

Tetranins: new putative spider mite elicitors of host plant defense

Journal:	New Phytologist
Manuscript ID	NPH-MS-2018-28235.R2
Manuscript Type:	MS - Regular Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Iida, Junya; Tokyo University of Science, Department of Biological Science & Technology Desaki, Yoshitake; Tokyo University of Science, Department of Biological Science & Technology Hata, Kumiko; Tokyo University of Science, Department of Biological Science & Technology Uemura, Takuya; Tokyo University of Science, Department of Biological Science & Technology Yasuno, Fumino; Tokyo University of Science, Department of Biological Science & Technology Islam, Monirul; University of Turin, Plant Biology Maffei, Massimo; University of Turin, Plant Biology Ozawa, Rika; Kyoto University, Center for Ecological Research Nakajima, Tadaaki; Tokyo University of Science, Department of Biological Science & Technology Galis, Ivan; Okayama University, Institute of Plant Science and Resources Arimura, Gen-ichiro; Tokyo University of Science, Department of Biological Science & Technology;
Key Words:	defense response, elicitor, tetranin, two-spotted spider mite (Tetranychus urticae), Phaseolus vulgaris

SCHOLARONE[™] Manuscripts

1 Tetranins: new putative spider mite elicitors of host plant defense $\mathbf{2}$ Junya Iida^{1*}, Yoshitake Desaki^{1*}, Kumiko Hata¹, Takuya Uemura¹, Ayano Yasuno¹, 3 4 Monirul Islam², Massimo E. Maffei², Rika Ozawa³, Tadaaki Nakajima¹, Ivan Galis⁴, Genichiro Arimura1 $\mathbf{5}$ 6 7 ¹Department of Biological Science & Technology, Faculty of Industrial Science & 8 Technology, Tokyo University of Science, Tokyo 125-8585, Japan 9 ²Department of Life Sciences and Systems Biology, Plant Physiology-Innovation 10 Centre, University of Turin, Via Quarello15/A, I-10135 Turin, Italy 11 ³Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan 12⁴Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, 13Kurashiki 710-0046, Japan 1415Corresponding Author: 16 Gen-ichiro Arimura 17Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-18 Lien 19 8585, Japan 20Tel: 81 3 5876 1467 21Fax: 81 3 5876 1639 22

23 *These authors contributed equally to the article.

24 Summary

25 •	The two-spotted spider mite (Tetranychus urticae) is a plant-sucking arthropod
26	herbivore that feeds on a wide array of cultivated plants. In contrast to the well-
27	characterized classical chewing herbivore salivary elicitors that promote plant
28	defense responses, little is known about sucking herbivores' elicitors. To
29	characterize the sucking herbivore elicitors, we explored putative salivary gland
30	proteins of spider mites by using an Agrobacterium-mediated transient expression
31	system or protein infiltration in damaged bean leaves.
32 •	Two candidate elicitors (designated as tetranin1 [Tet1] and tetranin2 [Tet2])
33	triggered early leaf responses (cytosolic calcium influx and membrane
34	depolarization) and increased the transcript levels of defense genes in the leaves,
35	eventually resulting in reduced survivability of <i>Tetranychus urticae</i> on the host
36	leaves as well as induction of indirect plant defenses by attracting predatory mites.
37	Tet1 and/or Tet2 also induced jasmonate, salicylate and abscisic acid biosynthesis.
38 •	Notably, Tet2-induced signaling cascades were also activated via the generation
39	of reactive oxygen species.

 $\mathbf{2}$

40	• The signaling cascades of these two structurally dissimilar elicitors are mostly
41	overlapping but partially distinct and thus they would coordinate the direct and
42	indirect defense responses in host plants under spider mite attack in both shared
43	and distinct manners.
44	
45	Key words: defense response, elicitor, Phaseolus vulgaris, tetranin (Tet), two-spotted
46	spider mite (<i>Tetranychus urticae</i>).
47	

48 Introduction

49	Herbivore oral secretions (OS) contain a suite of "elicitors" that induce plant defense
50	responses (Maffei et al., 2012). For instance, a group of hydroxy fatty acid-amino acid
51	conjugates (FACs), including volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] (Alborn
52	et al., 1997), have been intensively characterized as elicitors from several lepidopteran
53	larvae, crickets and fruit fly larvae (Spiteller & Boland, 2003; Yoshinaga et al., 2007;
54	Mori & Yoshinaga, 2011). When volicitin is applied to mechanically damaged sites of
55	leaves of maize seedlings, the seedlings start to emit volatile organic compounds (VOCs)
56	that attract parasitic wasps, natural enemies of maize herbivores (Alborn et al., 1997).
57	FAC-type elicitors such as volicitin induce depolarization of the plant cell plasma
58	membrane potential (Vm), which corresponds to the opening of voltage-dependent Ca ²⁺
59	channels, to initiate cellular defense responses (Maffei et al., 2007). Depolarization of
60	Vm in Arabidopsis thaliana leaves has also been shown to be triggered by a porin-like
61	protein from oral secretions of Spodoptera littoralis (Guo et al., 2013).
62	Other distinct types of OS-derived elicitors have been reported, such as disulfoxy fatty
63	acids (caeliferins) from the American bird grasshopper (Schistocerca americana) (Alborn

64	<i>et al.</i> , 2007), β -glucosidase from the cabbage white butterfly (<i>Pieris brassicae</i>) (Mattiacci
65	et al., 1995), the peptide inceptin from the fall armyworm (Spodoptera frugiperda)
66	(Schmelz <i>et al.</i> , 2006), and a putative β -galactofuranose polysaccharide from the
67	Egyptian cotton leafworm (Spodoptera littoralis) (Bricchi et al., 2012). However, all of
68	these elicitors were obtained from chewing herbivores, and very few elicitors have been
69	characterized from sucking types of herbivores. Until now, a mucin-like salivary protein
70	(NIMLP) of the piercing-sucking insect Nilaparvata lugens (Huang et al., 2017;
71	Shangguan et al., 2018) is the only elicitor that has been characterized from a sucking
72	herbivore.
72 73	herbivore. The two-spotted spider mite (<i>Tetranychus urticae</i> , Acari: Tetranychidae) is an
72 73 74	herbivore. The two-spotted spider mite (<i>Tetranychus urticae</i> , Acari: Tetranychidae) is an agricultural pest of herbaceous and woody plants. In this study, to mine elicitors from
72 73 74 75	herbivore. The two-spotted spider mite (<i>Tetranychus urticae</i> , Acari: Tetranychidae) is an agricultural pest of herbaceous and woody plants. In this study, to mine elicitors from spider mites, we focused on their putative salivary proteins/peptides. <i>In silico</i> searches of
72 73 74 75 76	 herbivore. The two-spotted spider mite (<i>Tetranychus urticae</i>, Acari: Tetranychidae) is an agricultural pest of herbaceous and woody plants. In this study, to mine elicitors from spider mites, we focused on their putative salivary proteins/peptides. <i>In silico</i> searches of the <i>T. urticae</i> genome database (Grbic <i>et al.</i>, 2011) and <i>in planta</i> analyses using
72 73 74 75 76 77	 herbivore. The two-spotted spider mite (<i>Tetranychus urticae</i>, Acari: Tetranychidae) is an agricultural pest of herbaceous and woody plants. In this study, to mine elicitors from spider mites, we focused on their putative salivary proteins/peptides. <i>In silico</i> searches of the <i>T. urticae</i> genome database (Grbic <i>et al.</i>, 2011) and <i>in planta</i> analyses using <i>Phaseolus vulgaris</i> allowed us to characterize new elicitors, which we named "tetranins,"
 72 73 74 75 76 77 78 	herbivore. The two-spotted spider mite (<i>Tetranychus urticae</i> , Acari: Tetranychidae) is an agricultural pest of herbaceous and woody plants. In this study, to mine elicitors from spider mites, we focused on their putative salivary proteins/peptides. <i>In silico</i> searches of the <i>T. urticae</i> genome database (Grbic <i>et al.</i> , 2011) and <i>in planta</i> analyses using <i>Phaseolus vulgaris</i> allowed us to characterize new elicitors, which we named "tetranins," that play a significant role in eliciting both direct and indirect defense responses of

81	
82	
83	Materials and Methods
84	Plants and mites
85	Kidney bean plants (P. vulgaris cv. Nagauzuramame) and eggplant plants (Solanum
86	melongena cv. Chikuyo) were grown in soil for 2 weeks in climate-controlled rooms at
87	$24 \pm 1^{\circ}$ C with a photoperiod of 16 h (80 μ E m ⁻² s ⁻¹).
88	T. urticae Koch (Acari: Tetranychidae) were reared on detached P. vulgaris leaf discs (25
89	cm ² each) placed on water-saturated cotton in Petri dishes (90 mm diameter, 14 mm
90	depth) at $24 \pm 1^{\circ}$ C. Small leaf discs (each 1 cm ²), which were inhabited by ~20 mites and
91	eggs, were collected from the original discs and transferred to fresh leaf discs every 2
92	weeks for incubation. Adult females (10 days old) after oviposition were used for assays.
93	Phytoseiulus persimilis, obtained from Arysta Lifescience Corporation (Tokyo, Japan),
94	were reared on spider mite-infested <i>P. vulgaris</i> plants at $24 \pm 1^{\circ}$ C. Fertilized females of
95	both mites 5-10 days after their final molt were used for the experiments.

activations.

Agrobacterium tumefaciens-mediated transient expression (agroinfiltration) in P. 97 98 vulgaris and S. melongena leaves. 99 In order to investigate the candidate salivary gland proteins (SGPs) in functional assays, 100 we relied on variants of SGPs with truncation of the signal peptide (Bos et al., 2010; 101 Villarroel et al., 2016). An open reading frame (ORF) of each SGP cDNA fragment 102 without the signal peptide encoding sequence (Table S1) was amplified with KOD -Plus-103 Neo DNA polymerase (Toyobo, Osaka, Japan). Each cDNA was cloned into TaKaRa T-104 Vector pMD20 (Takara Bio, Otsu, Japan) and then inserted into binary vector pMDC32 105 (2x CaMV 35S promoter [35SP]::Gateway (GW) region::nopaline synthase terminator 106 [NOST]) using the Gateway cloning system (Thermo Fisher Scientific, Waltham, 107 MA). The resulting plasmid, pMDC32-SGP, or pMDC32, was transformed into A. 108 tumefaciens strain EHA105 by electroporation. The bacteria were first cultured overnight 109 in 5 mL of YEP medium with kanamycin and spectinomycin and were then cultured again 110 in 30 mL of YEP medium with kanamycin and spectinomycin for 2-3 h. Cells were 111 harvested by centrifugation and resuspended in 10 mM MES buffer (pH 5.6) and 10 mM

112	MgCl ₂ . The bacterial suspensions were adjusted to an OD_{600} of 0.6 and washed twice with
113	MES buffer; then, acetosyringone was added to a final concentration of 150 $\mu M.$ The
114	suspensions (approximately 500 μ l) were infiltrated into one of the primary leaves of the
115	individual P. vulgaris and S. melongena plants using a needleless syringe, yielding an
116	infiltrated area of approximately 3 cm ² . A total of 5 independent areas were infiltrated in
117	each primary leaf, and 5 <i>P. vulgaris</i> and 6 <i>S. melongena</i> plants were assessed, eventually
118	yielding 25 and 30 infiltrated areas, respectively. One day after bacterial infiltration, a
119	piece of leaf disc (1.8 cm ²) was prepared from each single infiltrated area, and the
120	resulting total of 25 <i>P. vulgaris</i> and 30 <i>S. melongena</i> discs were used for the biological
121	assays described below.
122	Note that there were no differences in the survival of <i>A. tumefaciens</i> carrying plasmids
123	for vector control or salivary gland protein in host leaves 2 days after infiltration (Fig.
124	S1).
125	
126	Recombinant tetranin protein preparation

127 The ORF of a truncated variant of each tetranin cDNA lacking the signal peptide (Table

128	S1) or green fluorescent protein (GFP) was subcloned into the pCold TM GST expression
129	vector (Takara Bio). The recombinant vectors (pCold GST-Tet1 and pCold GST-Tet2)
130	were transformed into Escherichia coli BL21-CodonPlus(DE3) to prepare the
131	recombinant tetranin1 (Tet1) and tetranin2 (Tet2) proteins. The resulting bacterial strain
132	was grown to A_{600} of 0.8 at 37°C in 2 l of LB medium with ampicillin at 100 µg mL ⁻¹ .
133	Cultures were induced with 1 mM isopropyl 1-thio- β -D-galactopyranoside and kept
134	overnight at 15°C. Cells were pelleted by centrifugation and resuspended in 50 mL of
135	phosphate-buffered saline (PBS) buffer (pH 7.3). Resuspended cells were lysed by
136	sonication. Cell extracts were clarified by centrifugation, and the soluble proteins in the
137	supernatant were purified using Glutathione Sepharose 4B (GE Healthcare Japan, Tokyo)
138	following the manufacturer's protocol. The glutathione-S-transferase (GST) tag was
139	removed using HRV 3C Protease (Takara, Otsu, Japan). The buffer was finally replaced
140	with 20 mM HEPES buffer (pH 7.0) via dialysis using cellulose tubing, 8/32 (Eidia
141	Corporation, Tokyo, Japan) three times: first for 3 h, next overnight, and finally for 3 h.
142	

143 Protein infiltration

144	Tetranin or GFP proteins (3 μ M) dissolved in 500 μ l of HEPES buffer were infiltrated
145	into one of the primary leaves of <i>P. vulgaris</i> plants with a needleless syringe, yielding
146	approximately 3 cm ² of infiltrated area per leaf. One day after infiltration, a disc (1.8 cm ²)
147	of the infiltrated area was prepared from each individual leaf for use in the spider mite
148	mortality assays (see below). In addition, a fragment of the infiltrated area (approximately
149	100 mg fresh weight) was harvested for RNA extraction from the leaves at the respective
150	time after infiltration.
151	
152	Mechanical damage (MD) and protein application
152 153	Mechanical damage (MD) and protein application MD was performed with stainless steel needles on the primary leaves of potted plants
152 153 154	Mechanical damage (MD) and protein application MD was performed with stainless steel needles on the primary leaves of potted plants (with 2-mm intervals between the MD spots). Approximately 20 MD spots were applied
152 153 154 155	Mechanical damage (MD) and protein application MD was performed with stainless steel needles on the primary leaves of potted plants (with 2-mm intervals between the MD spots). Approximately 20 MD spots were applied onto one of the primary leaves of an individual plant for transcript/hormone analyses.
152 153 154 155 156	Mechanical damage (MD) and protein application MD was performed with stainless steel needles on the primary leaves of potted plants (with 2-mm intervals between the MD spots). Approximately 20 MD spots were applied onto one of the primary leaves of an individual plant for transcript/hormone analyses. Otherwise, approximately 100 MD spots were applied onto the two primary leaves of an
152 153 154 155 156 157	Mechanical damage (MD) and protein application MD was performed with stainless steel needles on the primary leaves of potted plants (with 2-mm intervals between the MD spots). Approximately 20 MD spots were applied onto one of the primary leaves of an individual plant for transcript/hormone analyses. Otherwise, approximately 100 MD spots were applied onto the two primary leaves of an individual plant for volatile/olfactometer analyses (50 MD spots/leaf). Tetranin or GFP

(approximately 1 μ L per spot) immediately after MD. 159

161	Spider mite mortality assays
162	Ten adult female spider mites were transferred from a master <i>P. vulgaris</i> leaf disc (25
163	cm ² each, see above) on which approximately 800 mites had been incubated for 10 days,
164	onto a <i>P. vulgaris</i> leaf disc (1.8 cm ²) that had been infiltrated with Agrobacterium or
165	protein solution (see above) on wet cotton in a plastic Petri dish (90 mm diameter). Each
166	dish contained 10 discs. The mortality of mites on the discs was determined 2 days after
167	agroinfiltration or 3 days after protein infiltration. Individual mites were scored as "dead"
168	when they did not respond to brushing. Data are shown after normalization by the
169	mortality of mites from control treatment performed on the same day, in order to
170	normalize for the variability of control data obtained on different assay days.
171	
172	In situ hybridization

173 Adult females of *T. urticae* were fixed in 1:1 hexane and PBS with 0.1% (v/v) Tween 20

174 (PBST) containing 4% (w/v) paraformaldehyde at 4°C for 30 min. After washing in 1:1

175 methanol and PBST, the mites were sonicated in a cleansing bath of 5 mg ml⁻¹ protease

176	K for 6 min, followed by post-fixation with 4% (w/v) paraformaldehyde in PBST for 30
177	min. After washing with PBST, the mites were prehybridized in hybridization buffer
178	(50% (v/v) formamide, 4x SSC, 1x Denhardt's solution, 250 μ g/mL yeast tRNA (Sigma-
179	Aldrich, St. Louis, MO), 50 μ g mL ⁻¹ heparin, 5% (w/v) dextran sulfate and 0.1% Tween
180	20) at 52°C overnight.
181	For synthesis of the RNA fragments encoding the ORFs of tetranins, pMD20 vectors into
182	which the cDNA fragments isolated as described above were inserted were digested with
183	either BamH1 or KpnI, and the probes were then synthesized from the linearized plasmids
184	using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA
184 185	using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA labeling mix (Roche Applied Science).
184 185 186	using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA labeling mix (Roche Applied Science). The prehybridized mites were hybridized in the hybridization buffer (200 μL) with the
184 185 186 187	 using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA labeling mix (Roche Applied Science). The prehybridized mites were hybridized in the hybridization buffer (200 μL) with the probe (2 μL) at 52°C for 48 h. The mites were washed in 2x SSC buffer containing 50%
184 185 186 187 188	 using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA labeling mix (Roche Applied Science). The prehybridized mites were hybridized in the hybridization buffer (200 μL) with the probe (2 μL) at 52°C for 48 h. The mites were washed in 2x SSC buffer containing 50% formamide and 0.1% (v/v) Tween 20 6 times at 48°C for 25 min and then washed in
184 185 186 187 188 189	 using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA labeling mix (Roche Applied Science). The prehybridized mites were hybridized in the hybridization buffer (200 μL) with the probe (2 μL) at 52°C for 48 h. The mites were washed in 2x SSC buffer containing 50% formamide and 0.1% (v/v) Tween 20 6 times at 48°C for 25 min and then washed in PBST containing 0.1% (w/v) bovine serum albumin (BSA) 3 times for 15 min. The mites
184 185 186 187 188 189 190	 using SP6 RNA polymerase (Roche Applied Science, Indianapolis, IN) and DIG RNA labeling mix (Roche Applied Science). The prehybridized mites were hybridized in the hybridization buffer (200 μL) with the probe (2 μL) at 52°C for 48 h. The mites were washed in 2x SSC buffer containing 50% formamide and 0.1% (v/v) Tween 20 6 times at 48°C for 25 min and then washed in PBST containing 0.1% (w/v) bovine serum albumin (BSA) 3 times for 15 min. The mites were incubated with anti-DIG-AP, Fab fragments (Roche Applied Science) diluted

192	7.5) and TBS (pH 9.5), the hybridization signal was visualized with 1 mg mL ⁻¹ Fast Red
193	(Sigma-Aldrich) and 5% (w/v) aluminum sulfate in TBS (pH 9.5) at 4°C in the dark for
194	30-60 min. Methanol was used to stop the reaction and eliminate the background signal,
195	and the mites were then treated with 70% glycerol in PBST. After washing with PBST,
196	the mites were mounted on glass slides and observed with a fluorescence microscope
197	IX71 (Olympus, Tokyo, Japan).
198	

199 Protein preparation and Western blot analysis

200 Total proteins were extracted from whole bodies of T. urticae adult females (300 mites 201 for Tet1 and 20 mites for Tet2) in Laemmli sodium dodecyl sulfate (SDS) sample buffer 202(20 μ L). Otherwise, proteins were extracted with Laemmli SDS sample buffer (200 μ L) 203from a P. vulgaris leaf disc (3 x 3 cm) which had been cut out from a whole leaf that had 204 been exposed to a wet mesh with or without 100 T. utricae for 7 days, and from which all 205the mites and eggs had then been removed, as well as leaves that were evenly sprayed 206with 1 mL of aqueous solution (0.5% (v/v) ethanol) of methyl jasmonate (MeJA, Wako 207 Pure Chemical Industrials, Ltd., Osaka, Japan; 0.1 mM) and/or methyl salicylate (MeSA, 208 Wako; 0.1 mM) or aqueous solution (0.5% (v/v) ethanol), serving as control treatment, 209for 24 h. Five microliters each of these extracted protein solutions were resolved on a 21012% SDS-polyacrylamide gel electrophoresis (PAGE) gel and transferred onto a PVDF 211 membrane (ATTO, Tokyo, Japan). Anti-Tet1 and anti-Tet2 antibodies obtained by 212 immunizing rabbits with the respective peptide antigens (GNDAMIMPTTEDE and 213 ESQKELVEFLGTGGKKVADE; Cosmo Bio, Tokyo Japan) were used as the primary 214 antibodies. Unlabeled anti-rabbit IgG (#3678, Cell Signaling Technology, Danvers, MA) 215and HRP-linked anti-mouse IgG (#7076) antibodies were used as the secondary and 216 tertiary antibodies. The membranes were soaked with SuperSignal West Femto 217 Maximum Sensitivity Substrate (Thermos Fisher Scientific, Waltham, MA, USA), and 218 the signals were detected with an ImageQuant LAS-4000 imaging system (GE Healthcare, Buckinghamshire, UK). 219

221RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (qPCR) 222 Approximately 100 mg of leaf tissues were homogenized in liquid nitrogen, and the total 223RNA was isolated and purified using Sepasol[®]-RNA I Super G (Nacalai Tesque, Kyoto, 224Japan) following the manufacturer's protocol. Single-stranded cDNA was synthesized 225using ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo), and 0.5 µg of the total RNA was incubated, first at 37°C for 5 min for the DNase reaction and then 226 227 at 37°C for 15 min for the RT reaction. Real-time PCR was performed using a CFX 228 Connect real-time PCR detection system (Bio-Rad, Hercules, CA) with THUNDERBIRD 229SYBR qPCR Mix (Toyobo) and gene-specific primers (Table S2). The following protocol

230	was used: an initial polymerase activation of 60 s at 95°C, followed by 45 cycles of 15 s
231	at 95°C and then 30 s at 60°C. Then, a melting curve analysis preset by the instrument
232	was performed. Relative transcript abundances were determined after normalization of
233	the raw signals with the housekeeping transcript abundance of an actin gene (KF569608).
234	
235	Membrane potentials
236	Vm was determined according to the method described previously (Bricchi et al., 2010).
237	
238	Determination of intracellular calcium variations
239	Calcium Orange dye (stock solution in DMSO, Molecular Probes, Leiden, The
240	Netherlands) was diluted in HEPES buffer to a final concentration of 5 μ M. This solution
241	was applied onto P. vulgaris leaves attached to the plant as previously reported (Maffei
242	et al., 2004). After a P. vulgaris leaf was gently fixed on a slide glass, a drop of 5 μ M
243	Calcium Orange solution (approximately 45 $\mu L)$ was applied and then covered with
244	another slide glass. After 1 h incubation with Calcium Orange, the leaf was mounted on
245	a Leica TCS SP2 (Leica Microsystems Srl, Milan, Italy) multiband confocal laser

247	the basic fluorescence levels as a control. Then, 5 μL of either 3 μM Tet1 or 3 μM Tet2
248	protein dissolved in 20 mM HEPES buffer (pH 7.0) was applied onto the <i>P. vulgaris</i> leaf,
249	and the calcium signature was observed after 30 min according to the method described
250	previously (Mithöfer et al., 2009).
251	
252	ROS measurements
253	Leaf discs (0.785 cm ²) prepared from fresh leaves were incubated overnight in distilled
254	water in a 96-well titer plate (one disc per well). The distilled water was replaced with a
255	luminol-based assay system in 50 μ L of solution containing 0.2 μ M luminol (Wako Pure
256	Chemical Industrials, Ltd., Osaka, Japan) and 20 μ g L ⁻¹ horseradish peroxidase (Sigma-
257	Aldrich), and ROS production was determined after addition of 50 μ l of 3 μ M tetranin or
258	GFP protein solution in 500 μ L of 20 mM HEPES buffer (pH 7.0). Luminescence was
259	immediately measured using a 1420 Luminescence Counter ARVO Light (PerkinElmer,
260	Boston, MA), and the signal integration time was 1 s.
261	

scanning microscope (CLSM) stage without separating the leaf from the plant to assess

246

262 Phytohormone analysis

263	P. vulgaris leaves (60-100 mg fresh weight) were harvested and immediately frozen in
264	liquid nitrogen. Using 2 mL screw cap microtubes (Sarstedt, Tokyo, Japan), the samples
265	were homogenized in FastPrep®-24 (MP Biochemicals, Santa Ana, CA) using five 2.3
266	mm zirconia beads and 1 ml of ethyl acetate solvent spiked with deuterated internal
267	standards (IS) (10 ng d3-JA, 5 ng d3-JA-Ile, 10 ng d6-ABA, and 20 ng d4-SA). The
268	hormone analysis was performed according to the method described previously (Tzin et
269	al., 2017), with slight modifications.
270	

271 Y-tube olfactometer

A potted *P. vulgaris* plant whose primary leaves were treated with MD + Tet1, Tet2 or GFP protein solution (see above) was used as the single-odor source. Otherwise, undamaged plants and plants damaged with 100 adult spider mite females for 24 h were used. We then assessed the olfactory responses of *P. persimilis* using a Y-tube olfactometer (3.5 cm inner diameter, 13 cm long for each branch tube and 13 cm long for the main tube). The *P. persimilis* adult females were starved overnight by placing 20

278	mites in a sealed plastic case containing wet cotton with water. The mites were introduced
279	into the Y-shaped wire inside the olfactometer, and the numbers of predators choosing a
280	plant that had been treated with mechanical damage and Tet1, Tet2 or GFP or an
281	undamaged plant serving as a basic control were recorded. Predators that did not choose
282	within 5 min ("no choice" subjects) were excluded from the statistical analysis. The
283	orientations of the odor-source containers relative to the olfactometer arms were changed
284	after every five bioassays. Assays using 20 predators were carried out as a single replicate
285	in a day. Three replicates (60 predators in all) were carried out on different days. The
286	experiments were performed in a climate-controlled room ($24 \pm 1^{\circ}$ C).
287	
288	Volatile analysis
289	Similarly to the procedure used in the olfactometer assay, a potted <i>P. vulgaris</i> plant whose
290	primary leaves were treated with MD + Tet1, Tet2 or GFP protein solution was used as
291	the single-odor source. Otherwise, undamaged plants and plants damaged by 100 adult
292	spider mite females for 24 h were used. Volatiles from the potted plants were collected in
293	a glass container (2 L) using Tenax 60/80 (Gerstel GmbH & Co. KG, Mülheim an der

294	Ruhr, Germany) in a laboratory room ($24 \pm 1^{\circ}$ C, under light conditions) for 3 h. Clean air
295	passed through the charcoal filter was drawn into the glass bottle, and VOCs from the
296	headspace of the bottle were collected at a flow rate of 100 mL min ⁻¹ . n -Tridecane (0.1
297	μ g), infiltrated into a piece of filter paper (1 cm ²), was added as an internal standard to
298	the glass container at the onset of VOC collection. The collected volatile compounds were
299	identified and quantified by gas chromatography-mass spectrometry according to the
300	method described previously (Rim et al., 2017).
301	
302	Statistical analyses
303	We performed one-way ANOVAs with Dunnett's contrasts and Tukey's HSD tests using
304	the multcomp R package in R version 3.4.2 and an online program
305	(http://astatsa.com/OneWay_Anova_with_TukeyHSD/), respectively. A replicated G-
306	test was conducted to evaluate the data from the V-tube olfactometer analyses
	test was conducted to evaluate the data from the 1-tube offactometer analyses.

- 308 **Results**
- 309 Isolation and transient expression of putative mite salivary gland protein (SGP) genes

310	On the basis of the 18,414 predicted genes in the ORCAE database
311	(http://bioinformatics.psb.ugent.be/orcae/), we selected 90 putatively annotated SGP
312	genes by keyword searches. Since SGPs are delivered into the saliva through the classical
313	eukaryotic endoplasmic reticulum (ER)-Golgi pathway (Bos et al., 2010), we targeted the
314	genes that harbor signal peptide sequences at the N-terminus using the SignalP 4.0
315	program (Petersen et al., 2011), which resulted in the selection of 23 genes. Furthermore,
316	we removed the 4 genes that contained a transmembrane domain. Of the remaining 19
317	genes, the cDNAs of 13 genes were successfully amplified using mRNA from adult mites
318	(Table S1), and the corresponding RNAs were truncated so that they lacked a signal
319	peptide sequence at the N-terminus, and individually expressed transiently in <i>Phaseolus</i>
320	vulgaris leaves using the agroinfiltration system. Among the
321	cDNAs encoding these 13 SGPs, two members, SGP7 (tetur05g09318) and SGP8
322	(tetur08g07240), caused significantly higher mortality of adult mite females than control
323	cDNA in agroinfiltrated <i>P. vulgaris</i> leaves (Fig. 1a). Both SGP7 and SGP8 also increased
324	the mortality of adult females in leaves of another host (S. melongena) (Fig. 1b).

020	Moreover, since Agrobacterium species, including A. tumefaciens, are plant pathogens,
326	they may boost plant defense responses (Escobar & Dandekar, 2003). Therefore, instead
327	of agroinfiltration, we assessed the potential defense response by direct infiltration of
328	SGP7 and SGP8 proteins into P. vulgaris leaves. The assays confirmed an enhanced
329	number of dead mites in SGP7- or SGP8-infiltrated leaves after 3 days compared to
330	uninfiltrated leaves and leaves infiltrated with green fluorescent protein (GFP) that served
331	as a control protein (Fig. 1c).
332	Based on all these results, we defined SGP7 and SGP8 as candidates of elicitor-like
333	proteins and named them tetranin1 (Tet1) and tetranin2 (Tet2), respectively.
334	
335	Homology and tissue localization
335 336	Homology and tissue localization To explore whether tetranins share similarities to proteins with predicted and
335 336 337	Homology and tissue localization To explore whether tetranins share similarities to proteins with predicted and characterized functions, we performed BLASTX searches using the ORCAE database
335 336 337 338	Homology and tissue localization To explore whether tetranins share similarities to proteins with predicted and characterized functions, we performed BLASTX searches using the ORCAE database (http://bioinformatics.psb.ugent.be/orcae/overview/Tetur) (Fig. S2). We found that
335 336 337 338 339	Homology and tissue localization To explore whether tetranins share similarities to proteins with predicted and characterized functions, we performed BLASTX searches using the ORCAE database (http://bioinformatics.psb.ugent.be/orcae/overview/Tetur) (Fig. S2). We found that among the crustacean homologues exhibiting E-values <10 ⁻⁵ , none of the characterized

341	T. urticae SGPs (tetur08g08060, tetur03g00030, tetur08g07910 [approximately 90%
342	identities] and tetur08g08090 [77% identity]). Although tetur08g07910 was excluded
343	from our primary research targets in the first <i>in silico</i> screening performed in 2014, this
344	protein was subsequently newly annotated as an SGP in the updated version of the
345	ORCAE database (note that 118 SGPs were annotated as SGPs in Feb. 2018). In contrast,
346	Tet1 shows weaker similarity to putative <i>T. urticae</i> SGPs, with best scores of only 36%
347	and 37% identity with putative <i>T. urticae</i> SGPs tetur24g01580 and tetur13g02580
348	[SGP10], respectively. It also appeared that neither tetranin has similarity to reported
349	Tetranychus effectors (less than 40% identity with Tu84, Te84, Tu28 or Te28) (Villarroel
350	<i>et al.</i> , 2016).
351	To confirm the tissue-specific expression of tetranins in adult mites, we performed <i>in situ</i>
352	hybridization using antisense RNA probes (Fig. 2a). We observed staining of the anterior
353	prosomal glands in at least one of the three paired spider mite salivary glands (Mothes &
354	Seitz, 1981), indicating that Tet1 is a putative salivary gland protein. However, we cannot
355	exclude the possibility that Tet1 signals were also partly observed in the silk glands. For
356	Tet2, in contrast, other tissues were concomitantly stained (Fig. S3), although this may

357	have been caused by non-specific cross-hybridization of the Tet2 probe with transcripts
358	of multiple Tet2 family genes (discussed below).
359	We next explored whether tetranins are really delivered to host plants. Western blot
360	analysis using anti-Tet1 antibody showed the presence of two signals of Tet1 proteins
361	synthesized using the <i>E. coli</i> system; note that the smaller-sized signal (about 27 kDa)
362	matches the size estimated from its amino acid sequence (Fig. 2b). However, Tet1 was
363	detected only as the larger-sized protein in the mite body, and no Tet1 signals were
364	detected in either damaged or undamaged host plants. On the other hand, the analysis
365	using anti-Tet2 antibody showed the presence of two signals for Tet2 protein synthesized
366	using the <i>E. coli</i> system and a single signal for Tet2 protein in the mite body. In addition
367	to a signal with identical size to the upper signal, a larger-sized Tet2 protein signal was
368	detected in mite-damaged host plants but not undamaged host plants (Fig. 2b).
369	
370	Leaf defense traits induced by application of tetranin at damaged sites

- 371 When spider mites suck plant tissues, various molecules, such as elicitors, are thought to
- 372 be secreted into the physically damaged zones of the plant tissues. Therefore, we next

374 To understand in detail how tetranins boost the defense response in bean leaves, here we 375focused on the transcriptional regulation of two selected marker defense genes 376 (pathogenesis-related [PR] genes) that have been shown to be responsive to spider mite attack in bean plants (Arimura et al., 2000). The transcript levels of PR1 were 377 378 significantly elevated in leaves treated with MD + Tet1 or Tet2 at 3 μ M each, compared 379 to those treated with a MD + GFP control (Fig. 3a). Likewise, the transcript levels of PR3380 were increased in leaves treated with MD + Tet1 at 3 μ M and those treated with MD +Tet2 at concentrations greater than 0.5μ M. 381382 Next we analyzed the levels of accumulation of jasmonate (JA), its derivative (jasmonoyl 383 isoleucine (JA-Ile)), and salicylate (SA), phytohormones with essential roles in plant 384 defense against spider mites (Ozawa et al., 2000; Ament et al., 2004; Alba et al., 2015; 385 Okada et al., 2015). The endogenous levels of these phytohormones were elevated in 386 leaves treated with MD + Tet1 or Tet2 compared to those treated with a MD + GFP 387 control (3 µM each, Fig. 3b). However, the endogenous levels of abscisic acid (ABA), 388 which can cross-talk with JA signaling (Anderson et al., 2004; Adie et al., 2007; Seo &

applied various doses of tetranin solutions to mechanically damaged (MD) leaf tissues.

373

389	Park, 2010), were only increased when the leaves were treated with MD + Tet2. Both
390	defense gene transcripts and phytohormone levels were increased in leaves infested with
391	spider mites for 24 h (Figs. 3a and 3b).
392	
393	Early cellular responses
394	As described above, not only Vm changes and Ca ²⁺ channel opening but also reactive
395	oxygen species (ROS) production is known to be a typical early cellular response to
396	herbivory (Maffei et al., 2007). We therefore assessed these responses in P. vulgaris
397	leaves treated with tetranins. Overall, Tet2 triggered the depolarization of Vm, cytosolic
398	Ca ²⁺ influx, and the generation of ROS, compared to treatment with a GFP or buffer
399	control (Fig. 4). However, Tet1 triggered Vm depolarization and cytosolic Ca ²⁺ influx
400	but not the generation of ROS.
401	
402	Induced indirect defenses

- 403 Indirect defenses against herbivorous mites are plant defense strategies that act by
- 404 inducing *de novo* biosynthesis of volatiles and emitting the blend of volatiles to attract

406	indirect defenses, the blend of volatiles released from potted P. vulgaris plants whose
407	leaves had been exposed to tetranins would affect the olfactory responses of the predatory
408	mite Phytoseiulus persimilis. As expected, the predatory mites showed a preference for
409	spider mite-infested plants compared with untreated plants (Fig. 5a), as previously
410	reported (Tahmasebi et al., 2014). Likewise, when primary leaves were treated with MD
411	+ Tet1 or Tet2, the predatory mites were attracted to the treated plants over untreated
412	plants. In contrast, the predatory mites were not attracted to plants treated with MD +
/13	
410	GFP serving as a control.
413	We therefore hypothesized that the release of an array of volatiles was induced in the
414 415	We therefore hypothesized that the release of an array of volatiles was induced in the plants exposed to MD + Tet1 or Tet2, whereas none of the eight major volatiles were
413414415416	We therefore hypothesized that the release of an array of volatiles was induced in the plants exposed to MD + Tet1 or Tet2, whereas none of the eight major volatiles were significantly released compared to those released by the control plants after 24 h ($P >$
 413 414 415 416 417 	We therefore hypothesized that the release of an array of volatiles was induced in the plants exposed to MD + Tet1 or Tet2, whereas none of the eight major volatiles were significantly released compared to those released by the control plants after 24 h ($P > 0.05$, Fig. 5b). It should be noted, however, that levels of limonene released by plants
 413 414 415 416 417 418 	We therefore hypothesized that the release of an array of volatiles was induced in the plants exposed to MD + Tet1 or Tet2, whereas none of the eight major volatiles were significantly released compared to those released by the control plants after 24 h ($P > 0.05$, Fig. 5b). It should be noted, however, that levels of limonene released by plants treated with MD + Tet1 and MD + Tet2 were elevated 3.2 and 5.7 times , respectively,
 413 414 415 416 417 418 419 	We therefore hypothesized that the release of an array of volatiles was induced in the plants exposed to MD + Tet1 or Tet2, whereas none of the eight major volatiles were significantly released compared to those released by the control plants after 24 h ($P > 0.05$, Fig. 5b). It should be noted, however, that levels of limonene released by plants treated with MD + Tet1 and MD + Tet2 were elevated 3.2 and 5.7 times , respectively, compared with those released by MD + GFP-treated plants. Likewise, the levels of (E)-

carnivorous predatory mites (Sabelis et al., 2007). If tetranins serve as elicitors for

405

421	+ Tet1 and MD + Tet2 treatment, respectively.
422	
423	
424	Discussion
425	Spider mites use their stylet-like mouthparts to suck chlorophyll and liquid contents from
426	leaf cells. Because collection of the regurgitant from the small spider mite mouthparts is
427	technically difficult, the characterization of elicitors from sucking herbivores has been
428	difficult to achieve. Instead, genome-wide approaches have been a powerful and
429	convenient tool to screen genes of interest (e.g., salivary gland genes), and in silico
430	analyses using databases succeeded in characterizing effector proteins/peptides from
431	green peach aphids T. urticae and T. evansi (Bos et al., 2010; Villarroel et al., 2016).
432	Using a similar strategy, here we characterized two novel elicitor proteins from the two-
433	spotted spider mite (Tetranychus urticae), tetranins, that were responsible for eliciting
434	defense responses in host plants. Tet1 and Tet2 were deduced to be distinct SGP members,
435	since they shared only 19% amino acid identity (Fig. S2). They have no particular
436	conserved domains except those of signal peptides, indicating that tetranins are novel

437 members of putative SGPs.

438	Although previous proteome studies on spider mites identified about 90 and 177 putative
439	salivary gland proteins from T. urticae and T. truncates (Jonckheere et al., 2016; Zhu et
440	al., 2018), neither Tet1 nor Tet2 was listed among them. However, we observed that Tet1
441	is expressed predominantly in the anterior podocephalic salivary glands, possibly together
442	with the silk glands, of <i>T. urticae</i> , implying that Tet1 is secreted to outside of the body.
443	Moreover, Tet2 appeared to be expressed in multiple tissues, including the salivary glands
444	(Fig. 2a), suggesting that Tet2 has a more general function in mite metabolism besides
445	being a salivary elicitor. Otherwise, it is possible that the antisense probes might cross-
446	hybridize to other types of mRNA, as the Tet2 gene shares very high nucleotide similarity
447	with 3 putative SPGs (see above).
448	Tet2 may be structurally modified inside the mite body and/or host tissues (Fig. 2b).
449	Given the fact that the molecular sizes of the bands detected were shifted to 5~8 kDa
450	larger than predicted, the proteins might be modulated with large molecules such as
451	mono-ubiquitin or glycosides. Although it could be speculated that we observed non-
452	specific detection of T. urticae-elicited plant proteins, an identical-sized signal was

453	scarcely observed when P. vulgaris leaves were treated with MeJA and/or MeSA (Fig.
454	S5), supporting the possibility that this protein is secreted from mites. On the other hand,
455	Tet1 would be not abundantly or less secreted into the host tissues at low concentrations
456	below the detection levels of the nano-LC MS/MS system and western blot analysis. This
457	would be in accord with the fact that Tet1 was sufficiently abundant to be detected by
458	immunoblot analysis using only an estimated 5 adult mites, but Tet2 was detected using
459	an estimated 75 adult mites, even though antibodies against both peptides are similarly
460	able to detect the tetranin proteins synthesized using the E. coli system. Nonetheless,
461	irrespective of whether tetranins are secreted or not from mites, the use of tetranins
462	generated using the E. coli system would be an ideal platform for spider mite pest
463	management, beyond the significance in the natural ecosystem.
464	Tetranins allow P. vulgaris host leaves to elicit defense responses via early cellular
465	processes including Vm depolarization and cytosolic Ca ²⁺ influx, which are known to
466	initiate cellular defense responses (Maffei et al., 2007; Zebelo & Maffei, 2015) (Figs. 4a
467	and 4b). These early responses may precede the activation of JA and SA signaling that
468	enables the concomitant activation of plant defense responses of spider mite-infested

469	plants, as generally seen in several plant species, including legumes and Solanaceae
470	(Ozawa et al., 2000; Kant et al., 2004; Alba et al., 2015). It was shown recently that a
471	mucin-like protein (NIMLP) elicitor identified from the sucking herbivore Nilaparvata
472	lugens activates Ca ²⁺ signaling, MEK2 MAP kinase and the JA signaling pathway in
473	Nicotiana benthamiana leaves (Shangguan et al., 2018). NIMLPs do not share similarities
474	with tetranins or other <i>T. urticae</i> proteins.
475	The leaf levels of ROS and ABA were shown to be elevated only when <i>P. vulgaris</i> leaves
476	were treated with MD + Tet2 (Figs. 3b and 4c), and little is known about their roles in
477	defense against herbivorous arthropods, including spider mites. It has been shown in
478	Arabidopsis that an FAC-induced ROS burst is antagonistic to JA biosynthesis (Block et
479	al., 2017). However, the features of that system may not correspond to those of the system
480	involving tetranins, because we did not observe any differences in the endogenous JA
481	levels between Tet1- and Tet2-exposed P. vulgaris leaves (Fig. 3b), even though Tet2
482	triggered ROS generation but Tet1 did not. Moreover, while ABA signaling has been
483	reported to modulate plant disease resistance by inducing SA-linked PR transcript
484	inductions (Seo & Park, 2010) and by suppressing JA-ethylene signaling pathways

485	(Anderson et al., 2004) in Arabidopsis, again, this system may not correspond to the
486	system involving tetranins in <i>Phaseolus</i> sp. It is known that ROS mediate ABA signaling
487	for plant cellular signaling and homeostasis (Cho et al., 2009). However, as our
488	preliminary tests have shown that pre-treating leaves with an ABA biosynthesis inhibitor
489	failed to suppress the Tet2-induced increase of <i>PR</i> transcripts in <i>P. vulgaris</i> leaves (Fig.
490	S4), it still remains unknown whether Tet2 induces the increase of <i>PR</i> transcripts via ROS
491	generation and subsequent ABA signaling.
492	Leaf damage by spider mite attacks caused only slightly increased levels of JA, JA-Ile,
493	and ABA, as shown in Fig. 3b. According to (Bensoussan et al., 2016), spider mite
494	feeding occurred continuously from several minutes to more than half an hour, during
495	which time a mite consumed a single mesophyll cell. During the consumption, mites
496	might secrete unidentified effectors that enable the suppression of JA, JA-Ile, and ABA
497	biosynthesis. Also, regarding at least JAs, since SA signaling is well known to be
498	antagonistic to JA biosynthesis and signaling (Okada et al., 2015), the elevated leaf SA
499	levels might suppress the biosynthesis of JAs upon spider mite feeding. Moreover,
500	applying tetranins did not result in release of volatiles whose quantitative composition

501	fully mimicked that of volatiles released from P. vulgaris plants in response to spider
502	mite attacks. The increased release of (Z) -3-hexenyl acetate, methyl salicylate, and the
503	two homoterpenes [(E)-4,8-dimethyl-1,3,7-nonatriene and (E , E)-4,8,12-trimethyltrideca-
504	1,3,7,11-tetraene] apparently did not occur in response to tetranin exposure, as compared
505	with the response to a spider mite attack (Fig. 5b). For the induction of those volatiles,
506	additional factors, including uncharacterized elicitors, might be involved. For example,
507	several types of elicitors (FAC-type elicitors, porin-like protein, and β -galactofuranose
508	polysaccharide) serve as oral elicitors of the model herbivore S. littoralis (Spiteller &
509	Boland, 2003; Bricchi et al., 2012; Guo et al., 2013), indicating that host plants
510	concomitantly perceive multiple elicitor molecules from a single herbivore pest, and
511	consequently produce defense responses including volatile emissions. Modulation of
512	plant defense responses to Mythimna loreyi and Parnara guttata by simultaneous
513	recognition of different types of elicitors in rice has also been proposed (Shinya et al.,

514 2016).

515	Overall, we still need to clarify the puzzling nature of tetranins. However, findings from
516	the present pilot study already provide new hints for unraveling the molecular
517	mechanisms involved in the early plant defense responses against spider mite attack.
518	
519	
520	Acknowledgements
521	We thank Mr. T. Matsui, Ms. H. Omura, and Mr. T. Masuda (Tokyo University of
522	Science) for help with the agroinfiltration assays, and Ms. H. Nakatani (Okayama
523	University) for the phytohormone analyses. Deuterated jasmonate standards were kindly
524	provided by Dr. H. Matsuura (Hokkaido University). This work was financially supported
525	in part by JSPS KAKENHI to GA (16K07407) and MEXT Grants-in-Aid for Scientific
526	Research on Innovative Areas to GA (18H04630 and 18H04786), and by MEXT as part
527	of the Joint Research Program implemented at the Institute of Plant Science and
528	Resources, Okayama University.
529	

531 **References**

- Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz
 EA, Solano R. 2007. ABA is an essential signal for plant resistance to pathogens
- affecting JA biosynthesis and the activation of defenses in Arabidopsis. *Plant Cell*19(5): 1665-1681.
- Alba JM, Schimmel BC, Glas JJ, Ataide LM, Pappas ML, Villarroel CA, Schuurink
 RC, Sabelis MW, Kant MR. 2015. Spider mites suppress tomato defenses
 downstream of jasmonate and salicylate independently of hormonal crosstalk.
 New Phytol. 205(2): 828-840.
- Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal
 PEA. 2007. Disulfooxy fatty acids from the American bird grasshopper
 Schistocerca americana, elicitors of plant volatiles. Proc. Natl. Acad. Sci. USA
 104(32): 12976-12981.
- Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH.
 1997. An elicitor of plant volatiles from beet armyworm oral secretion. *Science*276: 945-949.
- 547 Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC. 2004. Jasmonic acid
 548 is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate
 549 emission in tomato. *Plant Physiol.* 135(4): 2025-2037.
- Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C,
 Maclean DJ, Ebert PR, Kazan K. 2004. Antagonistic interaction between
 abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene
 expression and disease resistance in Arabidopsis. *Plant Cell* 16(12): 3460-3479.
- Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J. 2000. Gene
 responses in bean leaves induced by herbivory and by herbivore-induced volatiles.
 Biochem. Biophys. Res. Commun. 277(2): 305-310.
- Bensoussan N, Santamaria ME, Zhurov V, Diaz I, Grbic M, Grbic V. 2016. Plantherbivore interaction: dissection of the cellular pattern of *Tetranychus urticae*feeding on the host plant. *Front. Plant Sci.* 7: 1105.
- Block A, Christensen SA, Hunter CT, Alborn HT. 2017. Herbivore-derived fatty-acid
 amides elicit reactive oxygen species burst in plants. *J. Exp. Bot.*
- 562 Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. 2010. A functional

563	genomics approach identifies candidate effectors from the aphid species Myzus
564	persicae (green peach aphid). PLoS Genet. 6(11): e1001216.
565	Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME. 2010. Robotic
566	mechanical wounding (MecWorm) versus herbivore-induced responses: early
567	signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta
568	232 (3): 719-729.
569	Bricchi I, Occhipinti A, Bertea CM, Zebelo SA, Brillada C, Verrillo F, De Castro C,
570	Molinaro A, Faulkner C, Maule AJ, et al. 2012. Separation of early and late
571	responses to herbivory in Arabidopsis by changing plasmodesmal function. Plant
572	<i>J.</i> 73 : 14-25.
573	Cho D, Shin D, Jeon BW, Kwak JM. 2009. ROS-Mediated ABA Signaling. J. Plant
574	<i>Biol.</i> 52 (2): 102-113.
575	Escobar MA, Dandekar AM. 2003. Agrobacterium tumefaciens as an agent of disease.
576	<i>Trends Plant Sci.</i> 8 (8): 380-386.
577	Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ,
578	Dermauw W, Ngoc PC, Ortego F, et al. 2011. The genome of Tetranychus
579	urticae reveals herbivorous pest adaptations. Nature 479(7374): 487-492.
580	Guo H, Wielsch N, Hafke JB, Svatos A, Mithofer A, Boland W. 2013. A porin-like
581	protein from oral secretions of Spodoptera littoralis larvae induces defense-
582	related early events in plant leaves. Insect Biochem. Mol. Biol. 43(9): 849-858.
583	Huang HJ, Liu CW, Xu HJ, Bao YY, Zhang CX. 2017. Mucin-like protein, a saliva
584	component involved in brown planthopper virulence and host adaptation. J. Insect
585	<i>Physiol.</i> 98 : 223-230.
586	Jonckheere W, Dermauw W, Zhurov V, Wybouw N, Van den Bulcke J, Villarroel
587	CA, Greenhalgh R, Grbic M, Schuurink RC, Tirry L, et al. 2016. The salivary
588	protein repertoire of the polyphagous spider mite Tetranychus urticae: a quest for
589	effectors. Mol. Cell Proteomics 15(12): 3594-3613.
590	Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC. 2004. Differential
591	timing of spider mite-induced direct and indirect defenses in tomato plants. Plant
592	<i>Physiol.</i> 135 (1): 483-495.
593	Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W. 2004. Effects of feeding
594	Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular
595	calcium variations, oral secretions, and regurgitate components. Plant Physiol.

- **134**(4): 1752-1762.
- 597 Maffei ME, Arimura GI, Mithoefer A. 2012. Natural elicitors, effectors and modulators
 598 of plant responses. *Natural Product Reports* 29(11): 1288-1303.
- 599 Maffei ME, Mithöfer A, Boland W. 2007. Before gene expression: early events in plant 600 insect interaction. *Trends Plant Sci.* 12(7): 310-316.
- Mattiacci L, Dicke M, Posthumus MA. 1995. β-Glucosidase: an elicitor of herbivoreinduced plant odor that attracts host-searching parasitic wasps. *Proc. Natl. Acad. Sci. USA* 92(6): 2036-2040.
- Mithöfer A, Boland W, Maffei ME 2009. Chemical ecology of plant-insect interactions.
 In: Parker J ed. Annual Plant Reviews: Molecular Aspects of Plant Disease *Resistance*. Chichester, UK: Wiley-Blackwell, 261-291.
- Mori N, Yoshinaga N. 2011. Function and evolutionary diversity of fatty acid amino
 acid conjugates in insects. *J. Plant Interact.* 6: 103-107.
- Mothes U, Seitz KA. 1981. Fine structure and function of the prosomal glands of the
 two-spotted spider mite, *Tetranychus urticae* (Acari, Tetranychidae). *Cell Tissue Res.* 221(2): 339-349.
- 612 Okada K, Abe H, Arimura G. 2015. Jasmonates induce both defense responses and
 613 communication in monocotyledonous and dicotyledonous plants. *Plant Cell*614 *Physiol.* 56(1): 16-27.
- 615 Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T. 2000. Involvement of
 616 jasmonate- and salicylate-related signaling pathways for the production of
 617 specific herbivore-induced volatiles in plants. *Plant Cell Physiol.* 41(4): 391-398.
- 618 Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating
 619 signal peptides from transmembrane regions. *Nat. Methods* 8(10): 785-786.
- Rim H, Uefune M, Ozawa R, Yoneya K, Takabayashi J. 2017. Experience of plant
 infestation by the omnivorous arthropod *Nesidiocoris tenuis* affects its subsequent
 responses to prey-infested plant volatiles. *Biocontrol* 62(2): 233-242.
- Sabelis MW, Takabayashi J, Janssen A, Kant MR, van Wijk M, Sznajder B,
 Aratchige NS, Lesna I, Belliure B, Schuurink RC 2007. Ecology meets plant
 physiology: Herbivore-induced plant responses and their indirect effects on
 arthropod communities. In: Ohgushi T, Craig TP, Price PW eds. *Ecological Communities: Plant Mediation in Indirect Interaction Webs*. Cambridge:
 Cambridge University Press, 188-217.

629 Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn 630 HT, Teal PEA. 2006. Fragments of ATP synthase mediate plant perception of 631 insect attack. Proc. Natl. Acad. Sci. USA 103(23): 8894-8899. 632 Seo PJ, Park CM. 2010. MYB96-mediated abscisic acid signals induce pathogen 633 resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New 634 *Phytol.* **186**(2): 471-483. 635 Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, Guo J, Rao W, Jing S, 636 Guan W, et al. 2018. A mucin-like protein of planthopper is required for feeding 637 and induces immunity response in plants. Plant Physiol. 176(1): 552-565. 638 Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. 2016. 639 Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci. Rep. 6: 32537. 640 641 Spiteller D, Boland W. 2003. N-(17-Acyloxy-acyl)-glutamines: novel surfactants from 642 oral secretions of lepidopteran larvae. J. Org. Chem. 68(23): 8743-8749. 643 Tahmasebi Z, Mohammadi H, Arimura G, Muroi A, Kant MR. 2014. Herbivore-644 induced indirect defense across bean cultivars is independent of their degree of 645 direct resistance. Exp. Appl. Acarol. 63(2): 217-239. 646 Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, 647 Christensen SA, Galis I, Mueller LA, et al. 2017. Rapid defense responses in 648 maize leaves induced by Spodoptera exigua caterpillar feeding. J. Exp. Bot. 649 **68**(16): 4709-4723. 650 Villarroel CA, Jonckheere W, Alba JM, Glas JJ, Dermauw W, Haring MA, Van 651 Leeuwen T, Schuurink RC, Kant MR. 2016. Salivary proteins of spider mites 652 suppress defenses in *Nicotiana benthamiana* and promote mite reproduction. 653 Plant J. 86(2): 119-131. 654 Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M, Nishida R, Lait CG, 655 Tumlinson JH, Mori N. 2007. Fatty acid amides, previously identified in 656 caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly 657 Drosophila melanogaster larvae. J. Chem. Ecol. 33(7): 1376-1381. 658 Zebelo AS, Maffei ME. 2015. Role of early signalling events in plant-insect interactions. 659 *J. Exp. Bot* **66**: 435-448. 660 Zhu YX, Song YL, Huang HJ, Zhao DS, Xia X, Yang K, Lu YJ, Hong XY. 2018. 661 Comparative analyses of salivary proteins from the facultative symbiont-infected

and uninfected *Tetranychus truncatus*. *Syst. Appl. Acarol.* 23(6): 1027-1042.

to per per per ver

664 Supporting Information

- 665 **Table S1** Putative *Tetranychus urticae* salivary gland proteins focused on in this study.
- 666 **Table S2** Primers used for qPCR analysis.
- 667 **Fig. S1** Titer of Agrobacterium cells in *Phaseolus vulgaris* host leaves.
- 668 Fig. S2 Phylogenetic trees of deduced amino acids of tetranins, other arthropod genes of
- 669 unknown function, and mite effector genes.
- 670 **Fig. S3** *In situ* hybridization using the sense probe of tetranin genes in spider mite bodies.
- **Fig. S4** Effect of an ABA biosynthesis inhibitor on transcript levels induced in leaves by
- 672 mechanical damage plus tetranins.
- Fig. S5 Immunoblot analysis for Tet2 in *Phaseolus vulgaris* leaves treated with methyl
- 674 jasmonate and/or methyl salicylate or aqueous solution for 24 h.

675 Figure Legends

Fig. 1 Screening of spider mite elicitor-like secretory proteins. Adult spider mites were 676 677 incubated on discs prepared from *Phaseolus vulgaris* (a) and *Solanum melongena* (b) 678 leaves in which the indicated truncated salivary gland protein (SGP) or vector control (VC) was transiently expressed using the agroinfiltration system. The leaf discs infiltrated 679 680 with MES buffer alone served as a control (Ct). The mortality rate of mites on the disc 681 was determined after 2 days. The means of the mortality numbers relative to those of 682 mites on the control discs with standard errors are shown (n = 25 for P. vulgaris and n =683 30 for S. melongena). (c) Similarly, adult spider mite females were incubated for 2 days 684 or 3 days on discs prepared from P. vulgaris leaves that had been infiltrated with GFP, 685 SGP7 or SGP8 protein for 1 day. The uninfiltrated leaf discs served as a control (Ct). The 686 means of the mortality numbers relative to those on the control discs with standard errors 687 are shown. Data represent the means and standard errors (n = 9-10). Data marked with 688 asterisks are significantly different from those of the Ct based on an ANOVA with 689 Dunnett's contrasts (***, P < 0.001; **, $0.001 \le P < 0.01$).

690

692	Fig. 2 Localization and secretion of Tetranins. (a) In situ hybridization using the
693	antisense probe of tetranin (Tet1 or Tet2) in the bodies of adult female spider mites. The
694	merged bright field and fluorescence images are shown. The fluorescence signals
695	observed in the anterior salivary glands are indicated by arrows. Note that the sense RNA
696	probes serving as controls showed staining of the mites' whole bodies (Fig. S3). (b)
697	Immunoblot analysis for Tet1 (top panel) and Tet2 (bottom panel) in the bodies of adult
698	female spider mites, on undamaged and damaged Phaseolus vulgaris leaf discs. The
699	putative tetranin signals are indicated by arrows.
700	
701	Fig. 3 Transcript and phytohormone levels in leaves exposed to mechanical damage (MD)
702	and tetranins. (a) Transcript levels of defense genes (PR1 and PR3) in Phaseolus vulgaris
703	leaves 24 h after application of MD + GFP (3 μ M) or tetranin (Tet1 or Tet2) protein at
704	0.1, 0.5, 1.0 or 3.0 μ M and 24 h after exposure to 100 spider mites. Untreated leaves at
705	the same time points served as a control (Ct). Note that we set 24 h as the time point for
706	analysis according to the results of our preliminary time-course analysis of PR1 and PR3

707 transcript levels in leaves infiltrated with Tet2 (Fig. S4). Data represent the means and 708 standard errors (n = 5-6). Data marked with an asterisk are significantly different from 709 those of MD + GFP based on an ANOVA with Dunnett's contrasts (***, P < 0.001; **, $0.001 \le P \le 0.01$; *, $0.01 \le P \le 0.05$). Otherwise, the means followed by a P-value are 710 711 marginally different. (b) Endogenous levels of jasmonic acid (JA), jasmonoyl isoleucine 712(JA-Ile), salicylic acid (SA) and abscisic acid (ABA) in leaves 1 and 3 h after treatment 713 with MD + GFP, or MD + tetranin proteins (3 μ M each), and 24 h after exposure to 100 714 spider mites. Data represent the means and standard errors (n = 6). The means indicated 715 by different small letters are significantly different based on an ANOVA with post hoc 716 Tukey's HSD (P < 0.05); ns, not significant. 717 718 Fig. 4 Early cellular responses to tetranins (Tet1 and Tet2). (a) Time course (left) and 719 quantitative values (right) of Vm in leaves treated with 3 ml of 1 µM Tet1, Tet2 or GFP 720 protein dissolved in 5 mM MES-NaOH (pH 6.0). Data represent the mean and standard 721 error (n = 4). (b) False-color image reconstructions of fluorochemical intracellular Ca²⁺

in leaves cut mechanically and treated by application of tetranins dissolved in HEPES

723	buffer (3 μ M), with the buffer alone serving as a control. The green fluorescence refers
724	to the binding of Calcium Orange with Ca ²⁺ , whereas the chloroplasts are evidenced by a
725	bright red color caused by chlorophyll fluorescence. (c) The tetranin-induced generation
726	of reactive oxygen species (ROS) was monitored in bean leaf discs after the application
727	of tetranin or GFP protein solution (3 μ M). The upper and lower panels, respectively,
728	show the time-dependent transition and maximum accumulation of ROS in leaf discs after
729	challenge with each protein. Data represent the means and standard errors $(n = 6)$. The
730	means indicated by different small letters are significantly different based on an ANOVA
731	with post hoc Tukey's HSD ($P < 0.05$).
732	
733	Fig. 5 Indirect plant defenses in leaves in response to tetranins. (a) The olfactory response
734	of <i>Phytoseiulus persimilis</i> when offered volatiles released by plants treated with MD +
735	tetranin or GFP protein solution (3 μ M) for 24 h or plants infested with 100 mites for 24
736	h vs. untreated control plants (Ct). The figures in parentheses represent the numbers of
737	predators that did not choose either odor source ("no choice" subjects). A replicated G-
738	test was conducted to evaluate the significance of the attraction in each experiment (***,

739P < 0.001; **, $0.001 \le P < 0.01$; *, $0.01 \le P < 0.05$; ns, P > 0.05). (b) Headspace volatiles740released from plants treated with MD + GFP, Tet1 (T1) or Tet2 (T2) were collected after74124-27 h. Data represent the means and standard errors (n = 4-5). The means were not742significantly different (ns, P > 0.05), on the basis of an ANOVA. (E)-DMNT, (E)-4,8-743dimethyl-1,3,7-nonatriene; MeSA, methyl salicylate; (E,E)-TMTT, (E,E)-4,8,12-

744 trimethyltrideca-1,3,7,11-tetraene.

Manuscript submitted to New Phytologist for review

Fig. 1

Figure 1 297x209mm (300 x 300 DPI)

Fig. 2

Figure 4

