVe), EVs incubated with antitumor miRNA (EVi+miR-31/
miR-451a), and EVs incubated and electroporated with a miRNA
scramble (EVi+scramble and EVe+scramble) (Figure 5A). The
apoptosis assay demonstrated a statistically significant increase of
cancer cell apoptosis with EVs engineered with miR-31 and miR-
451, with a higher effect following electroporation compared with
the incubation protocol (Figure 5A). Moreover, the same amount of
miRNA, both miR-31 and miR-451a, was ineffective to promote can-
cer cell apoptosis without EV engineering (Figure S1).

To confirm the biological effect, we evaluated the ability of engi-
neered EVs to silence target genes of miR-31 and miR-451. To this
aim, we measured gene expression in recipient cells by qRT-PCR
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Figure 3. miRNA Loading in EVs and Protection from Enzymatic Degradation

EVs were engineered with an Alexa Fluor 555-labeled control miRNA (miR) to perform FACS analysis. (A) miRNA enrichment in EVs was measured as percentage of

signal intensity in EVs electroporated or incubated with miRNA (EVe+miR and EVi+miR, respectively) in comparison with controls, naive EVs, and vesicles

electroporated alone (EVe) (n = 3). ANOVA with Turkey’s multiple-comparisons test. (B) EVs electroporated or incubated with the miRNA were used to treat target TECs for

24 h (4.2� 109 EVs/mL). Engineered miRNA transfer was measured as miRNA percentage signal intensity in untreated cells (CTL�), cells treated with control EVs, vesicles

electroporated alone (EVe), and EVs electroporated or incubated with miRNA (EVe+miR and EVi+miR, respectively) (n = 5). ANOVA with Dunnett’s multiple-comparisons test

versus EVe+miR. (C) EVs were engineered with different doses of miRNA cel-39 (5, 10, and 20 pmol), and miRNA loading was analyzed in qRT-PCR experiments. Data are

represented as ln(RQ) of miRNA cel-39 in comparison with control EVs (n = 3). (D) Engineered EVs with miRNA cel-39 were treated with RNase A for 30 min at 37�C. miRNA

protection was evaluated using qRT-PCR analysis as percentage of miRNA expression (DCt values) after RNase degradation in comparison with untreated samples. EVs

engineered with 10 or 20 pmol miRNA dose were tested, and the different effect of electroporation and incubation was analyzed (n = 3). ANOVA with Turkey’s multiple-

comparisons test. (E) EVs incubated or electroporated with miRNA cel-39 were treated or not with RNase and analyzed for their small RNA profile using Bioanalyzer in

comparison with each control EV sample. miRNA enrichment was expressed as percentage of miRNA on total small RNA content. ANOVA with Dunnett’s multiple-com-

parisons test (n = 3). Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.001.
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after 24 h of treatment with loaded EVs (Figures 5B and 5C). The
treatment with EVe+miR-31 induced a significant downregulation
of its target genes, including the cyclin-dependent kinase 2
(CDK2), the transcription factor E2F2, the Sp1 transcription factor
(SP1), and the anti-apoptotic protein BCL2a (Figure 5B). In contrast,
EVi+miR-31 did not induce significant gene inhibition (Figure 5B).
For EVs engineered with miR-451, we analyzed the expression of
Molecul
BCL2a, caspase-3 (CASP3), the multidrug resistance protein 1
(MDR1), and the ras-related protein 14 (RAB14) genes (Figure 5C).
The incubation protocol induced the significant reduction only of
MDR1, whereas the electroporation protocol significantly downregu-
lated BCL2a, MDR1, and RAB14. Although the change was not sig-
nificant, EVe+miR-451a also reduced the expression of CASP3 (Fig-
ure 5C). Overall, molecular analysis of the effect of engineered EVs
ar Therapy: Methods & Clinical Development Vol. 13 June 2019 137
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Figure 4. EV Content Analysis after Electroporation

EVs were electroporated alone or with the miRNA cel-39 (EVe and EVe+cel-39, respectively), and their endogenous cargo was compared with control EVs. (A) Total RNA

contained in EVs was quantified, and the relative data are shown as nanograms in each EV compared with control EVs (n = 6). ANOVA with Turkey’s multiple-comparisons

test. (B) Heatmap representation of the expression of a panel of miRNAs in all samples, using average linkage as clustering method and Euclidean distance measurement.

miRNA relative expression was evaluated as 2�DCt values normalized to global miRNA expression of each sample (n = 3). (C) Total protein content in samples refers to

micrograms of total protein in EVs normalized to control EVs (n = 4). ANOVA with Dunnett’s multiple-comparisons test. (D) Western blot analysis of integrin b1 (CD29), CD63,

TSG101, CD81, and CD9 in all samples. Representative image (left) and quantitative analysis (right) (n = 3). (E) Surface markers were evaluated in FACS experiments. The

percentage of signal intensity for each protein is shown in all samples (n = 3). Data are expressed as mean ± SEM. ****p < 0.001.
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on target cells confirmed that the electroporation protocol was more
efficient than incubation. Finally, we investigated the capacity of EVs
engineered with a selected antitumor miRNA, miR-31, to maintain
their anticancer effect after RNase treatment. Figure 5D shows can-
138 Molecular Therapy: Methods & Clinical Development Vol. 13 June 2
cer cell apoptosis after 24 h of EV stimuli treated with RNase A,
demonstrating that the electroporation protocol maintained a statis-
tically significant effect after enzymatic digestion that was superior to
the incubation protocol.
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Figure 5. Anti-cancer Effect of EVs Engineered with miRNAs

EVs loaded with two antitumor miRNAs (10 pmol), miR-31 andmiR-451a, were used to stimulate HepG2 target cells for 24 h (2.5� 109 EVs/mL). EVs were engineered using

electroporation (EVe) and incubation (EVi) protocols. (A) Cell apoptosis was detected by Muse Annexin V kit, and total apoptosis is shown as a ratio in comparison with

untreated cells (CTL�) (n = 4). ANOVA with Turkey’s multiple-comparisons test. (B and C) The effect on miRNA target genes in recipient cells was analyzed using qRT-PCR

and is expressed as RQ value. For miR-31, the following genes were evaluated: CDK2, E2F2, SP1, and BCL2a (B). For miR-451a, the expression of BCL2a,CASP3,MDR1,

and RAB14 genes was measured (C). Kruskal-Wallis ANOVA with Dunn’s multiple-comparisons test (n = 4). (D) The effect on cell apoptosis was also analyzed after

RNase treatment of EVs engineered with miR-31. Total cell apoptosis was evaluated using Muse Annexin V kit and is expressed as a ratio in comparison with untreated cells

(CTL�) (n = 4). ANOVA with Turkey’s multiple-comparisons test. In all experiments, the activity of electroporated EVs was compared with untreated cells (CTL�) and

incubated EVs with the same miRNA. Cells were also treated with other control samples: control EVs, EVs electroporated alone (EVe), EVs incubated or electroporated with

control miRNAs (scramble), and doxorubicin as positive apoptosis control (150 ng/mL) (CTL+). Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, and

****p < 0.001.
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DISCUSSION
EVs are crucial mediators of cell-cell communication, and growing
evidence suggests their promising use as drug delivery systems.
This is particularly important for molecules with a difficult in vivo
administration due to naive susceptibility to degradation and/or sig-
nificant side effects. For instance, EVs have been successfully used to
vehicle siRNA molecules directed against key genes for cancer ther-
apy.16,19 Numerous methods to load isolated EVs have been recently
investigated, and several of them were proved effective. However,
obstacles limit the application of EVs as a delivery system, such as
Molecul
engineering efficiency and EV damage. Electroporation is a common
technique used to engineer cells that leads to higher EV loading ca-
pacity compared with other protocols. In a study by Fuhrmann
et al.,20 EVs of different cellular origins (cancer, endothelial, and
stem cells) were loaded with porphyrins using various engineering
methods (electroporation, dialysis, saponin, and extrusion), and elec-
troporation was proved to improve the encapsulation efficiency. In
addition, EV electroporation was reported to efficiently vehicle ther-
apeutic siRNA to treat lung injury and bladder cancer and miR-26a to
reduce HepG2 proliferation.33–35
ar Therapy: Methods & Clinical Development Vol. 13 June 2019 139
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In the present study, we used electroporation to enrich EVs from
plasma with miRNAs, comparing its efficiency with a simple incuba-
tion protocol. During electroporation, applied electric fields increase
membrane permeability and induce the formation of temporary pores
on the membrane lipid bilayer. The opening of membrane allows the
entrance of exogenous molecules into EVs, but it may also account for
the loss of endogenous molecules.36 However, EV electroporation is
characterized by high variability, and numerous groups have recently
investigated factors that can affect protocol efficacy. Transfection
efficiency could be reduced by nucleic acid aggregation, EV aggrega-
tion, nucleic acid, and EV sizes.23–25 Interestingly, a recent study by
Yang et al.27 highlighted how electroporation parameters such as in-
tensity of voltage and number of pulses can affect the loading of syn-
thetic particles. Thus, in this study, we tested different electroporation
settings (500, 750, and 1,000 V and 1 or 10 pulses) to find the more
efficient protocol to load plasma-derived EVs with miRNAs. We
demonstrated that a higher voltage and a greater number of pulses
induced increased miRNA loading in EVs, clearly superior to simple
incubation. However, electroporation with the highest voltage
(1,000 V and 10 pulses) damaged EVs. Thus, we selected the electro-
poration protocol with the medium voltage level (750 V) and the
larger pulse number (10) as the most efficient and suitable. This
protocol allowed efficient EV loading, with more than 30% of trans-
fection yield, superior to other studies on EV electroporation (0.09%,
2%, >15%, and 20%).23,25,27,37 Because different membrane composi-
tion can affect increased permeability during electroporation, we
hypothesize that EVs isolated from different sources could be differ-
entially sensible to electroporation, and the protocol should be opti-
mized for each type of EV.

Next, to more closely investigate the potential miRNA loading in
EVs, we electroporated the same amount of EVs with different
miRNA doses. As expected, we detected higher miRNA loading
with increasing miRNA doses (5, 10, and 20 pmol) whereas
increasing doses in the incubation protocol did not increase miRNA
associated with EVs, suggesting a binding saturation. An important
feature of EVs as therapeutic carriers is their capacity to protect
loaded miRNAs from enzymatic digestion.13 We found that electro-
poration was significantly superior to incubation in protecting
miRNA, suggesting that most of it was encapsulated into EVs.
The incubation, instead, provided only about 30% of miRNA pro-
tection, possibly because of the miRNA bound to RNA-binding pro-
tein on EV surface.38,39

Membrane pores generated during electroporation could favor the
leakage of endogenous EV content or modify the membrane compo-
sition, affecting the EV biological activity and target cell uptake. Pre-
vious studies analyzed EVs before and after electroporation, and
Liang et al.35 showed the maintenance of CD63 expression after elec-
troporation. With the electroporation protocol used in the present
study, no significant loss of native molecules was observed. The
absence of alteration in surface markers supported the maintenance
of EV membrane composition, as confirmed also by their unaltered
capacity to be taken up by target cells. In fact, tetraspanins (CD81
140 Molecular Therapy: Methods & Clinical Development Vol. 13 June 2
and CD9) and integrins (CD29) are reported to have a role in EV
cell binding and uptake.40–42 The absence of EV content alteration
could help characterize the quality of EV electroporation protocols.

miRNA administration has been demonstrated to restore the altered
expression typical of cancers.43 Recent studies investigated the use of
synthetic particles to vehicle miRNA as therapeutic drug to suppress
HCC.44–48 Our group previously demonstrated that miRNAs con-
tained in hepatic stem cell-derived EVs contribute to the suppression
of HCC, including miR-31 and miR-451.29 Here, we engineered
plasma-derived EVs with miR-31 and miR-451a, demonstrating their
effectiveness in promoting HepG2 apoptosis. The effect of loaded
miRNAs was also verified as transcription inhibition of their target
genes. In particular, EVs electroporated with miR-31 significantly
downregulated CDK2, typically overexpressed in HCC and impli-
cated in the regulation of cell cycle and SP1, an important gene
involved in the regulation of HepG2 apoptosis, proliferation, and in-
vasion.49,50 Moreover, EV-mediated delivery of miR-31 significantly
downregulated the expression of E2F2, involved in cell proliferation,
apoptosis, and migration in gastric cancer.51 Significant EV-mediated
silencing was also observed for BCL2a, identified as miR-31 target by
bioinformatic analysis and involved in the intrinsic apoptotic
pathway.52 Similarly, EV electroporated with miR-451a directly tar-
geted BCL2a, reducing also CASP3 expression and thereby playing
an effective role in HepG2 apoptosis.53 In addition, these vesicles
significantly inhibited miR-451a target RAB14, whichmediates the ef-
fect of miRNA on the increased radio-sensitivity of nasopharyngeal
carcinoma and the suppression of human non-small cell lung cancer,
and it has been also involved in the suppression of breast cancer.54–56

Finally, EVs loaded with miR-451a efficiently suppressed the expres-
sion ofMDR1, a key target gene that has been demonstrated to regu-
late chemosensitivity in several cancers, including HCC.57–59

In conclusion, we defined a protocol of electroporation suitable for
engineering EVs derived from plasma. Plasma-derived EVs are a
promising drug delivery system because they can be easily isolated
from patients and used in an autologous manner. Moreover, we pro-
vided evidence for the effectiveness of engineered plasma-derived EVs
in inducing HCC in vitro apoptosis by shuttling antitumor miRNAs.
MATERIALS AND METHODS
Cell Culture

A human TEC was established and cultured in EndoGRO basal com-
plete medium (Merck Millipore, Burlington, Massachusetts, USA)
plus 10% fetal bovine serum (FBS). Briefly, TECs were isolated
from renal clear-cell carcinomas and were characterized as endothe-
lial cells by morphology, positive staining for von Willebrand factor
(vWF) antigen, CD146, CD105, and vascular endothelial-cadherin
and negative staining for desmin and cytokeratin, as previously
described.60 Human hepatocellular carcinoma cell line HepG2 was
purchased from ATCC (American Type Culture Collection, Mana-
ssas, Virginia, USA) and maintained in culture in low-glucose
DMEM (EUROCLONE, Milan, Italy) containing 10% FBS.
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EV Isolation

Plasma-derived EVs were isolated from frozen human plasma of
healthy blood donors provided by the Blood Bank of Città della Salute
e della Scienza di Torino. All samples were obtained after informed
consent and approval by the internal review board of the Blood
Bank. EVs from each donor were obtained from about 250mL plasma
bags and isolated by differential ultracentrifugation as previously
described, with a recovery rate of about 5.33 � 109 ± 2.40 � 109

EVs/mL plasma.58 In brief, plasma samples were centrifuged at
1,500� g for 20 min to remove debris, apoptotic bodies, and platelets.
The supernatant was subsequently ultracentrifuged at 10,000� g, fol-
lowed by ultracentrifugation at 100,000 � g for 2 h at 4�C using a
70 mL polycarbonate tube (SW 45 Ti rotor, Beckman Coulter
Optima L-90 K ultracentrifuge, Brea, California, USA). Samples
were then washed with saline buffer solution and ultracentrifuged
at 100,000 � g for 2 h at 4�C. EV pellets were then resuspended in
saline buffer solution with 1% DMSO and stored at �80�C. EVs
were then thawed and used for biological assays or molecular analysis.
EVs were characterized as previously described by NanoSight anal-
ysis, expression by western blot of CD63, CD81, CD9 tetraspanins
and TSG101 as positive markers and ribosomal protein S29 as nega-
tive marker, and by electron microscopy (data not shown).61 Each
plasma bag was sufficient to prepare one set of control EVs and engi-
neered EVs, and different plasma bags were used to verify donor vari-
ability for functional and loading experiments.

EV Analysis by NanoSight

EVs were analyzed by nanoparticle tracking analysis (NTA), using the
NanoSight LM10 system(NanoSight, Salisbury, UK). To define EV
concentration and size profile, the NanoSight system was equipped
with a 405 nm laser and NTA 3.1 analytic software. The Brownian
movements of EVs existing in each sample were subjected to a laser
light source and were recorded by a camera. The analytic software
converted this information into size and concentration parameters
using the Stokes-Einstein equation. For each sample, three videos of
30 s duration were recorded, and camera levels were set for all the
acquisition at 16. Briefly, EVs were diluted (1:1,000 for purified
plasma-derived EVs and 1:200 for engineered EVs) in 1 mL vesicle-
free saline solution (Fresenius Kabi, Bad Homburg vor der Höhe,
Germany). NTA post-acquisition settings were optimized and main-
tained constant among all samples, and each video was then analyzed
to measure EV mean, mode, median (D50), and concentration. For
the analysis of the presence of miRNA aggregates, control or engi-
neered EVs were treated with 0.1% Triton X-100 (Bio-Rad, Hercules,
CA, USA) for 1 h at 37�C, and the number of particles was measured
using NTA as described above.

FACS Characterization of EVs

Plasma-derived EVs were characterized by cytofluorimetric
analysis using the CytoFLEX flow cytometer (Beckman Coulter)
with CytExpert software. The following fluorescein isothiocyanate
(FITC) or allophycocyanin (APC) conjugated antibodies were used:
CD9, CD19, CD81, CD86, CD90, HLA DR, CD47, CD34 (BD Biosci-
ences, Franklin Lakes, New Jersey, USA), CD40, CD31, CD144, CD3,
Molecul
CD146, CD105 (Miltenyi Biotec, Bergisch Gladbach, Germany), CD5
(Thermo Fisher Scientific, Waltham, Massachusetts, USA), and HLA
class I (BioLegend, San Diego, California, USA). Conjugated mouse
non-immune isotypic immunoglobulin G (IgG) (Miltenyi Biotec)
was used as control. In brief, EVs (5 � 108 particles) were labeled
for 15 min at 4�C with antibodies and immediately diluted 1:3 and
acquired.62

EV Loading Protocols

EVs were engineered using electroporation performed on a Neon
Transfection System (Thermo Fisher Scientific) following the manu-
facturer’s protocol as previously described.18 Briefly, EVs andmiRNA
weremixed, and the final volume was adjusted to 10 mL using the elec-
troporation buffer. Ratios of 3� 109 EVs and different miRNA doses
were used: 5, 10, or 20 pmol. EVs were engineered with different
miRNAs in selected experiments: cel-39-3p, miR-31-5p, and miR-
451a (QIAGEN, Hilden, Germany). The EV-miRNA mixture was
electroporated using a pulse width of 20 ms and different voltages
(500, 750, 1,000 V) and numbers of pulses (1–10), according to the
manufacturer’s protocol. Then, the mixture was incubated for
30 min at 37�C and overnight at 4�C. Simple incubation of EVs
with miRNAs or electroporation of EVs in the absence of miRNAs
was used as controls in selected experiments. To remove unbounded
miRNAs, samples were washed by ultracentrifugation at 100,000 � g
for 2 h at 4�C using a 10 mL polycarbonate tube (SW 90 Ti rotor,
Beckman Coulter Optima L-90 K ultracentrifuge). Finally, EV pellets
were resuspended in saline buffer solution with 1%DMSO and stored
at �80�C for downstream analysis.

Transmission Electron Microscopy

For transmission electron microscopy analysis, control EVs or EVs
electroporated with different settings were placed on 200 mesh nickel
formvar carbon-coated grids (Electron Microscopy Science, Hatfield,
Pennsylvania, USA) and left to adhere for 20 min. Next, grids were
incubated with 2.5% glutaraldehyde containing 2% sucrose. After
washing in distilled water, samples were negatively stained with
Nano-W and NanoVan (Nanoprobes, Yaphank, New York, USA)
and analyzed using a Jeol JEM 1010 electron microscope (Jeol, Tokyo,
Japan).61

RNase Treatment

In selected experiments, EVs were treated with RNase A (Thermo
Fisher Scientific), using a concentration of 0.2 mg/mL, for 30 min at
37�C. The RNase inhibitor (Thermo Fisher Scientific) was used to
stop the reaction as described by the manufacturer’s protocol, and
EVs were washed by ultracentrifugation at 100,000 � g for 2 h at
4�C using a 10 mL polycarbonate tube (SW 90 Ti rotor, Beckman
Coulter Optima L-90 K ultracentrifuge). Eventually, EV pellets were
resuspended in saline buffer solution with 1% DMSO and stored at
�80�C for molecular analysis and in vitro experiments.

RNA Isolation and qRT-PCR

Total RNA was isolated from EVs using the miRNeasy Mini
Kit (QIAGEN) according to the manufacturer’s protocol. RNA
ar Therapy: Methods & Clinical Development Vol. 13 June 2019 141
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concentration of samples was quantified using a spectrophotometer
(mySPEC, VWR, Radnor, Pennsylvania, USA), and the small RNA
composition of samples was measured using capillary electrophoresis
on an Agilent 2100 Bioanalyzer using the small RNAs kit
(Agilent Technologies, Santa Clara, California, USA). qRT-PCR for
gene and miRNA expression analysis was performed in triplicate
using a 96-well QuantStudio 12K Flex Real-Time PCR system
(Thermo Fisher Scientific). For mRNA analysis, cDNA was
obtained using High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, California, USA). Five nanograms
of cDNA was combined with SYBR GREEN PCR Master Mix
(Applied Biosystems) as described by the manufacturer’s protocol,
and GAPDH was used as housekeeping control. For miRNA analysis,
miScript SYBR Green PCR Kit (QIAGEN) was used. Briefly, RNA
samples were reverse transcribed using the miScript Reverse Tran-
scription Kit (QIAGEN), and cDNA samples were used to quantify
miRNAs of interest. Experiments were run using 3 ng of cDNA for
each reaction as described by themanufacturer’s protocol (QIAGEN).
The RNU6B small nucleolar RNA was used as control. miRNA and
mRNA comparison between samples was calculated on relative
expression data normalized using appropriate endogenous controls.
Fold change expression (Rq = 2�DDCt) with respect to controls was
calculated for all samples. For RNase-treated EVs, percentage of
miRNA protection was calculated on the basis of cycle threshold
(Ct) differences between treated and untreated EVs. DCt of miRNA
in the RNase-treated sample was compared with the untreated
sample (untreated controls were considered 100%). For the genera-
tion of calibration curve for absolute quantification of miRNA, syn-
thetic cel-miR-39 (QIAGEN) was quantified spectrophotometrically
(mySPEC, VWR), and 200 ng were reverse transcribed using the
miScript Reverse Transcription Kit (QIAGEN). cDNA was serially
diluted 1:5 from a starting point of 2.4 ng to have ten dilutions. Serial
dilutions were run in five replicates using Relative Standard Curve on
96-well QuantStudio 12K Flex Real-Time PCR system as described by
the manufacturer’s protocol (Thermo Fisher Scientific). The calibra-
tion curve was used to convert the Ct values of each sample into
the corresponding amount of miRNA molecules or mole. The
Pearson correlation coefficient for the standard curve was determined
as R2 > 0.99. The percentage of engineering yield was calculated as fol-
lows: (cel-39 mol/EV in sample)/(cel-39 mol/EV used to engineer
EVs). To analyze miRNA transfer from EVs to target cells, TECs,
or HepG2 were preplated in a 24-well plate (25,000 cells/well) and
stimulated with 2.5 � 109 EVs/mL for 24 h in low-glucose DMEM
in the absence of serum (300 mL/well). Then, samples were submitted
to RNA extraction and qRT-PCR analysis as described above.

Protein Extraction and Western Blot Analysis

Proteins were extracted from EVs by RIPA buffer (150 nM NaCl,
20 nM Tris-HCl, 0.1% SDS, 1% deoxycholate, 1% Triton X-100, pH
7.8) supplemented with a cocktail of protease and phosphatase inhib-
itors (Sigma-Aldrich, St. Louis, Missouri, USA). The protein content
was quantified using the BCA Protein Assay Kit (Thermo Fisher
Scientific) following the manufacturer’s protocol. Briefly, 5 mL of
sample were dispensed into wells of a 96-well plate, and total protein
142 Molecular Therapy: Methods & Clinical Development Vol. 13 June 2
concentrations were determined using a linear standard curve estab-
lished with BSA.

Thirty micrograms of proteins were separated by electrophoresis
using a 7.5% gradient SDS-polyacrylamide gel. The proteins were
transferred to a polyvinylidene fluoride (PVDF) membrane by
the Trans-Blot Turbo Transfer System (Bio-Rad) and then immuno-
blotted with the following antibodies: CD63 and TSG101 (Santa Cruz
Biotechnology, Dallas, Texas, USA), CD81 and CD9 (Abcam,
Cambridge, UK), and CD29 (Thermo Fisher Scientific). The protein
bands were visualized using a ChemiDoc (Bio-Rad) with an enhanced
chemiluminescence (ECL) detection kit (GE Healthcare, Chicago,
Illinois, USA). Protein quantification was performed normalizing
the sample amount with total protein loaded detected by ponceau
using Image Lab Software (Bio-Rad).

FACSAnalysis of EVLoadedwithmiRNAandTheir Incorporation

into Target Cells

To trace EVs by FACS, EVs were labeled with PKH-26 dye (Sigma-
Aldrich) for 30 min at 37�C and washed by ultracentrifugation
at 100,000 � g for 2 h at 4�C using a 10 mL polycarbonate
tube (SW 90 Ti rotor, Beckman Coulter Optima L-90 K ultra-
centrifuge). To trace miRNA loaded into EVs by FACS, EVs were
electroporated with AllStar Negative siRNA Alexa Fluor 555-labeled
(QIAGEN) and washed as described above. For EV incorporation,
25,000 cells/well TECs were plated in 24-well plates and treated
with 4.2� 109 EVs/mL for 24 h in low-glucose DMEM in the absence
of serum. Quantitative analysis of engineered miRNA and EV
uptake was performed by FACS using the CytoFLEX flow cytometer
(Beckman Coulter) with CytExpert software.

Apoptosis Assay

HepG2 were seeded at 25,000 cells/well into 24-well plates and
maintained in culture in serum-free low-glucose DMEM in the
absence (CTR�) or presence of EVs (2.5 � 109 EVs/mL) for 24 h
(300 mL/well). For experiments with free-miRNAs and transfected
miRNAs, cells were plated 25,000 cells/well in a 24 multi-well plate
in 600 mL of low-glucose DMEM plus 10% FBS. Transfection was
performed following the manufacturer’s protocol. Briefly, 3 mL of
HiPerFect transfection reagent (QIAGEN) was mixed with each
miRNA (2.5 nM for miRNA dose comparable with engineered EV
treatment and 10 nM as effective treatment) and added to each
well. Cells maintained in low-glucose DMEM plus 150 ng/mL doxo-
rubicin were used as positive control (CTR+). Apoptosis was
measured after 24 h by Muse Annexin V and Dead Cell Assay Kit
(Merck Millipore) following the instructions. The percentage of total
apoptotic cells was measured.

Statistical Analysis

Data were analyzed using GraphPad Prism 6.0 Demo. Statistical an-
alyses were performed using ANOVA with Dunnett’s or Turkey’s
multiple-comparisons test as appropriate. The relative expression of
miRNAs and mRNAs (RQ values) in samples was compared
with apposite controls using Kruskal-Wallis ANOVA with Dunn’s
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multiple-comparisons test. Values were expressed as their mean ±

SEM. Statistical significance was established at p < 0.05 (*p < 0.05,
**p < 0.01, ***p < 0.005, and ****p < 0.001).
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