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24 Summary

25  The two-spotted spider mite (Tetranychus urticae) is a plant-sucking arthropod 

26 herbivore that feeds on a wide array of cultivated plants. In contrast to the well-

27 characterized classical chewing herbivore salivary elicitors that promote plant 

28 defense responses, little is known about sucking herbivores’ elicitors. To 

29 characterize the sucking herbivore elicitors, we explored putative salivary gland 

30 proteins of spider mites by using an Agrobacterium-mediated transient expression 

31 system or protein infiltration in damaged bean leaves. 

32  Two candidate elicitors (designated as tetranin1 [Tet1] and tetranin2 [Tet2]) 

33 triggered early leaf responses (cytosolic calcium influx and membrane 

34 depolarization) and increased the transcript levels of defense genes in the leaves, 

35 eventually resulting in reduced survivability of Tetranychus urticae on the host 

36 leaves as well as induction of indirect plant defenses by attracting predatory mites. 

37 Tet1 and/or Tet2 also induced jasmonate, salicylate and abscisic acid biosynthesis. 

38  Notably, Tet2-induced signaling cascades were also activated via the generation 

39 of reactive oxygen species. 

Page 2 of 49

Manuscript submitted to New Phytologist for review



For Peer Review

3

40  The signaling cascades of these two structurally dissimilar elicitors are mostly 

41 overlapping but partially distinct and thus they would coordinate the direct and 

42 indirect defense responses in host plants under spider mite attack in both shared 

43 and distinct manners.

44

45 Key words: defense response, elicitor, Phaseolus vulgaris, tetranin (Tet), two-spotted 

46 spider mite (Tetranychus urticae).

47
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48 Introduction

49 Herbivore oral secretions (OS) contain a suite of “elicitors” that induce plant defense 

50 responses (Maffei et al., 2012). For instance, a group of hydroxy fatty acid-amino acid 

51 conjugates (FACs), including volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] (Alborn 

52 et al., 1997), have been intensively characterized as elicitors from several lepidopteran 

53 larvae, crickets and fruit fly larvae (Spiteller & Boland, 2003; Yoshinaga et al., 2007; 

54 Mori & Yoshinaga, 2011). When volicitin is applied to mechanically damaged sites of 

55 leaves of maize seedlings, the seedlings start to emit volatile organic compounds (VOCs) 

56 that attract parasitic wasps, natural enemies of maize herbivores (Alborn et al., 1997). 

57 FAC-type elicitors such as volicitin induce depolarization of the plant cell plasma 

58 membrane potential (Vm), which corresponds to the opening of voltage-dependent Ca2+ 

59 channels, to initiate cellular defense responses (Maffei et al., 2007). Depolarization of 

60 Vm in Arabidopsis thaliana leaves has also been shown to be triggered by a porin-like 

61 protein from oral secretions of Spodoptera littoralis (Guo et al., 2013).

62 Other distinct types of OS-derived elicitors have been reported, such as disulfoxy fatty 

63 acids (caeliferins) from the American bird grasshopper (Schistocerca americana) (Alborn 
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64 et al., 2007), -glucosidase from the cabbage white butterfly (Pieris brassicae) (Mattiacci 

65 et al., 1995), the peptide inceptin from the fall armyworm (Spodoptera frugiperda) 

66 (Schmelz et al., 2006), and a putative -galactofuranose polysaccharide from the 

67 Egyptian cotton leafworm (Spodoptera littoralis) (Bricchi et al., 2012). However, all of 

68 these elicitors were obtained from chewing herbivores, and very few elicitors have been 

69 characterized from sucking types of herbivores. Until now, a mucin-like salivary protein 

70 (NlMLP) of the piercing-sucking insect Nilaparvata lugens (Huang et al., 2017; 

71 Shangguan et al., 2018) is the only elicitor that has been characterized from a sucking 

72 herbivore.

73 The two-spotted spider mite (Tetranychus urticae, Acari: Tetranychidae) is an 

74 agricultural pest of herbaceous and woody plants. In this study, to mine elicitors from 

75 spider mites, we focused on their putative salivary proteins/peptides. In silico searches of 

76 the T. urticae genome database (Grbic et al., 2011) and in planta analyses using 

77 Phaseolus vulgaris allowed us to characterize new elicitors, which we named “tetranins,” 

78 that play a significant role in eliciting both direct and indirect defense responses of 

79 Phaseolus vulgaris host plants mediated through an array of intracellular signaling 
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80 activations.   

81

82

83 Materials and Methods

84 Plants and mites

85 Kidney bean plants (P. vulgaris cv. Nagauzuramame) and eggplant plants (Solanum 

86 melongena cv. Chikuyo) were grown in soil for 2 weeks in climate-controlled rooms at 

87 24 ± 1°C with a photoperiod of 16 h (80 µE m–2 s–1). 

88 T. urticae Koch (Acari: Tetranychidae) were reared on detached P. vulgaris leaf discs (25 

89 cm2 each) placed on water-saturated cotton in Petri dishes (90 mm diameter, 14 mm 

90 depth) at 24 ± 1°C. Small leaf discs (each 1 cm2), which were inhabited by ~20 mites and 

91 eggs, were collected from the original discs and transferred to fresh leaf discs every 2 

92 weeks for incubation. Adult females (10 days old) after oviposition were used for assays.

93 Phytoseiulus persimilis, obtained from Arysta Lifescience Corporation (Tokyo, Japan), 

94 were reared on spider mite-infested P. vulgaris plants at 24 ± 1°C. Fertilized females of 

95 both mites 5-10 days after their final molt were used for the experiments.
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96

97 Agrobacterium tumefaciens-mediated transient expression (agroinfiltration) in P. 

98 vulgaris and S. melongena leaves.

99 In order to investigate the candidate salivary gland proteins (SGPs) in functional assays, 

100 we relied on variants of SGPs with truncation of the signal peptide (Bos et al., 2010; 

101 Villarroel et al., 2016). An open reading frame (ORF) of each SGP cDNA fragment 

102 without the signal peptide encoding sequence (Table S1) was amplified with KOD -Plus- 

103 Neo DNA polymerase (Toyobo, Osaka, Japan). Each cDNA was cloned into TaKaRa T-

104 Vector pMD20 (Takara Bio, Otsu, Japan) and then inserted into binary vector pMDC32 

105 (2x CaMV 35S promoter [35SP]::Gateway (GW) region::nopaline synthase terminator 

106 [NOST]) using the Gateway cloning system (Thermo Fisher Scientific, Waltham, 

107 MA). The resulting plasmid, pMDC32-SGP, or pMDC32, was transformed into A. 

108 tumefaciens strain EHA105 by electroporation. The bacteria were first cultured overnight 

109 in 5 mL of YEP medium with kanamycin and spectinomycin and were then cultured again 

110 in 30 mL of YEP medium with kanamycin and spectinomycin for 2-3 h. Cells were 

111 harvested by centrifugation and resuspended in 10 mM MES buffer (pH 5.6) and 10 mM 
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112 MgCl2. The bacterial suspensions were adjusted to an OD600 of 0.6 and washed twice with 

113 MES buffer; then, acetosyringone was added to a final concentration of 150 µM. The 

114 suspensions (approximately 500 µl) were infiltrated into one of the primary leaves of the 

115 individual P. vulgaris and S. melongena plants using a needleless syringe, yielding an 

116 infiltrated area of approximately 3 cm2. A total of 5 independent areas were infiltrated in 

117 each primary leaf, and 5 P. vulgaris and 6 S. melongena plants were assessed, eventually 

118 yielding 25 and 30 infiltrated areas, respectively. One day after bacterial infiltration, a 

119 piece of leaf disc (1.8 cm2) was prepared from each single infiltrated area, and the 

120 resulting total of 25 P. vulgaris and 30 S. melongena discs were used for the biological 

121 assays described below. 

122 Note that there were no differences in the survival of A. tumefaciens carrying plasmids 

123 for vector control or salivary gland protein in host leaves 2 days after infiltration (Fig. 

124 S1). 

125

126 Recombinant tetranin protein preparation

127 The ORF of a truncated variant of each tetranin cDNA lacking the signal peptide (Table 
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128 S1) or green fluorescent protein (GFP) was subcloned into the pColdTM GST expression 

129 vector (Takara Bio). The recombinant vectors (pCold GST-Tet1 and pCold GST-Tet2) 

130 were transformed into Escherichia coli BL21-CodonPlus(DE3) to prepare the 

131 recombinant tetranin1 (Tet1) and tetranin2 (Tet2) proteins. The resulting bacterial strain 

132 was grown to A600 of 0.8 at 37°C in 2 l of LB medium with ampicillin at 100 µg mL-1. 

133 Cultures were induced with 1 mM isopropyl 1-thio-β-D-galactopyranoside and kept 

134 overnight at 15°C. Cells were pelleted by centrifugation and resuspended in 50 mL of 

135 phosphate-buffered saline (PBS) buffer (pH 7.3). Resuspended cells were lysed by 

136 sonication. Cell extracts were clarified by centrifugation, and the soluble proteins in the 

137 supernatant were purified using Glutathione Sepharose 4B (GE Healthcare Japan, Tokyo) 

138 following the manufacturer’s protocol. The glutathione-S-transferase (GST) tag was 

139 removed using HRV 3C Protease (Takara, Otsu, Japan). The buffer was finally replaced 

140 with 20 mM HEPES buffer (pH 7.0) via dialysis using cellulose tubing, 8/32 (Eidia 

141 Corporation, Tokyo, Japan) three times: first for 3 h, next overnight, and finally for 3 h. 

142

143 Protein infiltration
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144 Tetranin or GFP proteins (3 µM) dissolved in 500 µl of HEPES buffer were infiltrated 

145 into one of the primary leaves of P. vulgaris plants with a needleless syringe, yielding 

146 approximately 3 cm2 of infiltrated area per leaf. One day after infiltration, a disc (1.8 cm2) 

147 of the infiltrated area was prepared from each individual leaf for use in the spider mite 

148 mortality assays (see below). In addition, a fragment of the infiltrated area (approximately 

149 100 mg fresh weight) was harvested for RNA extraction from the leaves at the respective 

150 time after infiltration.  

151

152 Mechanical damage (MD) and protein application

153 MD was performed with stainless steel needles on the primary leaves of potted plants 

154 (with 2-mm intervals between the MD spots). Approximately 20 MD spots were applied 

155 onto one of the primary leaves of an individual plant for transcript/hormone analyses. 

156 Otherwise, approximately 100 MD spots were applied onto the two primary leaves of an 

157 individual plant for volatile/olfactometer analyses (50 MD spots/leaf). Tetranin or GFP 

158 proteins (0.1-3.0 µM) dissolved in HEPES buffer were applied onto the MD spots 

159 (approximately 1 µL per spot) immediately after MD.
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160

161 Spider mite mortality assays

162 Ten adult female spider mites were transferred from a master P. vulgaris leaf disc (25 

163 cm2 each, see above) on which approximately 800 mites had been incubated for 10 days, 

164 onto a P. vulgaris leaf disc (1.8 cm2) that had been infiltrated with Agrobacterium or 

165 protein solution (see above) on wet cotton in a plastic Petri dish (90 mm diameter). Each 

166 dish contained 10 discs. The mortality of mites on the discs was determined 2 days after 

167 agroinfiltration or 3 days after protein infiltration. Individual mites were scored as “dead” 

168 when they did not respond to brushing. Data are shown after normalization by the 

169 mortality of mites from control treatment performed on the same day, in order to 

170 normalize for the variability of control data obtained on different assay days.

171

172 In situ hybridization

173 Adult females of T. urticae were fixed in 1:1 hexane and PBS with 0.1% (v/v) Tween 20 

174 (PBST) containing 4% (w/v) paraformaldehyde at 4°C for 30 min. After washing in 1:1 

175 methanol and PBST, the mites were sonicated in a cleansing bath of 5 mg ml-1 protease 
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176 K for 6 min, followed by post-fixation with 4% (w/v) paraformaldehyde in PBST for 30 

177 min. After washing with PBST, the mites were prehybridized in hybridization buffer 

178 (50% (v/v) formamide, 4x SSC, 1x Denhardt’s solution, 250 µg/mL yeast tRNA (Sigma-

179 Aldrich, St. Louis, MO), 50 µg mL-1 heparin, 5% (w/v) dextran sulfate and 0.1% Tween 

180 20) at 52°C overnight.

181 For synthesis of the RNA fragments encoding the ORFs of tetranins, pMD20 vectors into 

182 which the cDNA fragments isolated as described above were inserted were digested with 

183 either BamH1 or KpnI, and the probes were then synthesized from the linearized plasmids 

184 using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA 

185 labeling mix (Roche Applied Science).

186 The prehybridized mites were hybridized in the hybridization buffer (200 µL) with the 

187 probe (2 µL) at 52°C for 48 h. The mites were washed in 2x SSC buffer containing 50% 

188 formamide and 0.1% (v/v) Tween 20 6 times at 48°C for 25 min and then washed in 

189 PBST containing 0.1% (w/v) bovine serum albumin (BSA) 3 times for 15 min. The mites 

190 were incubated with anti-DIG-AP, Fab fragments (Roche Applied Science) diluted 

191 1:1000 in PBSTB at 4°C overnight. After washing with Tris-buffered saline (TBS, pH 
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192 7.5) and TBS (pH 9.5), the hybridization signal was visualized with 1 mg mL-1 Fast Red 

193 (Sigma-Aldrich) and 5% (w/v) aluminum sulfate in TBS (pH 9.5) at 4°C in the dark for 

194 30-60 min. Methanol was used to stop the reaction and eliminate the background signal, 

195 and the mites were then treated with 70% glycerol in PBST. After washing with PBST, 

196 the mites were mounted on glass slides and observed with a fluorescence microscope 

197 IX71 (Olympus, Tokyo, Japan).

198

199 Protein preparation and Western blot analysis

200 Total proteins were extracted from whole bodies of T. urticae adult females (300 mites 

201 for Tet1 and 20 mites for Tet2) in Laemmli sodium dodecyl sulfate (SDS) sample buffer 

202 (20 µL). Otherwise, proteins were extracted with Laemmli SDS sample buffer (200 µL) 

203 from a P. vulgaris leaf disc (3 x 3 cm) which had been cut out from a whole leaf that had 

204 been exposed to a wet mesh with or without 100 T. utricae for 7 days, and from which all 

205 the mites and eggs had then been removed, as well as leaves that were evenly sprayed 

206 with 1 mL of aqueous solution (0.5% (v/v) ethanol) of methyl jasmonate (MeJA, Wako 

207 Pure Chemical Industrials, Ltd., Osaka, Japan; 0.1 mM) and/or methyl salicylate (MeSA, 

208 Wako; 0.1 mM) or aqueous solution (0.5% (v/v) ethanol), serving as control treatment, 

209 for 24 h. Five microliters each of these extracted protein solutions were resolved on a 

210 12% SDS-polyacrylamide gel electrophoresis (PAGE) gel and transferred onto a PVDF 
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211 membrane (ATTO, Tokyo, Japan). Anti-Tet1 and anti-Tet2 antibodies obtained by 

212 immunizing rabbits with the respective peptide antigens (GNDAMIMPTTEDE and 

213 ESQKELVEFLGTGGKKVADE; Cosmo Bio, Tokyo Japan) were used as the primary 

214 antibodies. Unlabeled anti-rabbit IgG (#3678, Cell Signaling Technology, Danvers, MA) 

215 and HRP-linked anti-mouse IgG (#7076) antibodies were used as the secondary and 

216 tertiary antibodies. The membranes were soaked with SuperSignal West Femto 

217 Maximum Sensitivity Substrate (Thermos Fisher Scientific, Waltham, MA, USA), and 

218 the signals were detected with an ImageQuant LAS-4000 imaging system (GE Healthcare, 

219 Buckinghamshire, UK).

220

221 RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (qPCR)

222 Approximately 100 mg of leaf tissues were homogenized in liquid nitrogen, and the total 

223 RNA was isolated and purified using Sepasol®-RNA I Super G (Nacalai Tesque, Kyoto, 

224 Japan) following the manufacturer’s protocol. Single-stranded cDNA was synthesized 

225 using ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo), and 0.5 µg 

226 of the total RNA was incubated, first at 37°C for 5 min for the DNase reaction and then 

227 at 37°C for 15 min for the RT reaction. Real-time PCR was performed using a CFX 

228 Connect real-time PCR detection system (Bio-Rad, Hercules, CA) with THUNDERBIRD 

229 SYBR qPCR Mix (Toyobo) and gene-specific primers (Table S2). The following protocol 
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230 was used: an initial polymerase activation of 60 s at 95°C, followed by 45 cycles of 15 s 

231 at 95°C and then 30 s at 60°C. Then, a melting curve analysis preset by the instrument 

232 was performed. Relative transcript abundances were determined after normalization of 

233 the raw signals with the housekeeping transcript abundance of an actin gene (KF569608).

234

235 Membrane potentials

236 Vm was determined according to the method described previously (Bricchi et al., 2010).

237

238 Determination of intracellular calcium variations

239 Calcium Orange dye (stock solution in DMSO, Molecular Probes, Leiden, The 

240 Netherlands) was diluted in HEPES buffer to a final concentration of 5 µM. This solution 

241 was applied onto P. vulgaris leaves attached to the plant as previously reported (Maffei 

242 et al., 2004). After a P. vulgaris leaf was gently fixed on a slide glass, a drop of 5 μM 

243 Calcium Orange solution (approximately 45 μL) was applied and then covered with 

244 another slide glass. After 1 h incubation with Calcium Orange, the leaf was mounted on 

245 a Leica TCS SP2 (Leica Microsystems Srl, Milan, Italy) multiband confocal laser 
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246 scanning microscope (CLSM) stage without separating the leaf from the plant to assess 

247 the basic fluorescence levels as a control. Then, 5 µL of either 3 µM Tet1 or 3 µM Tet2 

248 protein dissolved in 20 mM HEPES buffer (pH 7.0) was applied onto the P. vulgaris leaf, 

249 and the calcium signature was observed after 30 min according to the method described 

250 previously (Mithöfer et al., 2009).

251

252 ROS measurements

253 Leaf discs (0.785 cm2) prepared from fresh leaves were incubated overnight in distilled 

254 water in a 96-well titer plate (one disc per well). The distilled water was replaced with a 

255 luminol-based assay system in 50 µL of solution containing 0.2 µM luminol (Wako Pure 

256 Chemical Industrials, Ltd., Osaka, Japan) and 20 µg L-1 horseradish peroxidase (Sigma-

257 Aldrich), and ROS production was determined after addition of 50 µl of 3 µM tetranin or 

258 GFP protein solution in 500 µL of 20 mM HEPES buffer (pH 7.0). Luminescence was 

259 immediately measured using a 1420 Luminescence Counter ARVO Light (PerkinElmer, 

260 Boston, MA), and the signal integration time was 1 s.

261
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262 Phytohormone analysis

263 P. vulgaris leaves (60-100 mg fresh weight) were harvested and immediately frozen in 

264 liquid nitrogen. Using 2 mL screw cap microtubes (Sarstedt, Tokyo, Japan), the samples 

265 were homogenized in FastPrep®-24 (MP Biochemicals, Santa Ana, CA) using five 2.3 

266 mm zirconia beads and 1 ml of ethyl acetate solvent spiked with deuterated internal 

267 standards (IS) (10 ng d3-JA, 5 ng d3-JA-Ile, 10 ng d6-ABA, and 20 ng d4-SA). The 

268 hormone analysis was performed according to the method described previously (Tzin et 

269 al., 2017), with slight modifications.

270

271 Y-tube olfactometer

272 A potted P. vulgaris plant whose primary leaves were treated with MD + Tet1, Tet2 or 

273 GFP protein solution (see above) was used as the single-odor source. Otherwise, 

274 undamaged plants and plants damaged with 100 adult spider mite females for 24 h were 

275 used. We then assessed the olfactory responses of P. persimilis using a Y-tube 

276 olfactometer (3.5 cm inner diameter, 13 cm long for each branch tube and 13 cm long for 

277 the main tube). The P. persimilis adult females were starved overnight by placing 20 
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278 mites in a sealed plastic case containing wet cotton with water. The mites were introduced 

279 into the Y-shaped wire inside the olfactometer, and the numbers of predators choosing a 

280 plant that had been treated with mechanical damage and Tet1, Tet2 or GFP or an 

281 undamaged plant serving as a basic control were recorded. Predators that did not choose 

282 within 5 min (“no choice” subjects) were excluded from the statistical analysis. The 

283 orientations of the odor-source containers relative to the olfactometer arms were changed 

284 after every five bioassays. Assays using 20 predators were carried out as a single replicate 

285 in a day. Three replicates (60 predators in all) were carried out on different days. The 

286 experiments were performed in a climate-controlled room (24 ± 1°C).

287

288 Volatile analysis

289 Similarly to the procedure used in the olfactometer assay, a potted P. vulgaris plant whose 

290 primary leaves were treated with MD + Tet1, Tet2 or GFP protein solution was used as 

291 the single-odor source. Otherwise, undamaged plants and plants damaged by 100 adult 

292 spider mite females for 24 h were used. Volatiles from the potted plants were collected in 

293 a glass container (2 L) using Tenax 60/80 (Gerstel GmbH & Co. KG, Mülheim an der 
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294 Ruhr, Germany) in a laboratory room (24 ± 1°C, under light conditions) for 3 h. Clean air 

295 passed through the charcoal filter was drawn into the glass bottle, and VOCs from the 

296 headspace of the bottle were collected at a flow rate of 100 mL min-1. n-Tridecane (0.1 

297 μg), infiltrated into a piece of filter paper (1 cm2), was added as an internal standard to 

298 the glass container at the onset of VOC collection. The collected volatile compounds were 

299 identified and quantified by gas chromatography-mass spectrometry according to the 

300 method described previously (Rim et al., 2017).

301

302 Statistical analyses

303 We performed one-way ANOVAs with Dunnett's contrasts and Tukey’s HSD tests using 

304 the multcomp R package in R version 3.4.2 and an online program 

305 (http://astatsa.com/OneWay_Anova_with_TukeyHSD/), respectively. A replicated G-

306 test was conducted to evaluate the data from the Y-tube olfactometer analyses. 

307

308 Results

309 Isolation and transient expression of putative mite salivary gland protein (SGP) genes
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310 On the basis of the 18,414 predicted genes in the ORCAE database 

311 (http://bioinformatics.psb.ugent.be/orcae/), we selected 90 putatively annotated SGP 

312 genes by keyword searches. Since SGPs are delivered into the saliva through the classical 

313 eukaryotic endoplasmic reticulum (ER)-Golgi pathway (Bos et al., 2010), we targeted the 

314 genes that harbor signal peptide sequences at the N-terminus using the SignalP 4.0 

315 program (Petersen et al., 2011), which resulted in the selection of 23 genes. Furthermore, 

316 we removed the 4 genes that contained a transmembrane domain. Of the remaining 19 

317 genes, the cDNAs of 13 genes were successfully amplified using mRNA from adult mites 

318 (Table S1), and the corresponding RNAs were truncated so that they lacked a signal 

319 peptide sequence at the N-terminus, and individually expressed transiently in Phaseolus 

320 vulgaris leaves using the agroinfiltration system. Among the  

321 cDNAs encoding these 13 SGPs, two members, SGP7 (tetur05g09318) and SGP8 

322 (tetur08g07240), caused significantly higher mortality of adult mite females than control 

323 cDNA in agroinfiltrated P. vulgaris leaves (Fig. 1a). Both SGP7 and SGP8 also increased 

324 the mortality of adult females in leaves of another host (S. melongena) (Fig. 1b).  
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325 Moreover, since Agrobacterium species, including A. tumefaciens, are plant pathogens, 

326 they may boost plant defense responses (Escobar & Dandekar, 2003). Therefore, instead 

327 of agroinfiltration, we assessed the potential defense response by direct infiltration of 

328 SGP7 and SGP8 proteins into P. vulgaris leaves. The assays confirmed an enhanced 

329 number of dead mites in SGP7- or SGP8-infiltrated leaves after 3 days compared to 

330 uninfiltrated leaves and leaves infiltrated with green fluorescent protein (GFP) that served 

331 as a control protein (Fig. 1c). 

332 Based on all these results, we defined SGP7 and SGP8 as candidates of elicitor-like 

333 proteins and named them tetranin1 (Tet1) and tetranin2 (Tet2), respectively.

334

335 Homology and tissue localization

336 To explore whether tetranins share similarities to proteins with predicted and 

337 characterized functions, we performed BLASTX searches using the ORCAE database 

338 (http://bioinformatics.psb.ugent.be/orcae/overview/Tetur) (Fig. S2). We found that 

339 among the crustacean homologues exhibiting E-values <10-5, none of the characterized 

340 proteins have sequence similarities to tetranins. Tet2 shows strong similarity to 4 putative 
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341 T. urticae SGPs (tetur08g08060, tetur03g00030, tetur08g07910 [approximately 90% 

342 identities] and tetur08g08090 [77% identity]). Although tetur08g07910 was excluded 

343 from our primary research targets in the first in silico screening performed in 2014, this 

344 protein was subsequently newly annotated as an SGP in the updated version of the 

345 ORCAE database (note that 118 SGPs were annotated as SGPs in Feb. 2018). In contrast, 

346 Tet1 shows weaker similarity to putative T. urticae SGPs, with best scores of only 36% 

347 and 37% identity with putative T. urticae SGPs tetur24g01580 and tetur13g02580 

348 [SGP10], respectively. It also appeared that neither tetranin has similarity to reported 

349 Tetranychus effectors (less than 40% identity with Tu84, Te84, Tu28 or Te28) (Villarroel 

350 et al., 2016).    

351 To confirm the tissue-specific expression of tetranins in adult mites, we performed in situ 

352 hybridization using antisense RNA probes (Fig. 2a). We observed staining of the anterior 

353 prosomal glands in at least one of the three paired spider mite salivary glands (Mothes & 

354 Seitz, 1981), indicating that Tet1 is a putative salivary gland protein. However, we cannot 

355 exclude the possibility that Tet1 signals were also partly observed in the silk glands. For 

356 Tet2, in contrast, other tissues were concomitantly stained (Fig. S3), although this may 
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357 have been caused by non-specific cross-hybridization of the Tet2 probe with transcripts 

358 of multiple Tet2 family genes (discussed below).

359 We next explored whether tetranins are really delivered to host plants. Western blot 

360 analysis using anti-Tet1 antibody showed the presence of two signals of Tet1 proteins 

361 synthesized using the E. coli system; note that the smaller-sized signal (about 27 kDa) 

362 matches the size estimated from its amino acid sequence (Fig. 2b). However, Tet1 was 

363 detected only as the larger-sized protein in the mite body, and no Tet1 signals were 

364 detected in either damaged or undamaged host plants. On the other hand, the analysis 

365 using anti-Tet2 antibody showed the presence of two signals for Tet2 protein synthesized 

366 using the E. coli system and a single signal for Tet2 protein in the mite body. In addition 

367 to a signal with identical size to the upper signal, a larger-sized Tet2 protein signal was 

368 detected in mite-damaged host plants but not undamaged host plants (Fig. 2b). 

369

370 Leaf defense traits induced by application of tetranin at damaged sites

371 When spider mites suck plant tissues, various molecules, such as elicitors, are thought to 

372 be secreted into the physically damaged zones of the plant tissues. Therefore, we next 
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373 applied various doses of tetranin solutions to mechanically damaged (MD) leaf tissues. 

374 To understand in detail how tetranins boost the defense response in bean leaves, here we 

375 focused on the transcriptional regulation of two selected marker defense genes 

376 (pathogenesis-related [PR] genes) that have been shown to be responsive to spider mite 

377 attack in bean plants (Arimura et al., 2000). The transcript levels of PR1 were 

378 significantly elevated in leaves treated with MD + Tet1 or Tet2 at 3 µM each, compared 

379 to those treated with a MD + GFP control (Fig. 3a). Likewise, the transcript levels of PR3 

380 were increased in leaves treated with MD + Tet1 at 3 µM and those treated with MD + 

381 Tet2 at concentrations greater than 0.5 µM. 

382 Next we analyzed the levels of accumulation of jasmonate (JA), its derivative (jasmonoyl 

383 isoleucine (JA-Ile)), and salicylate (SA), phytohormones with essential roles in plant 

384 defense against spider mites (Ozawa et al., 2000; Ament et al., 2004; Alba et al., 2015; 

385 Okada et al., 2015). The endogenous levels of these phytohormones were elevated in 

386 leaves treated with MD + Tet1 or Tet2 compared to those treated with a MD + GFP 

387 control (3 µM each, Fig. 3b). However, the endogenous levels of abscisic acid (ABA), 

388 which can cross-talk with JA signaling (Anderson et al., 2004; Adie et al., 2007; Seo & 
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389 Park, 2010), were only increased when the leaves were treated with MD + Tet2. Both 

390 defense gene transcripts and phytohormone levels were increased in leaves infested with 

391 spider mites for 24 h (Figs. 3a and 3b).  

392

393 Early cellular responses

394 As described above, not only Vm changes and Ca2+ channel opening but also reactive 

395 oxygen species (ROS) production is known to be a typical early cellular response to 

396 herbivory (Maffei et al., 2007). We therefore assessed these responses in P. vulgaris 

397 leaves treated with tetranins. Overall, Tet2 triggered the depolarization of Vm, cytosolic 

398 Ca2+ influx, and the generation of ROS, compared to treatment with a GFP or buffer 

399 control (Fig. 4). However, Tet1 triggered Vm depolarization and cytosolic Ca2+ influx 

400 but not the generation of ROS.

401

402 Induced indirect defenses

403 Indirect defenses against herbivorous mites are plant defense strategies that act by 

404 inducing de novo biosynthesis of volatiles and emitting the blend of volatiles to attract 
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405 carnivorous predatory mites (Sabelis et al., 2007). If tetranins serve as elicitors for 

406 indirect defenses, the blend of volatiles released from potted P. vulgaris plants whose 

407 leaves had been exposed to tetranins would affect the olfactory responses of the predatory 

408 mite Phytoseiulus persimilis. As expected, the predatory mites showed a preference for 

409 spider mite-infested plants compared with untreated plants (Fig. 5a), as previously 

410 reported (Tahmasebi et al., 2014). Likewise, when primary leaves were treated with MD 

411 + Tet1 or Tet2, the predatory mites were attracted to the treated plants over untreated 

412 plants. In contrast, the predatory mites were not attracted to plants treated with MD + 

413 GFP serving as a control.

414 We therefore hypothesized that the release of an array of volatiles was induced in the 

415 plants exposed to MD + Tet1 or Tet2, whereas none of the eight major volatiles were 

416 significantly released compared to those released by the control plants after 24 h (P > 

417 0.05, Fig. 5b). It should be noted, however, that levels of limonene released by plants 

418 treated with MD + Tet1 and MD + Tet2 were elevated 3.2 and 5.7 times , respectively, 

419 compared with those released by MD + GFP-treated plants. Likewise, the levels of  (E)-

420 -caryophyllene released from plants were elevated 3.8 and 5.2 times in response to MD 
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421 + Tet1 and MD + Tet2 treatment, respectively.

422

423

424 Discussion

425 Spider mites use their stylet-like mouthparts to suck chlorophyll and liquid contents from 

426 leaf cells. Because collection of the regurgitant from the small spider mite mouthparts is 

427 technically difficult, the characterization of elicitors from sucking herbivores has been 

428 difficult to achieve. Instead, genome-wide approaches have been a powerful and 

429 convenient tool to screen genes of interest (e.g., salivary gland genes), and in silico 

430 analyses using databases succeeded in characterizing effector proteins/peptides from 

431 green peach aphids T. urticae and T. evansi (Bos et al., 2010; Villarroel et al., 2016). 

432 Using a similar strategy, here we characterized two novel elicitor proteins from the two-

433 spotted spider mite (Tetranychus urticae), tetranins, that were responsible for eliciting 

434 defense responses in host plants. Tet1 and Tet2 were deduced to be distinct SGP members, 

435 since they shared only 19% amino acid identity (Fig. S2). They have no particular 

436 conserved domains except those of signal peptides, indicating that tetranins are novel 
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437 members of putative SGPs. 

438 Although previous proteome studies on spider mites identified about 90 and 177 putative 

439 salivary gland proteins from T. urticae and T. truncates (Jonckheere et al., 2016; Zhu et 

440 al., 2018), neither Tet1 nor Tet2 was listed among them. However, we observed that Tet1 

441 is expressed predominantly in the anterior podocephalic salivary glands, possibly together 

442 with the silk glands, of T. urticae, implying that Tet1 is secreted to outside of the body. 

443 Moreover, Tet2 appeared to be expressed in multiple tissues, including the salivary glands 

444 (Fig. 2a), suggesting that Tet2 has a more general function in mite metabolism besides 

445 being a salivary elicitor. Otherwise, it is possible that the antisense probes might cross-

446 hybridize to other types of mRNA, as the Tet2 gene shares very high nucleotide similarity 

447 with 3 putative SPGs (see above).

448 Tet2 may be structurally modified inside the mite body and/or host tissues (Fig. 2b). 

449 Given the fact that the molecular sizes of the bands detected were shifted to 5~8 kDa 

450 larger than predicted, the proteins might be modulated with large molecules such as 

451 mono-ubiquitin or glycosides. Although it could be speculated that we observed non-

452 specific detection of T. urticae-elicited plant proteins, an identical-sized signal was 
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453 scarcely observed when P. vulgaris leaves were treated with MeJA and/or MeSA (Fig. 

454 S5), supporting the possibility that this protein is secreted from mites. On the other hand, 

455 Tet1 would be not abundantly or less secreted into the host tissues at low concentrations 

456 below the detection levels of the nano-LC MS/MS system and western blot analysis. This 

457 would be in accord with the fact that Tet1 was sufficiently abundant to be detected by 

458 immunoblot analysis using only an estimated 5 adult mites, but Tet2 was detected using 

459 an estimated 75 adult mites, even though antibodies against both peptides are similarly 

460 able to detect the tetranin proteins synthesized using the E. coli system. Nonetheless, 

461 irrespective of whether tetranins are secreted or not from mites, the use of tetranins 

462 generated using the E. coli system would be an ideal platform for spider mite pest 

463 management, beyond the significance in the natural ecosystem. 

464 Tetranins allow P. vulgaris host leaves to elicit defense responses via early cellular 

465 processes including Vm depolarization and cytosolic Ca2+ influx, which are known to 

466 initiate cellular defense responses (Maffei et al., 2007; Zebelo & Maffei, 2015) (Figs. 4a 

467 and 4b). These early responses may precede the activation of JA and SA signaling that 

468 enables the concomitant activation of plant defense responses of spider mite-infested 
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469 plants, as generally seen in several plant species, including legumes and Solanaceae 

470 (Ozawa et al., 2000; Kant et al., 2004; Alba et al., 2015). It was shown recently that a 

471 mucin-like protein (NlMLP) elicitor identified from the sucking herbivore Nilaparvata 

472 lugens activates Ca2+ signaling, MEK2 MAP kinase and the JA signaling pathway in 

473 Nicotiana benthamiana leaves (Shangguan et al., 2018). NlMLPs do not share similarities 

474 with tetranins or other T. urticae proteins.

475 The leaf levels of ROS and ABA were shown to be elevated only when P. vulgaris leaves 

476 were treated with MD + Tet2 (Figs. 3b and 4c), and little is known about their roles in 

477 defense against herbivorous arthropods, including spider mites. It has been shown in 

478 Arabidopsis that an FAC-induced ROS burst is antagonistic to JA biosynthesis (Block et 

479 al., 2017). However, the features of that system may not correspond to those of the system 

480 involving tetranins, because we did not observe any differences in the endogenous JA 

481 levels between Tet1- and Tet2-exposed P. vulgaris leaves (Fig. 3b), even though Tet2 

482 triggered ROS generation but Tet1 did not. Moreover, while ABA signaling has been 

483 reported to modulate plant disease resistance by inducing SA-linked PR transcript 

484 inductions (Seo & Park, 2010) and by suppressing JA-ethylene signaling pathways 
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485 (Anderson et al., 2004) in Arabidopsis, again, this system may not correspond to the 

486 system involving tetranins in Phaseolus sp. It is known that ROS mediate ABA signaling 

487 for plant cellular signaling and homeostasis (Cho et al., 2009). However, as our 

488 preliminary tests have shown that pre-treating leaves with an ABA biosynthesis inhibitor 

489 failed to suppress the Tet2-induced increase of PR transcripts in P. vulgaris leaves (Fig. 

490 S4), it still remains unknown whether Tet2 induces the increase of PR transcripts via ROS 

491 generation and subsequent ABA signaling. 

492 Leaf damage by spider mite attacks caused only slightly increased levels of JA, JA-Ile, 

493 and ABA, as shown in Fig. 3b. According to (Bensoussan et al., 2016), spider mite 

494 feeding occurred continuously from several minutes to more than half an hour, during 

495 which time a mite consumed a single mesophyll cell. During the consumption, mites 

496 might secrete unidentified effectors that enable the suppression of JA, JA-Ile, and ABA 

497 biosynthesis. Also, regarding at least JAs, since SA signaling is well known to be 

498 antagonistic to JA biosynthesis and signaling (Okada et al., 2015), the elevated leaf SA 

499 levels might suppress the biosynthesis of JAs upon spider mite feeding. Moreover, 

500 applying tetranins did not result in release of volatiles whose quantitative composition 
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501 fully mimicked that of volatiles released from P. vulgaris plants in response to spider 

502 mite attacks. The increased release of (Z)-3-hexenyl acetate, methyl salicylate, and the 

503 two homoterpenes [(E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyltrideca-

504 1,3,7,11-tetraene] apparently did not occur in response to tetranin exposure, as compared 

505 with the response to a spider mite attack (Fig. 5b). For the induction of those volatiles, 

506 additional factors, including uncharacterized elicitors, might be involved. For example, 

507 several types of elicitors (FAC-type elicitors, porin-like protein, and -galactofuranose 

508 polysaccharide) serve as oral elicitors of the model herbivore S. littoralis (Spiteller & 

509 Boland, 2003; Bricchi et al., 2012; Guo et al., 2013), indicating that host plants 

510 concomitantly perceive multiple elicitor molecules from a single herbivore pest, and 

511 consequently produce defense responses including volatile emissions. Modulation of 

512 plant defense responses to Mythimna loreyi and Parnara guttata by simultaneous 

513 recognition of different types of elicitors in rice has also been proposed (Shinya et al., 

514 2016).
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515 Overall, we still need to clarify the puzzling nature of tetranins. However, findings from 

516 the present pilot study already provide new hints for unraveling the molecular 

517 mechanisms involved in the early plant defense responses against spider mite attack. 

518
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675 Figure Legends

676 Fig. 1 Screening of spider mite elicitor-like secretory proteins. Adult spider mites were 

677 incubated on discs prepared from Phaseolus vulgaris (a) and Solanum melongena (b) 

678 leaves in which the indicated truncated salivary gland protein (SGP) or vector control 

679 (VC) was transiently expressed using the agroinfiltration system. The leaf discs infiltrated 

680 with MES buffer alone served as a control (Ct). The mortality rate of mites on the disc 

681 was determined after 2 days. The means of the mortality numbers relative to those of 

682 mites on the control discs with standard errors are shown (n = 25 for P. vulgaris and n = 

683 30 for S. melongena). (c) Similarly, adult spider mite females were incubated for 2 days 

684 or 3 days on discs prepared from P. vulgaris leaves that had been infiltrated with GFP, 

685 SGP7 or SGP8 protein for 1 day. The uninfiltrated leaf discs served as a control (Ct). The 

686 means of the mortality numbers relative to those on the control discs with standard errors 

687 are shown. Data represent the means and standard errors (n = 9-10). Data marked with 

688 asterisks are significantly different from those of the Ct based on an ANOVA with 

689 Dunnett's contrasts (***, P < 0.001; **, 0.001 ≤ P < 0.01).

690
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691

692 Fig. 2 Localization and secretion of Tetranins. (a) In situ hybridization using the 

693 antisense probe of tetranin (Tet1 or Tet2) in the bodies of adult female spider mites. The 

694 merged bright field and fluorescence images are shown. The fluorescence signals 

695 observed in the anterior salivary glands are indicated by arrows. Note that the sense RNA 

696 probes serving as controls showed staining of the mites’ whole bodies (Fig. S3). (b) 

697 Immunoblot analysis for Tet1 (top panel) and Tet2 (bottom panel) in the bodies of adult 

698 female spider mites, on undamaged and damaged Phaseolus vulgaris leaf discs. The 

699 putative tetranin signals are indicated by arrows.

700

701 Fig. 3 Transcript and phytohormone levels in leaves exposed to mechanical damage (MD) 

702 and tetranins. (a) Transcript levels of defense genes (PR1 and PR3) in Phaseolus vulgaris 

703 leaves 24 h after application of MD + GFP (3 µM) or tetranin (Tet1 or Tet2) protein at 

704 0.1, 0.5, 1.0 or 3.0 µM and 24 h after exposure to 100 spider mites. Untreated leaves at 

705 the same time points served as a control (Ct). Note that we set 24 h as the time point for 

706 analysis according to the results of our preliminary time-course analysis of PR1 and PR3 
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707 transcript levels in leaves infiltrated with Tet2 (Fig. S4). Data represent the means and 

708 standard errors (n = 5-6). Data marked with an asterisk are significantly different from 

709 those of MD + GFP based on an ANOVA with Dunnett's contrasts (***, P < 0.001; **, 

710 0.001 ≤ P < 0.01; *, 0.01 ≤ P < 0.05). Otherwise, the means followed by a P-value are 

711 marginally different. (b) Endogenous levels of jasmonic acid (JA), jasmonoyl isoleucine 

712 (JA-Ile), salicylic acid (SA) and abscisic acid (ABA) in leaves 1 and 3 h after treatment 

713 with MD + GFP, or MD + tetranin proteins (3 µM each), and 24 h after exposure to 100 

714 spider mites. Data represent the means and standard errors (n = 6). The means indicated 

715 by different small letters are significantly different based on an ANOVA with post hoc 

716 Tukey’s HSD (P < 0.05); ns, not significant.

717

718 Fig. 4 Early cellular responses to tetranins (Tet1 and Tet2). (a) Time course (left) and 

719 quantitative values (right) of Vm in leaves treated with 3 ml of 1 µM Tet1, Tet2 or GFP 

720 protein dissolved in 5 mM MES-NaOH (pH 6.0). Data represent the mean and standard 

721 error (n = 4). (b) False-color image reconstructions of fluorochemical intracellular Ca2+ 

722 in leaves cut mechanically and treated by application of tetranins dissolved in HEPES 
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723 buffer (3 µM), with the buffer alone serving as a control. The green fluorescence refers 

724 to the binding of Calcium Orange with Ca2+, whereas the chloroplasts are evidenced by a 

725 bright red color caused by chlorophyll fluorescence. (c) The tetranin-induced generation 

726 of reactive oxygen species (ROS) was monitored in bean leaf discs after the application 

727 of tetranin or GFP protein solution (3 µM). The upper and lower panels, respectively, 

728 show the time-dependent transition and maximum accumulation of ROS in leaf discs after 

729 challenge with each protein. Data represent the means and standard errors (n = 6). The 

730 means indicated by different small letters are significantly different based on an ANOVA 

731 with post hoc Tukey’s HSD (P < 0.05).

732

733 Fig. 5 Indirect plant defenses in leaves in response to tetranins. (a) The olfactory response 

734 of Phytoseiulus persimilis when offered volatiles released by plants treated with MD + 

735 tetranin or GFP protein solution (3 µM) for 24 h or plants infested with 100 mites for 24 

736 h vs. untreated control plants (Ct). The figures in parentheses represent the numbers of 

737 predators that did not choose either odor source (“no choice” subjects). A replicated G-

738 test was conducted to evaluate the significance of the attraction in each experiment (***, 
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739 P < 0.001; **, 0.001 ≤ P < 0.01; *, 0.01 ≤ P < 0.05; ns, P > 0.05). (b) Headspace volatiles 

740 released from plants treated with MD + GFP, Tet1 (T1) or Tet2 (T2) were collected after 

741 24-27 h. Data represent the means and standard errors (n = 4-5). The means were not 

742 significantly different (ns, P > 0.05), on the basis of an ANOVA. (E)-DMNT, (E)-4,8-

743 dimethyl-1,3,7-nonatriene; MeSA, methyl salicylate; (E,E)-TMTT, (E,E)-4,8,12-

744 trimethyltrideca-1,3,7,11-tetraene. 
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