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ABSTRACT
The angular power spectrum C�(zi, zj) is a gauge-independent observable that is in principle
the natural tool for analysing galaxy number counts. In practice, the problem is that the
computational requirements for next-generation spectroscopic surveys such as Euclid and
the Square Kilometre Array are currently unfeasible. We propose a new method to save
computational time for spectroscopic angular power spectra. This hybrid method is modelled
on the Fourier power spectrum approach of treating relatively thick redshift bins (�z ∼ 0.1)
as separate surveys. In the hybrid method, each thick bin is further subdivided into thin
bins (δz ∼ 0.01); all the correlations within each thick bin are computed, whilst cross-bin
correlations beyond the thick bins are neglected. Constraints on cosmological parameters
from the hybrid method are comparable to those from the standard galaxy Pg(k, z) analysis –
but they have the advantage that cosmic evolution, wide-angle, and lensing effects are naturally
included, whilst no Alcock–Paczynski correction is needed. The hybrid method delivers much
tighter constraints than a 2D tomographic approach that is typical for photometric surveys,
which considers only thick bins and the correlations between them. Furthermore, for standard
cosmological parameters our method is not biased by neglecting the effects of lensing on
number counts, whilst the tomographic method is strongly biased.

Key words: (cosmology:) cosmological parameters – cosmology: observations – cosmology:
theory – (cosmology:) large-scale structure of Universe.

1 IN T RO D U C T I O N

The concordance cosmological model � cold dark matter (�CDM)
represents the current best fit to a number of very different observa-
tions across a wide range of physical scales and cosmic time. Tem-
perature anisotropies of the cosmic microwave background mea-
sured by the Planck satellite (Ade et al. 2015), combined with many
other data sets, have shown that present-day data do not favour
any extension to �CDM. Nevertheless, key questions remain to be
answered, like what drives the late-time cosmic accelerated expan-
sion, or whether there is non-Gaussianity in the primordial density
fluctuations. Furthermore, some tensions among data sets – in par-
ticular, between high- and low-redshift observables – have been
claimed to herald breaches in the adamantine �CDM model (Bat-
tye, Charnock & Moss 2015; Spergel, Flauger & Hlozek 2015;
Addison et al. 2016; Joudaki et al. 2017a,b; Pourtsidou & Tram
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2016; Raveri 2016; An, Feng & Wang 2017; Camera, Martinelli &
Bertacca 2017a; Charnock, Battye & Moss 2017). All of these calls
for a better understanding of the late-time Universe and the growth
and clustering of cosmic structures, from ultra-large to mildly non-
linear scales.

The main envisaged methods to probe the large-scale structure
are measurements of cosmic shear and the creation of huge galaxy
catalogues with which we can reconstruct the clustering of dark
matter haloes over a wide range of scales and redshifts. In this pa-
per, we focus on the latter method, namely on the measurement
of the power spectrum of galaxy number counts, although we will
comment on cosmic shear in the conclusions (Section 5). Up to
now, power spectrum measurements have mainly relied on two ap-
proaches: reconstructing baryon acoustic oscillation (BAO) peaks
and redshift-space distortions (RSD) from the three-dimensional
(3D) galaxy positions in a spectroscopic redshift survey, or estimat-
ing the two-dimensional (2D) clustering of galaxies in redshift slices
from broad-band photometric measurements. Despite the fact that
photometric galaxy catalogues are significantly more populated than
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spectroscopic ones, the former method is more informative, since it
gives access to the cosmological information encoded in the fully
3D cosmic web. However, it relies on a number of assumptions
that require various add-on techniques in order to exploit the data
quality and sky and redshift coverage envisaged by next-generation
experiments, as we discuss in Section 3.1.

In this paper, we introduce a new method to optimize angular
power spectrum computations for spectroscopic galaxy surveys.
This method is in some sense a combination of the galaxy Fourier
power spectrum Pg(k, z) approach (discussed in Section 3.1) and a
2D tomographic approach (outlined in Section 3.2). For this reason,
we refer to the new method as ‘hybrid’. In Section 4, we present our
main results, showing how our hybrid approach yields constraints
on cosmological parameters that are comparable to those from a
standard Pg(k, z) analysis, and are more than twice as tight as
those obtained with a standard tomographic analysis. This is further
supported by a study of the ‘information gain’ earned by going from
the standard tomography to the hybrid method.

We also demonstrate that our hybrid approach is robust with re-
spect to not including the corrections to galaxy number counts due
to gravitational lensing. Specifically, we show that best-fit values
of cosmological parameters estimated via density fluctuations and
RSD alone – namely, neglecting lensing – are biased by less than
20 per cent of the 1σ error on the parameter.1 This is important,
since the numerical computation of the lensing correction, being
an integrated effect, is significantly slower. Hence, our method
allows for faster computation of the data likelihood and is then
more suitable for implementation in Markov chain Monte Carlo
pipelines, relevant in view of upcoming spectroscopic galaxy sur-
veys, such as the European Space Agency Euclid satellite (Laureijs
et al. 2011; Amendola et al. 2013, 2018) or the Square Kilometre
Array (SKA; Abdalla et al. 2015; Maartens et al. 2015). Since our
method follows one key aspect of the Pg(k, z) approach, i.e. treat-
ing thick bins as separate surveys, this suggests that the Fourier
power spectrum method might not be biased by excluding lensing
effects.

2 ME T H O D O L O G Y

2.1 Statistical tools

We consider a six-dimensional cosmological parameter set ϑ ={
�b, �DM, ns,As, H0

}
, with �b and �DM the baryonic and dark

matter density fractions, ns and As the slope and the ampli-
tude of the primordial power spectrum measured at some pivot
scale k0, with As = ln(1010As), and H0 = 100h km s−1 Mpc−1 the
Hubble constant. Fiducial values for the parameters are ϑ =
{0.05, 0.26, 0.9667, 3.06, 67.74}.

We work in a Bayesian statistics framework, and make use of
Fisher matrices to forecast the capabilities of future surveys (e.g.
Trotta 2008). All relevant formulas can be found in Appendix A1,
together with a description of the tests we performed to ensure the
stability of the matrices and the robustness of our results. We use
‘relative errors’ to denote marginal errors σ (ϑα) divided by param-
eter fiducial values ϑα , and ‘relative biases’ on parameters to mean
biases on cosmological parameters in units of the measurement
precision, i.e. b(ϑα)/σ (ϑα).

1Note that this does not apply to the non-Gaussianity parameter fNL, whose
best fit is biased by neglecting lensing (see Section 4.4).

2.2 Observational assumptions

To compare results from our optimized hybrid method to the stan-
dard 2D tomographic approach, we apply both methods to the same
observational set-up, namely a Stage IV Dark Energy Task Force
(DETF) cosmological experiment (see Albrecht et al. 2006). To
compute the redshift distribution of sources and magnification bias,
we use model 3 of Pozzetti et al. (2016). For this work, we assume
a flux cut threshold for the survey F∗ = 3 × 10−16 erg s−1 cm−2 in
the redshift range 0.6 ≤ z ≤ 2. Using this assumption, we find the
following fits for the spectroscopic distribution of sources per solid
angle per unit redshift:

dNg/dz = z1.281

× exp
(
9.976−2.317z−0.617z2+0.265z3−0.030z4

)
,

(1)

and for the magnification bias

Q = −0.66 − 2.95z + 1.59z2 − 0.40z3 + 0.04z4, (2)

where sometimes the magnification bias is referred to as s, and
Q = 5s/2 holds. Note that these fits are only valid for z ∈ [0.6, 3]
and do not reproduce well the results out of this range. We model
the galaxy bias as bg(z) = √

1 + z (Amendola et al. 2013, 2018),
and assume a sky area of 15, 000 deg2. All angular power spectra
are computed with the public code CAMB sources (Challinor &
Lewis 2011) using the distribution of sources given by equation (1).

When we quote results for standard tomography (see Section 3.2),
we divide the source redshift distribution into 20 equi-populated,
top-hat redshift bins, with edges smeared by a Gaussian window
with σ z = 0.002. For our hybrid method, we follow the recipe
outlined in Section 3.3.

As a final remark, we employ the linear matter power spectrum.
Depending on the maximum angular wavenumber considered, this
may not be correct at low redshifts, since nonlinear scales could
already be contributing to the angular power spectrum. This can be
seen via the Limber approximation, valid for small angles, k = �/χ .
At low redshift, �max = 800 already exceeds the nonlinear threshold
knl � 0.2 h Mpc−1. Nonetheless, our aim is not to provide specific
forecasts for a given experiment, but rather to compare our method
with a standard tomographic analysis, with both methods using the
linear matter power spectrum and the same survey specifications.
The inclusion of nonlinearities does not add relevant information
and can be disregarded without loss of generality.

3 G A L A X Y N U M B E R C O U N T S

First, we briefly describe two of the main approaches to galaxy
clustering data: the Fourier power spectrum, usually employed with
spectroscopic data; and the 2D tomographic angular power spec-
trum, usually used in photometric surveys. Secondly, we introduce
the new hybrid approach towards optimal angular power spectra for
spectroscopic galaxy surveys.

3.1 Fourier power spectrum

Neglecting RSD and the Alcock–Paczynski (AP) effect for simplic-
ity, the galaxy number density at real-space position x is

ng(x, z) = n̄g(z)
[
1 + δg(x, z)

]
, (3)

where n̄g(z) is the mean galaxy number density at redshift z, the
fluctuations δg have zero mean and same-time power spectrum
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δg(k, z)δ∗

g (k′, z)
〉 = (2π)3δD(k − k′)Pg(k, z), where Pg(k, z) =

b2
g(z)Pδ(k, z), bg(z) is the galaxy bias, and Pδ(k,z) the linear matter

power spectrum, which is related to the (dimensionless) primordial
power spectrum of curvature fluctuations, �2

ζ (k) = As(k/k0)ns−1,
through

Pδ(k, z) = 8π2

25

k0As

H 4
0 �2

mg2∞
D2

+(z)T 2
m(k)

(
k

k0

)ns

. (4)

Here, Tm(k) is the matter transfer function (normalized so that Tm →
1 for k → 0), D+(z) is the growth factor of matter density fluctuations
(normalized so that D+ → 1 for z → 0), and g∞ = limz → ∞(1 +
z)D+(z) ≈ 1.27. The usual way of assessing the constraining power
of a spectroscopic galaxy redshift survey is via the Fisher matrix,
defined e.g. in Seo & Eisenstein (2003) as

F
(
ϑα, ϑβ

) =
Nb∑
i=1

1

4π2
V (zi )fsky

×
∫ kmax

kmin

dk k2 ∂Pg(k, zi )

∂ϑα

∂Pg(k, zi )

∂ϑβ

[
Pg(k, zi ) + 1

n̄i

]−2

.

(5)

In this equation: i labels the redshift bin centred in zi; Nb is the num-
ber of redshift bins considered; V(zi) is the cosmological volume in
bin i; fsky is the fraction of sky surveyed; and n̄i is the volumetric
number density of galaxies in the ith bin. In practice, in each redshift
bin we count all the k-modes contained within the volume V(zi)fsky,
with an uncertainty accounting for both cosmic variance and the
effect of discrete Poisson sampling.

The method relies on a number of assumptions, the most impor-
tant being

(i) all quantities are assumed constant within the redshift bin;
(ii) no correlation among redshift bins is considered;
(iii) it is valid only in the flat-sky limit;
(iv) it does not include the effect of lensing.

A number of works in the recent literature have tried to overcome
some of these limitations. For instance, Ruggeri et al. (2017) apply
a set of weights to extract RSD measurements as a function of red-
shift, acknowledging that future surveys covering a broad redshift
range can no longer ignore cosmic evolution. Bailoni, Mancini &
Amendola (2017) improve upon the standard 3D Pg(k, z) Fisher
method by taking into account three effects: the finite window func-
tion, the correlation between redshift bins and the uncertainty on
redshift estimation. Gil-Marı́n et al. (2016) use a line-of-sight de-
pendent power spectrum to deal with the large sky coverage of the
Sloan Digital Sky Survey (SDSS) DR12 catalogue. Similarly, Blake,
Carter & Koda (2018) study power spectrum multipoles in a curved
sky for the 6-degree Field Galaxy Survey (6dFGS), and indicate
how these techniques may be extended to studies of overlapping
galaxy populations via multipole cross-power spectra. However, to
our knowledge none of these methods includes lensing and none
simultaneously addresses all of the three other issues.

Tansella et al. (2018) derive an exact expression for the galaxy
correlation function in redshift shells – including lensing – thus ad-
dressing all four issues listed above. Their approach is an alternative
to ours and is based on the correlation function. However, they do
not give forecasts to compare their method with previous work.

3.2 Tomographic angular power spectrum

Uncertainties in photometric measurements prevent us from map-
ping angles n̂ and redshifts to 3D positions r[χ (z), n̂], which we

would, in turn, translate into k⊥ and k||. Instead, we have to rely
on angular power spectra, where the radial information is averaged
over a redshift bin, taking into account probability density functions
of photometric redshifts. This leads to a tomographic matrix with
entries

C
ij

� = 4π
∫

d ln kWi
�(k)Wj

� (k)�2
ζ (k), (6)

where Wi
�(k) is the transfer function of the ith bin, containing

weights for all the terms included, i.e. Newtonian density fluctu-
ations, RSD, lensing and possibly other relativistic contributions
(see e.g. Camera, Santos & Maartens 2015a). Weak lensing con-
vergence, modulated by the magnification bias, gives the strongest
relativistic correction (Fonseca et al. 2015; Raccanelli et al. 2016).
We thus limit our analysis to this effect only, beyond density fluc-
tuations and RSD.

The angular power spectrum transfer functions of equation (6)
can be rewritten as

Wi
�(k) =

∫
dχ

dNi
g

dχ
W�(k, χ ), (7)

where we remind the reader that (dNi
g/dχ )dχ = (dNi

g/dz)dz. In
longitudinal gauge,

W�(k, χ ) = bg(χ )δk(χ )j�(kχ ) + k

H(χ )
vk(χ )j ′′

� (kχ )

+ 2 [Q(χ ) − 1] �(� + 1)κ(χ ). (8)

The first line is the main contribution, from density perturbations
(δ is the comoving matter density contrast, necessary for a physical
model of bias2) and RSD (v is the peculiar velocity), and the second
line is the lensing contribution, proportional to the weak lensing
convergence

κ(χ ) = 1

2

∫ χ

0
dχ̃

(χ − χ̃)

χχ̃
[�k(χ̃) + �k(χ̃)] j�(kχ̃), (9)

with � and � the two gauge-invariant Bardeen potentials. A symbol
with index k represents the Fourier transform of the corresponding
configuration-space quantity.

For the tomographic case, the Fisher matrix takes the form (sum-
mation over same indexes is assumed)

F
(
ϑα, ϑβ

) =
�max∑

�=�min

2� + 1

2
fsky

∂C
ij

�

∂ϑα

[
C̃

−1

�

]
jm

∂Cmn
�

∂ϑβ

[
C̃

−1

�

]
ni

,

(10)

where C̃
−1

� denotes the inverse of the observed tomographic matrix,
C̃�, whose j-m entry reads

C̃
jm

� = C
jm

� + δjm 1

ñj

, (11)

with ñj is the angular number density of galaxies per steradian in
bin j.

3.3 Hybrid angular power spectrum

In principle, the correct way to analyse spectroscopic galaxy cluster-
ing is via the angular power spectra C

ij

� , including all cross-bin cor-
relations. These power spectra are a physical and gauge-independent

2The correction term from using the comoving δ is omitted since it is
negligible on sub-Hubble scales.
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Figure 1. Estimated redshift distribution of spectroscopically selected H α

galaxies with flux > 3 × 10−16 erg cm−2 s−1 (from Pozzetti et al. 2016).
The top black curve shows the unbinned dNg/dz, as in equation (1). The
shaded grey regions bounded by dashed lines are the 20 equi-populated bins
of a standard tomographic analysis (Section 3.2). The bundles of coloured
curves depict the 14 equi-spaced coarse redshift bins with width �z =
0.1, in turn subdivided into 10 thinner top-hat bins of width δz = 0.01,
finally convolved with a Gaussian (σ z = 0.001), as in Section 3.3. (Note
that all distributions have been rescaled by an arbitrary factor to enhance
readability.)

representation of correlations in galaxy number counts, whilst the
Fourier power spectrum is not an observable in itself, since it is
gauge dependent (e.g. Bonvin & Durrer 2011). In practice, however,
this is computationally unfeasible, especially since many realiza-
tions are required for simulated data. Our new method for computing
angular power spectra for spectroscopically selected galaxies does
not rely on the computation of an extremely large number of auto-
and cross-correlations between redshift bins, but is still capable of
constraining cosmological parameters with an accuracy comparable
to that of a Fourier Pg(k, z) analysis (see Section 4.1).

For the Pg(k, z) approach in Section 3.1 (including RSD and AP
corrections), one usually takes a rather thick redshift bin – with
width ∼�z = 0.1 – and then counts all 3D k modes within the
bin, disregarding correlations among all other redshift bins. This
effectively renders the covariance matrix diagonal in redshift. On
the other hand, if we were to do the same with the 2D tomographic
approach of Section 3.2, we would lose substantial information by
squashing all the galaxies contained within the �z bin on to a single
redshift slice.

This motivates a hybrid approach: divide the redshift distribution
into �z = 0.1 bins as in the Pg(k, z) approach; subdivide each bin
into 10 top-hat bins with width δz = 0.01; and eventually convolve
the thin bins with a Gaussian with spread σ z = 0.001 to account
for the small but non-negligible errors in the spectroscopic redshift
estimation.

The set-up is illustrated in Fig. 1, where

(i) we start from the redshift distribution in equation (1) of galax-
ies expected to be detected by a Stage IV cosmological survey with

H α flux > 3 × 10−16 erg cm−2 s−1 (upper, black curve, as in Model
3 of Pozzetti et al. 2016);

(ii) we first bin galaxies into 14 equi-spaced, coarse redshift bins
(groups of curves with the same colour);

(iii) we subdivide the coarse bins into 10 thinner top-hat bins;
(iv) we finally convolve the thinner bins with the σ z = 0.001

Gaussian (a total of 140 distinct, slightly overlapping curves).

We effectively consider each thick bin as a separate survey, using
the full spectroscopic angular power spectra in each thick bin, by
applying equation (10) with respect to its sub-bins. Then, as in
equation (5), we sum the 14 Fisher matrices thus obtained. This
hybrid approach stems from the more physically motivated angular
power spectra, but resembles what is done with the Pg(k, z) analysis,
since it preserves radial information within the thick redshift bins
by considering all the cross-correlations between the thin sub-bins.

The hybrid method is far less computationally onerous than the
full 3D angular power spectra, which involve application of equa-
tion (10) to a spectroscopic tomographic matrix with bin width 0.01.
For 0.6 ≤ z ≤ 2, this involves a total of 9870 spectra, between auto-
and cross-bin correlations. By contrast, our hybrid method only
requires 770 of them, more than one order of magnitude fewer.

In principle, by considering each thick bin as an independent
survey, we could neglect valuable information encoded in cross-
correlations among distant redshift bins, or between thin bins at the
edges of the thick bins. This is what is usually done in observational
Pg(k, z) analyses, but it is not clear how one can assess the loss of
information in that case (for a possible solution, see e.g. Bailoni
et al. 2017). In our case, we can assess the effects of neglecting
such cross-bin correlations by looking at the correlation coefficient
between bins. If we consider C�(z1, z2), the angular cross-power
spectrum of galaxy number counts between redshifts z1 and z2,
integrated over a thin slice of width δz = 0.01, we can define the
correlation coefficient as

r�(z1, z2) ≡ C�(z1, z2)√
C�(z1, z1)C�(z2, z2)

, (12)

where we make explicit the dependence on the angular scale, �.
Alternatively, we can redefine r�(z̄, �z) for two bins centered in z̄

and separated by �z, with z1 and z2 of equation (12) thus becoming
z̄ − �z/2 and z̄ + �z/2, respectively. We emphasize that here �z

does not refer to the width of the thick bins introduced above, but we
nevertheless employ this slight abuse of notation for a reason that
will become clear when looking at Fig. 2. There, we plot r�(z̄, �z)
as a function of the redshift separation between bins of width δz

= 0.01, centred in redshifts z̄ = 0.8, 1.2, 1.6, and 2.0, for angular
scales � = 5 and 100. It is clear that the correlation coefficient
quickly falls as a function of �z, thus indicating that most of the
information comes from correlations at small radial separation.

The take-home message is as follows. We have assumed that all
correlations carry similar information about the parameters we are
interested in, and treated each thick �z = 0.1 slice as an independent
survey. Fig. 2 shows that this a reasonable assumption. Nevertheless,
we shall come back later to this for further checks (see Section 4.5).

4 R ESULTS AND DI SCUSSI ON

4.1 Constraints on cosmological parameters

First of all, we focus on the constraining power of the hybrid ap-
proach on �CDM cosmological parameters. As explained above,
we limit our analysis to linear scales and set the maximum multipole
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Figure 2. Correlation coefficient r�(z̄, �z) as a function of redshift separation between bins centred in z̄ = 0.8, 1.2, 1.6, and 2.0, for two reference multipoles,
� = 5 and � = 100.

Figure 3. Relative errors on cosmological parameters obtained with our
hybrid binning (blue) compared to standard tomography (yellow).

for C
ij

� to

�max(zi, zj ) = min[χ (zi), χ (zj )]knl. (13)

The maximum angular scale is determined by 4πfsky, i.e.
15, 000 deg2. Thus, �min = 2.

In Fig. 3, we compare the constraining power of our hybrid ap-
proach (blue error bars) to that of a standard tomographic analysis
(yellow error bars). Each cosmological parameter ϑα is rescaled by
its fiducial value ϑα to focus more easily on the relative tightness of
the forecast 1σ constraints. It is clear that the finer binning of our
hybrid method retrieves more information from the spectroscopic
galaxy clustering data even on strictly linear scales, where for in-
stance the largest angular multipole allowed is �max(z140, z140) =
718.

So far, we have focused on the cosmological parameters, disre-
garding any uncertainty on survey specifics such as the galaxy bias.
Now we introduce nuisance parameters by adding one parameter

per redshift bin, thus allowing for a freely-varying bias amplitude
in each bin. We emphasize that this is a conservative approach, as it
does not make use of any prior knowledge on the bias. As a result,
the standard 2D tomographic approach has 20 nuisance parameters,
which are in turn marginalized over (see Section A1). For the hybrid
approach, the situation is slightly different. As each coarse redshift
bin is further subdivided into 10 thinner bins, a total of 140 nuisance
parameters is included. However, each �z = 0.1 thick bin is effec-
tively treated as independent from the others, as in the Pg(k, z) case
of equation (5). Thus, marginalization over nuisance parameters is
performed separately for each Fisher matrix pertaining to a specific
thick bin, and only at the end are all the marginal Fisher matrices
summed up to give the final cosmological parameter Fisher matrix.
For simplicity, we fix the smallest angular scale to a nominal �max

= 800.
Table 1 shows the resulting 1σ relative marginal errors on �CDM

cosmological parameters. We find that our constraints are compa-
rable to those from a standard Pg(k, z) analysis (including AP cor-
rections): this can be seen by comparing the last row of Table 1
with the fourth column of Table 2 in Bailoni et al. (2017), who use
Euclid specifications that are the same as those in Section 2.2, with
the same number of thick bins. The first row of Table 1 shows con-
straints from standard broad-bin tomography. The hybrid approach
is approximately twice as constraining as a standard tomographic
binning, despite the larger number of nuisance parameters.

4.2 Bias on parameter estimation from neglecting lensing

As discussed in Section 3.1, future spectroscopic galaxy surveys
will cover an unprecedented redshift range, so that the effect of
weak lensing convergence on number counts needs to be assessed.
This is straightforward to do with angular power spectra, which
naturally include the weak lensing contribution. This contribution
is computationally intensive, and here we evaluate the consequences
of ignoring it in the interests of speeding up computations.

Following Camera et al. (2017b) and Fonseca et al. (2015), we
introduce a ‘fudge’ factor parametrizing the theoretical systematic
effect represented by neglecting the lensing contribution in galaxy
count angular power spectra. Then equation (8) becomes

W� = bgδk j� + k

Hvk j ′′
� + 2Aκ

(
Q − 1

)
�(� + 1)κ, (14)
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Table 1. Forecast 1σ relative errors on cosmological parameters, after marginalizing over nuisance bias parameters,
for the two approaches.

(�min, �max) = (2, 800)
σ (�b)/�b

(per cent)
σ (�DM)/�DM

(per cent)
σ (ns)/ns

(per cent)
σ (As)/As

(per cent)
σ (H0)/H 0

(per cent)

Standard tomography (Section 3.2) 4.8 3.3 2.5 2.2 3.1
Hybrid tomography (Section 3.3) 2.5 1.7 1.1 0.9 1.6

Table 2. Forecast relative biases on cosmological parameters, after marginalizing over nuisance bias parameters, for
the two approaches.

(�min, �max) = (2, 800) b(�b)/σ (�b) b(�DM)/σ (�DM) b(ns)/σ (ns) b(As)/σ (As) b(H0)/σ (H0)

Standard tomography (Section 3.2) 8.4 11.1 −8.9 0.2 6.0
Hybrid tomography (Section 3.3) 0.11 −0.22 0.08 0.05 −0.10

where the parameter Aκ has fiducial value Aκ = 1 when lensing is
correctly included in the analysis and is 0 when lensing is neglected.
Note that intermediate values of Aκ have a physical meaning if we
wish to account for an uncertainty in the magnification bias term
(Q − 1), which modulates the contribution from lensing conver-
gence.

The Fisher matrix technique for computing bias in parameters
is outlined in the Appendix A2. In the present case, the vector of
shifts δϕa reduces to δAκ ≡ (Aκ − 0) = 1. Table 2 shows the bias
on cosmological parameters in units of standard deviations for a
standard tomographic analysis (first row) and when implementing
our hybrid approach (second row). As expected, standard tomogra-
phy is very sensitive to lensing effects, because its wider redshift
bins acquire a significant contribution from the integrated effect of
lensing. On the other hand, the thinner the bin, the less important
is lensing (see also Villa, Di Dio & Lepori 2018). Thus, our hybrid
approach, with its thin sub-bins, is almost insensitive to it, and we
can therefore safely ignore the lensing contribution in the hybrid
approach. A major advantage is that this allows for a significant
speed-up of computations.

4.3 Information gain

An alternative way to assess the enhancement in constraining power
delivered by the hybrid approach over standard 2D tomography is
a statistical tool called ‘information gain’. When we compare the
parameter posterior distributions from two experiments, p1(ϑ) and
p2(ϑ), the information gain in going from p1 to p2 is D(p2||p1).
Information gain (also known as ‘relative entropy’) was originally
motivated by information theory, but it can be used to compute
the information gained by Bayesian updates in units of bits (see
Appendix A3).

One of the most useful properties of information gain is that it is
invariant under invertible transformations in the random variable ϑ .
In other words, it represents a more agnostic way to compare two
experimental set-ups, because re-parametrizations of the parameter
set ϑ ≡ {ϑα} do not affect the information gain. This frees us from
misleading interpretations of forecast parameter constraints, which
can look tighter or looser depending on the choice of the parameter
basis.

For two alternative ways to analyse spectroscopic galaxy surveys,
the correct way to use information gain is to compare the gain
the two methods (i.e. 2D tomography and our hybrid approach)
have over a common prior information on cosmological parameters

(Grandis et al. 2016). Namely, if p�(ϑ) is the prior of the parameter
set, we compute D(p2D||p�) and D(phyb||p�) separately, and we
then compare the incremental gain.

We adopt Gaussian priors on the cosmological parameter set de-
scribed by a Fisher matrix F�, whose entries are σ−2(ϑ). Following
Raveri et al. (2016), we take σ−2({�bh

2, �DMh2, h,As, ns, τ }) =
{100, 1, 6.25, 0.25, 0.1}. By using equation (A7) for both standard
tomography and our hybrid approach on the same prior p�, we
obtain an increment in information gain of 5.25 bits in favour of the
hybrid method. According to Grandis et al. (2016, and references
therein), this is similar to the increment on WMAP9 represented by
a compilation of BAO data from the 6dFGS, BOSS in SDSS III,
WiggleZ, and SDSS DR7. As a comparison, the increment brought
by Planck data are 10 bits, whereas weak lensing from CFHTLenS
gives 1.7 bits.

4.4 The case of primordial non-Gaussianity

Detection of non-zero values of the primordial non-Gaussianity
parameter fNL is one of the main goals of forthcoming galaxy surveys
(e.g. Amendola et al. 2013, 2018; Alonso et al. 2015; Camera et al.
2015c). It is a difficult measurement, since the strongest signal arises
from scale-dependent galaxy bias on ultra-large scales. This is in
sharp contrast to the standard cosmological parameters, which rely
on the highest possible number of available modes – thus implying
a strong preference towards small scales. Our hybrid approach is
geared towards the standard parameters and we do not expect it to
perform optimally on fNL.

To quantify this, we now include fNL in the set of cosmological
parameters, restricting the remaining parameters to those that are
most degenerate with it, namely the amplitude of primordial fluctu-
ations, As, and the dark matter fraction, �DM. As before, we include
a free amplitude in each redshift bin as a nuisance parameter, then
marginalize over all parameters but fNL.

We find that the forecast marginal errors on the fNL increase by
a factor of ∼2 when moving from standard 2D tomography to our
hybrid approach. On the other hand, the bias on the estimation of
fNL induced by neglecting the lensing term in equation (8) is smaller
with our hybrid method, as summarized in Table 3.

The fact that both biases are >1σ confirms the findings of Cam-
era, Maartens & Santos (2015b) that it is necessary to include lens-
ing – as well as other relativistic large-scale corrections – when
trying to measure ultra-large scale effects such as primordial non-
Gaussianity.
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Table 3. Forecast relative bias on the non-Gaussianity parameter, fNL, after
marginalizing over nuisance bias parameters and �DM and As, for the two
approaches.

(�min, �max) = (2, 800) b(fNL)/σ (fNL)

Standard tomography (Section 3.2) 3.0
Hybrid tomography (Section 3.3) 1.2

4.5 Validity of the working assumptions

To assess how much the neglect of correlations among distant thin
bins impacts our results, we focus first on the thick bins. For each
thick bin, we compute 10 Fisher matrices, starting from the full
angular power spectrum tomographic matrix used so far, C�, and
then removing off-diagonal elements C

ij

� as follows: the second
Fisher matrix is computed from all C

ij

� ’s except for the two entries
at the extrema of the anti-diagonal, which are set to zero; and so
on until we compute the 10th Fisher matrix, where C

ij

� is non-zero
only for i = j.

The inset in Fig. 4 illustrates this procedure, with shading going
from black (only diagonal elements considered) to the lightest of
grey (all the cross-correlations between thin bins considered). The
larger figure shows the structure of the full tomographic matrix of
our hybrid method for this test of the importance of off-diagonal
correlations. In this case, white means no correlation included.

Now, we consider two extrema: the first and the last of the thick
bins. Referring to the inset of Fig. 4, for both of these thick bins,
we start from the full angular power spectrum tomographic matrix
and at each step we remove one off-diagonal, from the lightest grey
until we remain only with the black, main diagonal. In Fig. 5, we
illustrate the result of this test, by plotting the absolute bias on cos-
mological parameters induced by neglecting lensing magnification
(normalized to the reference values of Table 2), as a function of
how many cross-correlations between thin bins we include. Apart
from the first point(s), for which the bias may be lower, but just
because the Fisher matrices are very noisy, it appears clear that the
behaviour is very flat. As expected, the trend is flatter at low redshift
in the first thick bin.

Fig. 6 shows the bias on cosmological parameters due to neglect-
ing lensing, as a function of how many off-diagonal spectra are
considered in the full angular power spectrum, i.e. the larger matrix
in Fig. 4. On the horizontal axis, 1 means black elements in the
larger matrix, all the way to 10, representing the inclusion of all el-
ements up to the lightest grey shade. Each point is normalized to its
previous value, e.g. the seventh blue bullet point tells us that the bias
on �b will increase by ∼20 per cent if we include up to the seventh
off-diagonal, with respect to what we would guess by considering
only up to the sixth. We notice a net trend: the bias on cosmologi-
cal parameter best-fit values induced by neglecting lensing may be
significant if we considered only the main diagonal or the first few
off-diagonals, but then it does not change any longer. This means
that in our hybrid method the information encoded in the lensing
term ∝ (Q − 1)κ flattens out more rapidly. This is mainly due to
the thin slicing adopted for the sub-bins, in which lensing does not
contribute substantially, as also noted by Villa et al. (2018).

Finally, we perform a last test. After having checked that cross-
correlations at separations larger that our chosen �z = 0.1 fall out
rapidly (see Fig. 2) and that the bias on cosmological parameters
due to neglecting lensing stabilizes well before all the distant–bin
correlations have been included (this section), we now investigate
what happens to those thin redshift bins at the edges of the thick bins
– where the blocks along the diagonal meet, in Fig. 4. Those thin

bins are nominally separated by less than �z but are not included in
the analysis because they pertain to different thick bins, which are
considered as separate surveys. To address this issue, we proceed
as follows:

(i) We recompute the Fisher matrix for the hybrid approach start-
ing from the full tomographic matrix as in Fig. 4, rather than sum-
ming up all the Fisher matrices for each thick bin;

(ii) We then add cross-correlations at the edges of the thick bins,
basically as if we were overlapping more blocks on the main diag-
onal.

The first computation (i), by definition, has to give the same results
as have been presented so far. Nonetheless, this is an important
test for our code to pass, given the possible numerical instabilities
in the inversion of a noisy 140 × 140 matrix. Then, we illustrate
the second computation (ii) in Fig. 7, where we show the observed
angular power spectrum of equation (11) – that is to say, signal
plus noise – at � = 2 for the first five thick bins, for the sake of
clarity. As expected, some small non-zero correlation is present,
although we emphasize that this is the very largest angular scale
probed, and from Fig. 2 we know that these correlations not only
disappear rapidly as the separation in redshift increases, but also at
larger multipoles.

Once we have constructed this upgraded tomographic matrix for
the observed signal, we insert it into equation (10) and compute
a new Fisher matrix, which now includes additional noise due to
the off-diagonal correlations between thin bins at the edges of the
thick bins. We find that forecast marginal errors change by less
than ∼2 per cent for all cosmological parameters. Let us emphasize
that, by not including nuisance parameters, in the present case the
sensitivity to cosmological parameters is the highest. Therefore, in a
more realistic case, the contribution due to those correlations will be
even more suppressed. This last check further confirms the validity
of our assumption of using the thick bins as separate surveys.

5 C O N C L U S I O N S

In this paper, we have presented a novel approach to optimize the
use of angular power spectra with spectroscopic galaxy survey data.
Our work is part of a community-wide effort aiming at crafting the
best tools to exploit the oncoming wealth of cosmological data from
large-scale structure experiments, such as the SKA, the European
Space Agency’s Euclid satellite, or the Large Synoptic Survey Tele-
scope. We emphasize that the approach outlined here is meant to be
complementary to others (see e.g. Asorey et al. 2012; Bailoni et al.
2017; Tansella et al. 2018).

Our work is motivated by two facts. On the one hand, future
galaxy surveys will reach unprecedented depths and sky coverages,
even with spectroscopy. On the other hand, the techniques usu-
ally employed to estimate the 3D galaxy power spectrum through
spectroscopic measurements rely on a number of assumptions (see
list in Section 3.1) that will hold no longer if we analyse such
new catalogues as a whole. A more correct approach is that of
2D tomography, which, however, either does not fully exploit the
exquisite radial resolution of spectroscopic redshifts, or becomes
computationally untreatable.

Thus, the method we have introduced here for the first time draws
inspiration from the standard 3D Pg(k, z) approach, but implements
it within the consistent, gauge-independent formalism of the 2D
tomographic matrix C�. For this reason, we refer to it as ‘hybrid’.
Note that our method intentionally neglects lensing, in order to
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Figure 4. General structure of the full angular power spectrum tomographic
matrix, C�, in our hybrid approach. Block diagonal matrices represent the
thick bins, which we consider as independent. The inset illustrates the struc-
ture of one of those thick bins, with the thin bins shown. Shades of grey
refer to the tests described in Section 4.5.

resemble more closely the standard method in observations. Our
main results can be summarized as follows:

(i) As presented in Section 4.1, forecasts show that hybrid con-
straints on cosmological parameters are comparable to those from
a Pg(k, z) analysis, and more than twice as tight as those obtained
via standard tomography, despite the larger number of nuisance
parameters included. This trend is even more pronounced when
limiting the analysis to strictly linear scales. We have also shown
this by means of the increment of information gain, which roughly

Figure 6. The same as in Fig. 5 but for the full angular power spectrum
tomographic matrix of the hybrid method, namely the larger matrix in Fig. 4.
Here, each point is normalized to the previous one.

corresponds to that achieved by BAO measurements over WMAP9
data.

(ii) Our hybrid approach is more robust than 2D tomography
with respect to the neglect of corrections to galaxy number count
fluctuations beyond density and RSD. In Section 4.2, we have shown
that if we do not include lensing magnification (the most important
remaining contribution), best fits on cosmological parameters stay
within a few tens of per cent of a standard deviation from the true
values, whereas with a standard tomographic approach they get
biased by more than 1σ .

Figure 5. Absolute bias on cosmological parameters induced by neglecting lensing magnification, as function a of off-diagonal elements included, for an
analysis carried out either in the first or in the last of the thick redshift bins only, normalized to what is obtained by including all cross-correlations between
thin bins in the given thick bin.
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Figure 7. Observed tomographic angular power spectrum, C̃�, at � = 2 for
the first five thick redshift bins.

Summarizing, our method is able to match the Pg(k, z) constraints
on �CDM cosmological parameters, whilst easily incorporating
cosmic evolution, wide-angle effects and lensing effects. It does
not require AP corrections, since the angular power spectrum is an
observable and does not need one to assume a fiducial cosmology.
It improves significantly on broad-bin 2D tomography. And it is not
biased by neglecting lensing effects, i.e. even when implementing
only the two main contributions to galaxy number count fluctua-
tions, namely density perturbations and RSD. This last fact leads
to a further, major advantage compared to broad-bin tomography:
it allows for faster code implementations, since the inclusion of
integrated lensing terms significantly slows computation of angular
power spectra. In a forthcoming work, we plan to estimate how the
thickness of the redshift slicing affects the robustness of our method,
namely what is the border between when it is safe to neglect lensing
and when one has to include it.
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APPENDI X: FI SHER MATRI X FORMALIS M
A N D TO O L S

We start from the assumption that a given observable, for which we
have a prediction based on some theoretical model, corresponds to
a function of a set of parameters ϑ . In the Fisher information matrix
formalism, the observed outcome is the mean value of the observ-
able assumed as the null hypothesis. Thanks to this, we can estimate
errors on the parameters, given errors in observable quantities.

In the frequentist approach, the Fisher matrix F is defined as
the expectation value of the Hessian of the log-likelihood function
L = − ln L, i.e.

F
(
ϑα, ϑβ

) =
〈

∂2L
∂ϑα∂ϑβ

〉
, (A1)

whilst in the Bayesian approach the data is no longer represented by
random variables, and no averaging takes place. Hence, the Fisher
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Table A1. Maximum discrepancy between the inverse of the Fisher matrix,F−1, and its Moore–Penrose pseudo-inverse,
F−1

MP, or its inverse via eigen-decomposition, F−1
ED.

max
{∣∣∣F−1

MP/F−1 − 1
∣∣∣} max

{∣∣∣F−1
ED/F−1 − 1

∣∣∣}
2D without Aκ 1.3 × 10−10 4.6 × 10−7

2D with Aκ 8.9 × 10−10 1.4 × 10−6

hybrid without Aκ 5.0 × 10−10 1.5 × 10−4

hybrid with Aκ 4.3 × 10−11 5.7 × 10−6

matrix is simply evaluated at the parameter maximum-likelihood
best fit, namely

F
(
ϑα, ϑβ

) = ∂2L
∂ϑα∂ϑβ

∣∣∣∣∣
ϑ=ϑ

. (A2)

The two definitions coincide if the data are Gaussian and the pa-
rameters enter the mean and the variance in a linear way, or in the
case of forecasting (Sellentin, Quartin & Amendola 2014).

The Cramer–Rao inequality states that a model parameter ϑα

cannot have a variance smaller than δ(ϑα) = 1/
√
F(ϑα, ϑα), when

all other parameters are fixed (these are called ‘conditional errors’),
or be measured to a precision better than σ (ϑα) = [F−1(ϑα, ϑα)]1/2,
when all other parameters are marginalized over (‘marginal errors’).
Here, F−1 denotes the inverse of the Fisher matrix.

A1 Stability tests on Fisher matrices

To assess the validity of our results, we proceed as follows. We
note that, particularly in the presence of nuisance parameters, the
dimensionality of the Fisher matrices is high and their eigenvalues
span a wide dynamic range. This may lead to numerical instabilities
in the inversion of the Fisher matrix, and thus to spurious constraints
on the cosmological parameters of interest. Therefore, to reduce the
dynamic range, we first change the Fisher matrix basis via

F
(
ϑα′ , ϑβ ′

) = JT
α′αF

(
ϑα, ϑβ

)
Jβ ′β, (A3)

where Jα′α is the Jacobian of the transformation from ϑα to ϑ ′
α . As

a new basis we choose ϑ ′
α = {

ln �b, ln �DM, ln ns,As, ln h
}

, thus
reducing the spread between the maximum and minimum eigenval-
ues by a factor of 4.3 × 104.

We marginalize over the bias nuisance parameters, 20 for the
standard binning approach and 10 × 14 for our new hybrid approach.
The marginalization involves a first inversion of the Fisher matrix,
whose rows and columns referring to the bias nuisance parameters
are then dropped. At this point, the inverse of the Fisher matrix (i.e.
the parameter covariance matrix) only contains entries relative to
the cosmological parameters. Then we can invert it and obtain the
marginalized Fisher matrix in the new basis. Lastly, we perform the
inverse change of variable of equation (A3), thus obtaining the final,
marginalized Fisher matrix for the initial cosmological parameter
set.

Despite the reduction of the dynamic range, matrix inversions
may still propagate numerical instabilities into the resulting Fisher
matrix. Therefore, we check the stability of our inverse matrices
F−1 (computed via one-step row reduction) by comparing them to
the Moore–Penrose pseudo-inverse and to the inverse obtained via
eigen decomposition. This last approach helps in removing degen-
eracies from the Fisher matrix. Indeed, when marginalizing over
the set of nuisance parameters, if one or more eigenvalues (nearly)
vanish, then this degeneracy does not propagate into the cosmo-
logical parameters of interest (Albrecht et al. 2006; Camera et al.

2012). For a well-defined square matrix, the three matrix inversions
must coincide. If we denote the Moore–Penrose pseudo-inverse of
F by F−1

MP and the eigen-decomposed inverse by F−1
ED, we can quan-

tify the reliability of the marginal Fisher inversion by computing∣∣F−1
X /F−1 − 1

∣∣, with X = MP, ED. Table A1 shows the maximum
values of

∣∣F−1
X /F−1 − 1

∣∣ for the marginal Fisher matrices employed
in this work. It is easy to see that the discrepancy between the various
methods of matrix inversion is at the very most O(0.01 per cent).
We conclude that our marginal Fisher matrices are robust under
inversion, and so are our cosmological parameter constraints.

A2 Estimating the bias on cosmological parameters

Given a set of cosmological, nuisance, and systematic-effect pa-
rameters, we can estimate the amount of biasing we will incur if we
neglect some systematic effect within the Fisher information matrix
framework. If

F =
[
F
(
ϑα, ϑβ

)
F (ϑα, ϕb)

F
(
ϕa, ϑβ

)
F (ϕa, ϕb)

]
(A4)

is the full Fisher matrix, marginalized over nuisance parameters, that
includes both cosmological parameters, ϑ , and systematic-effect
parameters, ϕ, we can compute the bias as (Heavens, Kitching &
Verde 2007; see also Camera et al. 2017b, the Appendix)

b(ϑα) = F−1
(
ϑα, ϑβ

)
F
(
ϑβ, ϕa

)
δϕa, (A5)

where F−1(ϑα, ϑβ ) �= [F(ϑα, ϑβ )]−1 means that one has first to
invert F and then consider only the rows and columns of the full
Fisher matrix relative to the cosmological parameters ϑ , whilst
F(ϑβ, ϕa) ≡ F(ϑβ, ϕa). Here, δϕa are the shifts from the true values
of ϕa to the values incorrectly assumed in the analysis.

A3 Information gain

As a figure of merit to compare the new method we outlined in
Section 3.3, we introduce here the concept of the Kullback–Leibler
divergence, also known as ‘relative entropy’ or ‘information gain’
(Kullback & Leibler 1951). This is a tool for multivariate pos-
terior distributions to compare the constraining power from dif-
ferent data sets or survey implementations. If X is a continuous,
d-dimensional random variable with probability density functions
p1(X) and p2(X), the information gain is

D(p2||p1) = 1

2 ln 2

∫
ddX p2(X) ln

p2(X)

p1(X)
bits . (A6)

It represents the information gain (in bits) obtained by updating the
distribution describing X from p1 to p2. Although it is not symmetric
in p2 and p1, D(p2||p1) is often interpreted as a distance between
the two distributions. Indeed, it has remarkable properties, such as
being non-negative, D(p2||p1) ≥ 0, and zero if and only if p2 = p1.

In the case of multivariate normal (Gaussian) posterior distribu-
tions N(ϑ) for the cosmological parameters, the information gain
from a prior knowledge N1 to the posterior obtained from a new
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experiment N2 is

D(N2||N1) = 1

2 ln 2

{
ln

det �1

det �2
+ tr

[
�−1

1 (�2 − �1)
]}

bits ,

(A7)

where �i denotes the covariance matrix of the multivariate Gaussian
Ni(ϑ). Note that we consider the prior and posterior distributions
as having the same mean. Even though this is not usually the case

with real data, it is a standard ansatz in forecasts. N2 can either
be interpreted as the posterior of the data from a completely new
experiment/analysis with respect to a previous experiment/analysis
N1, or an updated posterior over a prior represented by N1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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