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ABSTRACT
Magnetic reconnection is a plasma phenomenon where a topological rearrangement of mag-
netic field lines with opposite polarity results in dissipation of magnetic energy into heat,
kinetic energy and particle acceleration. Such a phenomenon is considered as an efficient
mechanism for energy release in laboratory and astrophysical plasmas. An important question
is how to make the process fast enough to account for observed explosive energy releases. The
classical model for steady state magnetic reconnection predicts reconnection times scaling
as S1/2 (where S is the Lundquist number) and yields time-scales several order of magnitude
larger than the observed ones. Earlier two-dimensional MHD simulations showed that for
large Lundquist number the reconnection time becomes independent of S (‘fast reconnection’
regime) due to the presence of the secondary tearing instability that takes place for S � 1
× 104. We report on our 3D MHD simulations of magnetic reconnection in a magnetically
confined cylindrical plasma column under either a pressure balanced or a force-free equilib-
rium and compare the results with 2D simulations of a circular current sheet. We find that the
3D instabilities acting on these configurations result in a fragmentation of the initial current
sheet in small filaments, leading to enhanced dissipation rate that becomes independent of the
Lundquist number already at S � 1 × 103.

Key words: instabilities – magnetic reconnection – MHD – plasmas – galaxies: jets.

1 IN T RO D U C T I O N

Magnetic reconnection is a plasma phenomenon where a rapid re-
arrangement of magnetic fields of opposite polarity leads to the
dissipation of the magnetic energy into heat, plasma kinetic en-
ergy and particle acceleration. In particular, magnetic reconnection
is generally regarded as a mechanism to account for the fast (i.e.
much shorter than the dynamical time-scale) and intense variability
observed in many astrophysical environments, like active galactic
nuclei (Giannios 2013) and pulsar wind nebulae (Cerutti et al. 2013).
It is also likely to occur in space environments like solar flares and
coronal mass ejection (Drake et al. 2006; Gordovskyy, Browning
& Vekstein 2010a; Gordovskyy & Browning 2011). A measure of
the conversion of magnetic energy into particle acceleration via
magnetic reconnection in Earth’s magnetosphere is reported in a re-
cent paper of Burch et al. (2016). Finally, magnetic reconnection is
responsible for sawtooth crashes that prevent the magnetic confine-
ment in laboratory fusion experiments, such as tokamaks (Hastie
1997). The general features of steady state magnetic reconnection

� E-mail: striani@to.infn.it (ES); mignone@ph.unito.it (AM); bvaidya@
unito.it (BV)

are described by the theory of Sweet–Parker (Parker 1957; Sweet
1958), that proposed reconnection taking place in current sheets
(localized regions of very intense currents where non-ideal effects
become important) of length L and thickness δ. In this model the
reconnection time-scales as S1/2 (where S = LVA/η, is the Lundquist
number, L is the characteristic length of the field configuration, VA

is the Alfvén velocity and η is the resistivity). However, consider-
ing that the Lundquist number is very large in space, astrophysical
and laboratory plasmas (e.g. S ∼ 1012–1014 in the solar corona
and S ∼ 106–108 in tokamaks, see Loureiro & Uzdensky 2016),
the above mentioned scaling yields reconnection time-scales that
are several order of magnitudes longer than observed. An attempt
to solve this problem was suggested by Petschek (1964), whose
model yields a logarithmic dependence of the reconnection rate on
S. Petschek-like configuration and scaling are found in a recent rel-
ativistic resistive magnetohydrodynamic (MHD) simulation of Del
Zanna et al. (2016). However, this regime was never observed in
laboratory experiments.

The understanding of this time-scale problem was significantly
improved using resistive MHD numerical simulations with large
Lundquist number. Two-dimensional simulations (see, e.g. Sam-
taney et al. 2009; Huang & Bhattacharjee 2010, 2013; Loureiro
et al. 2012) have shown that when S > Sc � 1 × 104, the current
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3D resistive reconnection 2971

Figure 1. Contour rendering of the density showing the plasma column at
t = 0 for the PB equilibrium. A slice of the density (pseudocolour rendering)
on the xy plane (z = −1) is superimposed, showing the maximum of ρ at
r1 (see text). The red and blue circles show magnetic field lines of opposite
polarity for Bφ .

sheet is subject to secondary tearing instability (Biskamp 1986), re-
sulting in the fragmentation of the current sheet and formation of a
large number of plasmoids. This leads to the so-called fast reconnec-
tion regime, where the reconnection rate becomes independent of
the resistivity. Recent three-dimensional MHD simulations (Oishi
et al. 2015) have further shown that 3D instabilities can trigger a
‘fast reconnection’ regime even for S < Sc.

In this work, we consider both 2D and 3D resistive MHD sim-
ulations of magnetically confined cylindrical plasma columns (see
Fig. 1) featuring a current ring where the azimuthal component
of magnetic field changes polarity. This field configuration was
considered in Romanova & Lovelace (1992) and more recently in
McKinney & Uzdensky (2012). We consider two initial equilib-
ria: one in which radial force balance is established by a thermal
pressure gradient and one in which the field is force-free (FF). The
former can become unstable to pressure-driven instabilities while
the latter is prone to the onset of current-driven modes. We then
show that the presence of 3D plasma column instabilities results
in a fragmentation of the initial current sheet and leads to a ‘fast
reconnection’ regime also for S � 1 × 103.

This paper is organized as follows. In Section 2 we summarize the
equations of resistive MHD used in the simulations and we present
our model setup and initial conditions. In Section 3 we illustrate the
results of our simulations. Finally in Section 4 we summarize and
discuss our findings.

2 EQUATI O N S A N D M O D E L SE T U P

We solve the equations of resistive MHD listed below using the
PLUTO code for astrophysical gas dynamics (Mignone et al. 2007,
2012):

∂ρ

∂t
+ ∇ · (ρv) = 0

ρ

[
∂v

∂t
+ (v · ∇)v

]
+ ∇p − (∇ × B) × B = 0

∂B
∂t

− ∇ × (v × B − η∇ × B) = 0

(1)

Here ρ, v, B and p are, respectively, the fluid mass density, veloc-
ity, magnetic field and gas pressure. Proper closure is given by an
isothermal equation of state, p = c2

s ρ (where cs is the isothermal
speed of sound). The equations are solved in conservative form
using a second-order Runge–Kutta time stepping with linear recon-
struction and the Riemann solver of Roe (1981).

We consider a magnetized plasma column in which the azimuthal
component takes the form

Bφ(r) = B0
r/a

1 + (r/a)2
tanh

(
r − r1

w

)
, (2)

where r1 is the radius of field inversion and w is the width of
the current sheet. Equation (2) has a maximum at r = a where
Bmax

φ = B0/2.
Our aim is to investigate the evolution of a cylindrical plasma

column featuring a field in the form of equation (2). For simplicity,
we will start by assuming an initial equilibrium configuration based
on radial force balance. One should be aware, however, that such an
equilibrium could not be realized as it is potentially prone to many
types of instabilities, as we shall see. The issue of marginal equi-
librium was recently addressed by Uzdensky & Loureiro (2016).
Radial force balance is achieved by solving the radial component
of the momentum equation, which reads

d�

dr
= − 1

2r2

d

dr

(
r2B2

φ

)
(3)

where � = p + B2
z /2. equation (3) has solution

� = �0 − B2
φ

2

∣∣∣∣∣
r

0

−
∫ r

0

B2
φ

r
dr , (4)

where the integration constant,

�0 = p0 + B2
z

2

∣∣∣∣
r=0

. (5)

The input parameters are the pitch P and the plasma β (a factor
1/

√
4π is absorbed in the definition of B):

P = rBz

Bφ

∣∣∣∣
r=0

, β = 2p

|B|2 . (6)

The plasma β is computed as the ratio of the on-axis gas pressure
p0 to the maximum Bφ value:

β = 2p0

(Bmax
φ )2

= 8p0

B2
0

⇒ B0 =
√

8p0

β
(7)

We employ an isothermal equation of state (p = ρc2
s ) and adopt

periodic boundary conditions in the vertical (z) direction while
equilibrium values are prescribed on the remaining sides. Lengths
are measured in units of r1, velocities in units of the isothermal
sound speed (cs), and ρ in units of the density at the axis. The
computational domain is the Cartesian box with x, y ∈ [−l/2, l/2]
and z ∈ [−lz/2, lz/2] where l = 4r1. A random perturbation in
vx, vy, vz of amplitude 1 per cent of the sound speed is added. An
additional perturbation comes from the m = 4 noise due to the spatial
discretization of the cylindrical plasma column on a Cartesian grid.

2.1 Equilibrium balance

Two possible equilibrium configurations will be investigated: one
in which the Lorentz force is balanced by a pressure gradient and
the other in which the Lorentz force vanishes. We will refer to the
first one as the pressure-balanced (PB) while to the other as FF.
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2972 E. Striani et al.

Figure 2. Radial profiles of Bφ , Bz and p for the PB (case PB-0) and
FF (case FF-0.2) equilibrium configurations. In both cases the Lundquist
number is S = 2.4 × 104.

We set lz = 2r1 for the PB case while we choose lz = 4r1 for
the FF case in order to accommodate the kink mode that has the
maximum growth at long wavelength. The radial profiles of Bφ ,
Bz and p for both configurations are shown in Fig. 2. In each of
the above configurations we also simulate runs without inversion in
toroidal magnetic field, i.e. by setting the hyperbolic tangent term
in equation (2) to unity. These runs without magnetic shear are
denoted by the suffix -NS.

2.1.1 PB equilibrium

We assume a constant vertical field

Bz(r) = B0
P

a
(8)

and solve equation (4) for the pressure p:

p(r) = p0 − B2
φ

2

∣∣∣∣∣
r

0

−
∫ r

0

B2
φ

r
dr , (9)

where p0 = ρc2
s = 1 and the integral is solved numerically. This is

a variable pitch profile. Without the magnetic shear the solution of
equation (4) is

p(r) = p0 − B2
0

2

r2(2a2 + r2)

(a2 + r2)2
, (10)

which has the constraint p0/B
2
0 > 1. From equation (7) this implies

β > 4.
The growth rates of unstable modes are typically of the order of

cs/R, where cs is the sound speed and R is the jet radius (Longaretti
2008).

PB equilibria may be subject to pressure-driven instabilities (PDI)
driven by perpendicular currents. They occur in plasma columns
when the pressure force pushes the plasma out from the inside
of the magnetic field lines curvature and their destabilizing term
is proportional to the pressure gradient. This instability has a very
short wavelength perpendicular to the magnetic field and long wave-
lengths parallel to the field (Freidberg 2014).

Table 1. Different 2D and 3D cases with PB and FF initial conditions along
with their setup parameter values.

Case Eq Lundquist S (×104) P β Resolution

PB-0-2D PB 0.3 0.0 10 512 × 512
PB-0-2D PB 1.1 0.0 10 1024 × 1024
PB-0-2D PB 2.4 0.0 10 2048 × 2048
PB-0-2D PB 3.4, 5.0, 6.6, 10 0.0 10 4096 × 4096
PB-0 PB 0.3, 0.7, 1.1 0.0 10 512 × 512 × 256
PB-0 PB 2.4 0.0 10 1024 × 1024 × 512
PB-0.5 PB 2.4 0.5 10 1024 × 1024 × 512
PB-0-NS PB 2.4 0 10 1024 × 1024 × 512
FF-0.2 FF 0.3, 0.7, 1.1 0.2 1 512 × 512 × 512
FF-0.2 FF 2.4 0.2 1 1024 × 1024 × 1024
FF-10 FF 2.4 10 1 1024 × 1024 × 1024
FF-0.2-NS FF 2.4 0.2 1 1024 × 1024 × 1024

2.1.2 FF equilibrium

We assume constant pressure p(r) = p0 and solve equation (4) for
the vertical field:

B2
z (r)

2
= Bz0

2
− B2

φ

2

∣∣∣∣∣
r

0

−
∫ r

0

B2
φ

r
dr. (11)

Without the magnetic shear, the vertical field has the solution

Bz(r) = B0

√
P 2(a2 + r2)2 − r2a2(2a2 + r2)

a2(a2 + r2)2
(12)

A necessary condition for the square root to be positive for r → ∞
is therefore that P ≥ a. In our simulations we choose P = a.

FF configurations may be prone to current-driven instabilities
(CDI) driven by parallel currents. The m = 1 (where m is the az-
imuthal wavenumber) ‘kink’ mode is the most violent among CDI
(Begelman 1998). In this context, three-dimensional MHD simula-
tions of relativistic jets possessing an axial current have shown a
prominent jet wiggling due to the growth of non-axial symmetric
perturbations (see, e.g. Mignone et al. 2010, 2013).

3 R ESULTS

We consider several simulations characterized by different choices
of the Lundquist number S = LVA/η (where η is the resistivity, L
is the characteristic length of the current sheet and VA = B/

√
ρ

is the Alfvén velocity), plasma β, magnetic pitch and equilibrium
configurations. The simulation cases along with their parameters
are listed in Table 1 and are: case PB-0-2D (2D circular current
sheet with pitch P = 0), case PB-0 (3D PB with P = 0), case PB-
0-NS (same as the previous case, but without shear in magnetic
field) case PB-0.5 (3D PB with P = 0.5), case FF-0.2 (3D FF with
P = 0.2), case FF-0.2-NS (same as the previous case, but without
shear in magnetic field) and case FF-10 (3D FF with P = 10). The
simulation cases without inversion are not expected to dissipate
magnetic energy via magnetic reconnection. They therefore serve
as test cases to ensure that the observed dissipation of magnetic
energy in runs with inversion arises from magnetic reconnection.
For all of our simulations we fix the width of the current sheet to
be w = 0.01. We set the plasma beta to be β = 10 for the PB cases
and β = 1 for the FF. For each case, we express time in units of
the Alfvén time-scale, defined as tA = 2πr1/VA where r1 is our
unit length and VA = max(|B|/√ρ|) over the entire computational
domain at t = 0.
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Our simulations for the PB and FF configurations stop at t =
5.5tA and t = 10tA, respectively, when the evolution of magnetic
reconnection and the instabilities allowed in each configuration is
such that a prominent magnetic dissipation, up to 80 per cent of the
initial magnetic energy, is reached. The resolutions are chosen so
as to ensure that the numerical resistivity is significantly smaller
than the physical resistivity. A preliminary 2D study was performed
in order to find the optimal resolutions. We plotted the magnetic
energy Em versus t/tA for a given Lundquist number and with dif-
ferent resolutions (5122, 10242, 20482, 40962 and 81922), and we
computed the time at which Em reaches 80 per cent of the initial
magnetic energy, t80. We then choose the lowest resolution among
those that yield the same value (within 10 per cent) of t80.

3.1 Two-dimensional results

We begin our discussion by analysing the two-dimensional case. For
the sake of reference, in Section 3.1.1 we estimate the reconnection
rate in a simple Harris sheet configuration (Harris 1962) for later
comparison with the actual 2D circular current sheet (Section 3.1.2).
The 2D circular current sheet is alike case 3D PB-0 case but does
not include the z-direction.

3.1.1 Standard harris sheet

According to the Sweet–Parker theory, the reconnection rate η can
be written as

η ≡ uin

uout
∼ δ

L

1√
S

(13)

where uin and uout are the inflow and outflow speeds, while δ and
L are the current sheet’s half width and half length, respectively.
To compute δ we estimate the peak value of the current density
at the reconnecting region, located at y = 0. We then define δ as
the distance (along y) where J decreases by a factor 1/e of its
peak value (e-folding distance), similarly to Mignone et al. (2012).
In Fig. 3 we plot δ for various S (blue circles) along with a best
fit. The Sweet–Parker scaling, ∼S−1/2, is plotted with the black
dashed line. For comparison, we calculated the reconnection rate
by estimating the rate at which the magnetic energy dissipates, in a
manner similar to Gordovskyy, Browning & Vekstein (2010b) and
Oishi et al. (2015). In order to do so, we plot the temporal evolution
of the total magnetic energy in the domain, and we compute the
slope γ = dEm/dt, where Em is normalized to the initial value of the
magnetic energy and t to the Alfvén time. The slopes are calculated
at t = tA so as to ensure that magnetic reconnection has already
started.1 The dissipation rate, γ , for different values of S is shown
in Fig. 3 (green circles). The two estimates of the reconnection rate
are compatible and in agreement with the Sweet–Parker scaling.
For convenience, in this work we will measure the dissipation rate
γ , that is equivalent to the reconnection rate only for cases where
reconnection is the dominant dissipating process. We will discuss
the implications of this choice in the last paragraph.

3.1.2 Circular current sheet

The simulations exhibit different features for increasing values of
the Lundquist number, estimated using a characteristic length L =

1 We have checked that the choice of the time at which slopes are computed
has hardly noticeable differences on the results.

Figure 3. Reconnection rate η computed with two different methods: Blue:
time average of δ as a function of S, along with a best fit (dashed line).
Green: magnetic energy decay γ as a function of S, along with a best fit
(dashed line). The Sweet–Parker scaling ∼S−1/2 is plotted in black.

2πr1. For S = 1.7 × 103 the layer is highly diffusive, and there is no
evidence of island formation. For larger S magnetic reconnection
results in the formation of four plasmoids that further move along
the curved current sheet and later merge into a larger island.

When S > Sc � 1–5 × 104 the simulations show evidences of
multiple fragmentation of the current sheet by secondary tearing
instability. Here we see the continuous hierarchical formation of
islands between two already formed larger islands (see Fig. 4). The
islands further move away from the region of creation and feed the
growth of a monster island (see Uzdensky, Loureiro & Schekochihin
2010). The fragmentation of the layer ultimately results in formation
of several small sized current sheets randomly oriented (see Fig. 4,
right side) leading the system into a ‘plasmoid turbulence’ phase,
as described in Loureiro et al. (2012). At this stage the current sheet
configuration resembles that of the simulations of Kowal et al.
(2009) and Loureiro et al. (2009).2

In Fig. 5 (upper panel) we show the temporal evolution of the
average magnetic energy normalized to the initial magnetic energy
for different values of the Lundquist number. For cases with S � 104

the decay rate sharply increases at t � 3.2tA (seen as steepening of
the slope). This corresponds to the time when the secondary tearing
instability sets in. Consequently we define two different phases in
the temporal evolution of the magnetic energy: phase I that starts
at the beginning of the simulation until the onset of the (plasmoid)
instability, and phase II that starts after the onset of the instability
(note that phase II is present only in the case where S ≥ 104).

The central panel of Fig. 5 shows the temporal evolution of the
average value of J2 (denoted by 〈J2〉), where J is the current density.
There is a clear distinction in the growth of 〈J2〉 with time between
the two phases mentioned above, especially for higher values of S.
The evolution of 〈J2〉 in phase I, after an initial transient, is typically
flat for all values of S. As the instability sets in, a sharp rise is seen

2 We note, however, that these models focused on magnetic reconnection in
the presence of a pre-existing, background turbulence.
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2974 E. Striani et al.

Figure 4. Pseudocolour rendering of the current density Jz for case 2D with S = 1.0 × 105 at t � 2.5tA (left) and t � 4.8tA (right). We note the formation of
multiple plasmoids and small-sized current sheets due to secondary tearing instability, in a manner similar to the ‘plasmoid turbulence’ described in Loureiro
et al. (2012).

Figure 5. Two-dimensional circular current sheet. Top panel: temporal evo-
lution of average magnetic energy Em normalized to the initial magnetic
energy for different values of the Lundquist number. Bottom panel: tem-
poral evolution of 〈J2〉 for different values of the Lundquist number. Inset:
temporal evolution of η〈J2〉 for different Lundquist numbers.

in 〈J2〉 for values of S ≥ 104, while for smaller S values it continues
to remain flat. In particular for S = 1 × 105 (yellow curve), 〈J2〉
increases steeply by a factor of four after t = 3.2tA.

Finally, the inset panel of Fig. 5 shows the temporal evolution of
the Ohmic heating. We note that while in phase I η〈J2〉 decreases
for larger values of S, in phase II it becomes independent on the
Lundquist number.

Figure 6. Decay rate γ of the magnetic energy as a function of S for case
PB-0-2D. For each S values γ is computed in phase I (circles) and phase 2
(triangles). The decay rate scales as S−1/2 during phase I, and it is nearly
independent on S in phase II.

By fitting the curves representing the temporal evolution of Em

during phase I and phase II, we can estimate the decay rate γ for the
two phases. We show in Fig. 6 the decay rate for different values
of S. We see that the dissipation rate follows the Sweet–Parker
scaling during phase I (circles), and it is nearly independent of S
in phase II (triangles). One can therefore identify phase I with a
Sweet–Parker phase and phase II with a ‘fast reconnection’ regime.
The rate at which magnetic energy is dissipated during the fast
reconnection regime is ∼0.1t−1

A , consistent with rates reported by
previous numerical results (e.g. Bhattacharjee et al. 2009; Huang &
Bhattacharjee 2010; Loureiro & Uzdensky 2016) and the theoretical
model of Uzdensky et al. (2010). We emphasize that this ‘fast
reconnection’ regime is related to the plasmoid instability, that sets
in only when S ≥ 1 × 104. These results confirm the findings of
many earlier papers studying magnetic reconnection in a Harris
current sheet for high S values (see, e.g. Huang & Bhattacharjee
2010, 2013), and extend them to the case of a circular current sheet.
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3D resistive reconnection 2975

Figure 7. Snapshots for case PB-0 and S = 2.4 × 104 for t = 0.7tA, t = 1.0tA, and t = 1.6tA. We show the three-slice (pseudocolour rendering) of the density
(top), the two-dimensional slice on the yz plane (at x = 0) of the current density centre), and the two-dimensional slice on the xy plane (at z = 0.2) (bottom).

3.2 Three-dimensional cases

3.2.1 3D pressure-balanced

The PB cases are unstable to PDI that triggers the formation of
finger-like structures at the current sheet. The three-slice rendering
of the density for case PB-0 with S = 2.4 × 104 at t = 0.7tA (left),
t = 1.0tA (centre) and t = 1.6tA (right) is shown in the top panels
of Fig. 7, where one can observe the formation and growth of the
fingers. These features start to form at t � 0.6tA and continue to
develop during the simulation. The growth of the PDI leads to the
total disruption of the plasma column for t > 3.5tA. The central
panels of Fig. 7 show the 2D slice of the current density on the yz
plane (at x = 0). Peaks of the current density in correspondence of
the fingers can be noticed, pointing out that each of these features
may become secondary current sheets where magnetic reconnection
takes place. The 2D slice of the current density on the xy plane (at
z = 0.2) is shown in the lower panels of Fig. 7. The formation of
the fingers results in the fragmentation of the current sheet in the
xy plane in several secondary and small-sized current sheets with
high values of the current density. The length L′ of these secondary

current sheets is much smaller than the size L of the original current
sheet, therefore yielding an effective value of the Lundquist number
S′ ∝ L′ � S and, finally, a dissipation rate that does not depend on
S. This can be seen on the left side of Fig. 8 where the temporal
evolution of the volume averaged magnetic energy (normalized to
its initial value) for case PB-0 (red solid line), case PB-0.5 (red
dashed line) and case PB-0-NS (red dotted line), along with case
PB-2D (black solid line), is shown. The Lundquist number is S =
2.4 × 104 for each of these plots. At early times the dissipation
of the magnetic energy for case PB-0 overlaps with the 2D case.
The curve is then characterized by a sharp change of the slope at
t � 0.65tA, i.e. the time at which the finger-like features of the PDI
start to form. In analogy with the PB-0-2D case, we define two
different phases in the temporal evolution of the magnetic energy:
phase I that starts at the beginning of the simulation until formation
of the features of the pressure-driven instability, and phase II that
begins after the formation of such features. In order to study the
scaling of the dissipation rate for this case, we computed the decay
rate γ = dEm/dt (see sec Section 3.1.1) by estimating the slope
of the magnetic dissipation both in phase I and in phase II. Fig. 8
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2976 E. Striani et al.

Figure 8. Left: temporal evolution of the volume averaged magnetic energy normalized to the initial magnetic energy for case PB-0 (red solid line), case
PB-0.5 (dashed line) and case PB-0-NS (dotted line), along with case 2D (black). For all cases the Lundquist number is S = 2.4 × 104. The black vertical line
separates phase I and phase II for case PB-2D. Right: decay rate γ of the magnetic energy as a function of S for case PB-0. For each S value, γ is computed in
phase I (circles) and phase 2 (triangles). We note that the decay rate follows the Sweet–Parker scaling during phase I, and is nearly independent on S in phase II.

(right-hand panel) shows the decay rate γ for different values of
S and for the two different phases. In analogy with the 2D case,
the dissipation rate follows the Sweet–Parker scaling in phase I
(circles), and it is nearly independent on S (a linear fit yields a
slope � 0.06) in phase II (triangles). The rate of dissipation of
magnetic energy during phase II is ∼0.5t−1

A , somewhat larger than
the rate obtained from 2D simulations (see section Section 3.1.2).
The temporal evolution of the PDI for case PB-0.5 is much slower,
as the increased pitch has a stabilizing effect on PDI. Consequently,
this case does not show any features related to 3D instabilities
throughout the simulation, and hints of finger formation are evident
only at the very end of the simulation. The plasma column can be
therefore considered as a replication along the z-direction of the 2D
configuration of Section 3.1.2. This can be seen in the top panel
of Fig. 8, where the dissipation of the (volume averaged) magnetic
energy in the plasma column for this case (dashed line) overlaps
with the 2D case. Finally, case PB-0-NS (dotted line) shows no sign
of dissipation. The fragmentation of the layer due to the onset of the
PDI and the consequent formation of small current-sheets observed
for case PB-0 therefore yields a dissipation rate that does not depend
on the Lundquist number. Differently from the 2D secondary tearing
instability, the onset of PDI and its features do not depend on S, and
the ‘fast reconnection’ regime holds also for S � 1 × 103 < Sc,
when the secondary tearing instability is not present.

3.2.2 3D force-free

This configuration is unstable to CDI that favors the distortion of
the plasma column due to the growth of the kink mode. This effect
is visible in case FF-0.2, that exhibits a prominent bending of the
plasma column that begins at t � 3tA and continues until the end
of the simulation. The three-slice rendering of the current density
superimposed with the contour of the density at t = 6tA, t = 11tA

and t = 17tA for case FF-0.2 with S = 2.4 × 104 is shown in the top
panel of Fig. 9.

Along with the distortion of the plasma column by means of
the kink mode, for t > 3tA the current sheet along z breaks and
forms plumes that grow and expand away from the central axis in
the xz and yz planes. This can be seen also in the central panels of

Fig. 9, that shows the 2D slices on the yz plane (at x = 0) of the
current density. To discriminate whether these features arise from
the effect of the pressure-driven modes or the current driven modes,
we estimated the value of χ = cos2(θ ) where θ is the angle between
the current density and magnetic field vectors. For current-driven
modes cos2(θ ) = 1, since currents and magnetic fields are parallel,
while its value is zero for pressure-driven modes. Fig. 10, where
χ for the FF-0.2 case at t = 6tA is shown, exhibits many regions
where cos2(θ ) = 0, implying that the plumes may originate from
a secondary pressure-driven instability. The development of these
features results in the fragmentation of the current sheet in the xy
plane in several small current sheets. This can be seen in the lower
panels of Fig. 9 where the 2D slices on the xy plane (at z = −1) of the
current density is shown. Such a fragmentation ultimately results in
formation of several randomly oriented filaments representing the
onset of turbulent reconnection.

We show in Fig. 11 the temporal evolution of the volume averaged
magnetic energy (normalized to its initial value) for case FF-0.2 with
S = 2.4 × 104 (solid line), case FF-0.2 with S = 6.6 × 103 (dash–
dotted line), case FF-10 with S = 2.4 × 104 (dashed line), and case
FF-0.2-NS with S = 2.4 × 104 (dotted line). The dissipation of
magnetic energy during the early stages of the simulation clearly
depends on the Lundquist number, as can be seen comparing the
two FF-0.2 cases with different S. The case without field inversion
shows a negligible decrease of the magnetic energy, likely due to
ohmic dissipation. All the configurations feature a sharp change
in the decay rate between 4tA and 10tA. This interval corresponds
to the time when the CDI comes into play forming kinks in the
plasma column. The decrease of magnetic energy in this interval
can therefore be interpreted as conversion of magnetic energy into
kinetic energy due to the onset of the kink instability. For t >

10tA the magnetic energy decreases rapidly for both the FF-0.2
configurations with current sheet, with a rate that does not seem
to depend on S. On the other hand, for the case without magnetic
shear, the magnetic energy remains flat until t ∼ 20tA.

In analogy with Sections 3.1.2 and 3.2.1, we define two different
phases in the temporal evolution of the magnetic energy: phase I
that starts at the beginning of the simulation until the time where
the features of the plasma column instability set in, and phase II that
begins after these instabilities sets in. The two phases are indicated
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Figure 9. Snapshots for case FF-0.2 with S = 2.4 × 104 at t = 6tA, t = 11tA and t = 17tA. We show the three-slice rendering of the current density superimposed
to the contour rendering of the density (top), the two-dimensional slices on the xz plane (at x = 0) of the current density (centre), and the two-dimensional
slices on the xy plane (at z = −1) of the current density (bottom).

by the dashed vertical lines on the left-hand panel of Fig. 11. We
compute the decay rates in phase I and phase II for different S values
for case FF-0.2, and show the dissipation rate obtained in such a way
on the right-hand panel of Fig. 11. As for the 2D and PB cases, the
dissipation rate in phase I follows the Sweet–Parker scaling (circles),
while in phase II (triangles) the slope is nearly independent on S (a
linear fit yields a slope � 0.1). The rate of dissipation of magnetic
energy during phase II is ∼0.1t−1

A . In analogy with the 2D and 3D-
PB cases, we note that this ‘fast reconnection’ regime sets in after
the fragmentation of the layer.

Finally, case FF-10 shows a negligible decay of magnetic energy
along the whole simulation, due to the fact that the higher pitch has a
stabilizing effect on the 3D instabilities acting in this configuration.

4 SU M M A RY A N D D I S C U S S I O N

We studied magnetic reconnection using three-dimensional resis-
tive MHD simulations of a magnetically confined cylindrical plasma
column featuring a circular current sheet. Different equilibrium con-
ditions, including radial PB and an FF field, have been considered.
Results have been compared with two-dimensional simulation of a
circular current sheet.

Our 2D simulations generalize previous studies of planar current
sheets to the cylindrical case. The main results from these simula-
tions are listed below.

(i) At early stages (phase I), the magnetic dissipation rate in the
current ring agrees with the Sweet–Parker scaling of S−0.5.
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Figure 10. Two-dimensional slices on the yz plane (at x = 0) of χ = cos2(θ )
(see text) at t = 6tA for case FF-0.2. Regions where χ = 0 are likely unstable
to PDI that can be responsible for the features shown in the central panels
of Fig. 9.

(ii) At later times (phase II) and for values of S � Sc � 1 × 104, the
current sheet is subjected to secondary tearing instability whereby
continuous formation of plasmoids is observed. The formation of
plasmoids leads to the fragmentation of the initial circular sheet into
multiple small-sized current sheets. During this stage, the decay
rate increases sharply, and becomes independent of S, revealing the
transition to a regime of fast reconnection.

(iii) Eventually, the continuous formation and merging of plas-
moids results in the random orientation of fragmented current-sheets
that closely resemble the turbulent reconnection described by, e.g.
Kowal et al. (2009), Loureiro et al. (2009) and Takamoto, Inoue &
Lazarian (2015).

(iv) The rate of dissipation of magnetic energy during the fast
reconnection regime is ∼0.1t−1

A , consistent with previous numerical
results of 2D reconnection.

In the three-dimensional case, our results can be summarized as
follows.

(i) Similar to the 2D runs, the magnetic energy (during the initial
phase) is dissipated at a rate which is consistent with Sweet–Parker
scaling, S−0.5.

(ii) At later times the plasma column becomes unstable to either
pressure-driven or current-driven instabilities (depending on the
initial equilibrium configuration), the onset of which does not de-
pend on the Lundquist number. In runs with same set of parameters
(β = 10 and P = 0), the 3D pressure-driven instability starts before
the 2D secondary tearing mode. The growth of these instabilities
causes the fragmentation of the original current ring into smaller
secondary current sheets (see Figs 7 and 9).

(iii) At this time an increased magnetic dissipation is observed
(phase II). The dissipation rate becomes independent of S and is of
the order of (∼ 0.1–0.5)t−1

A (see Figs 8 and 11).
(iv) The dissipation rate starts to become independent of S for

S � 10−3, a threshold value which is an order of magnitude smaller
than the one obtained from 2D runs.

We point out that the dissipation rates reported here result from
the interplay between magnetic reconnection and the turbulence
induced by the instabilities arising in each configurations. This
may lead to energy dissipation rates that are faster than the actual
reconnection rate and could explain the differences between our
findings (�0.1t−1

A ) and the results reported in previous reference
studies (∼0.01t−1

A ). On the other hand, three-dimensional simu-
lations without magnetic shear, that are not expected to develop
magnetic reconnection, do not show relevant dissipation. In sum-
mary, we find that the 3D instabilities alone dissipate the magnetic
energy inefficiently. However, they play a major role in enhancing
the rate of magnetic dissipation in presence of reconnection.

We emphasize that the Lundquist numbers for the above 3D
simulations lie in the range 103–104 and no formation of secondary
tearing instability is observed. The ‘fast reconnection’ regime is,
therefore, a mere effect of the 3D instabilities.

A similar effect was reported in recent 3D simulations by Oishi
et al. (2015), where they attributed the early fast reconnection
regime to an unspecified 3D instability. Our detailed analysis ob-
tains consistent results in a different configuration (magnetically
confined plasma column) and provides clear evidence that the onset

Figure 11. Left: temporal evolution of the volume averaged magnetic energy normalized to the initial magnetic energy for case FF-02 with S = 2.4 × 104

(solid line), case FF-0.2 with S = 6.6 × 103 (dash–dotted line), case FF-10 with S = 2.4 × 104 (dashed line) and case FF-0.2-NS with S = 2.4 × 104 (dotted
line). The black vertical dashed lines indicates the beginning of phase II, where the decay rate γ for this case was computed. Right: decay rate γ of the magnetic
energy as a function of S for case FF-0.2. For each case γ is computed in phase I (circles) and phase 2 (triangles). We note that the decay rate follows the
Sweet–Parker scaling during phase I, and is nearly independent on S in phase II.
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of ‘fast reconnection’ is triggered by well-known plasma instabil-
ities (pressure- or current-driven). Our results are consistent with
the complementary work by Singh, Mizuno & de Gouveia Dal Pino
(2016) that show that kink instability in a relativistic rotating jet is
able to trigger turbulence and magnetic reconnection.

Our results can be relevant in the context of MHD jets, where
these instabilities are likely to operate. Typical astrophysical envi-
ronments are active galactic nuclei, microquasars and pulsar wind
nebulae. Here, magnetic reconnection has been recently invoked as
an efficient mechanism to accelerate particles to non-thermal en-
ergies (Sironi & Spitkovsky 2014; de Gouveia Dal Pino & Kowal
2015) up to PeV energies (Cerutti et al. 2013). Plasma instabilities
in jets, therefore, could trigger fast magnetic reconnection episodes
(Lyubarsky 2012; Giannios 2013) that may account for the observed
fast variability and non-thermal features in these astrophysical sce-
narios, like, e.g. the γ -ray flares from the Crab nebula (Striani et al.
2011; Tavani et al. 2011), or the very rapid variability, ∼ 10 min,
detected, e.g. in PKS 2155 (Aharonian et al. 2007) and PKS 1222
(Aleksić et al. 2011). Our results can, however, be applied only
in the reference frame of the jet as no velocity shear has been
considered. Besides, a more detailed analysis would require direct
investigation of particle acceleration. These issues will be explored
in forthcoming studies.

AC K N OW L E D G E M E N T S

We thank an anonymous referee for his/her comments. We ac-
knowledge the CINECA award under the ISCRA initiative, for the
availability of high performance computing resources and support.
BV would like to thank the support from University of Torino.

R E F E R E N C E S

Aharonian F. et al., 2007, ApJ, 664, L71
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