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Departamento de Matemáticas, Universidad de Murcia,

Campus de Espinardo, 30100 Espinardo, Murcia, Spain,

e-mail : scarolinagarciam@gmail.com, hectorfabian.ramirez@um.es

(Received month revised month )

Abstract

In this paper, we give lower bounds for the fundamental tone of open sets in minimal

submanifolds immersed into warped product spaces of type Nn×fQq, where f ∈ C∞(N).

This setting allows to deal, among others, with minimal submanifolds of pieces of cylin-

ders, cones, spheres and pseudo-hyperbolic spaces, most of these examples being not

covered by the previous literature. Applications also include the study of the essential

spectrum of hyperbolic graphs over compact regions of the boundary at infinity.

1. Introduction

Let M be a connected Riemannian manifold, possibly incomplete, and let ∆ = div ◦∇
be the Laplace-Beltrami operator acting on C∞c (M), the space of smooth functions with

compact support. To study the spectrum of ∆, we shall fix a self-adjoint extension:

hereafter, will always consider the Friedrichs extension of ∆, that is, the unique extension

of (∆, C∞c (M)) whose domain lies in that of the closure of the associated quadratic form

Q : ϕ ∈ C∞c (M) 7−→
∫
M

|∇ϕ|2.

We remark that, when M is geodesically complete, by a result in [17, 19, 30] ∆ is

essentially self-adjoint, that is, the Friedrichs extension is indeed the unique self-adjoint

extension of (∆, C∞c (M)). Denote with σ(−∆) and σess(−∆), respectively, the spectrum

and the essential spectrum of −∆. Given an open subset Ω ⊂M , the fundamental tone

of Ω, λ∗(Ω), is defined by

λ∗(Ω) = inf σ(−∆) = inf

{
∫Ω |∇f |2

∫Ω f2
; f ∈ H1

0 (Ω)\{0}
}
.

When Ω has compact closure and Lipschitz boundary, λ∗(Ω) coincides with the first

eigenvalue λ1(Ω) of Ω, with Dirichlet boundary data on ∂Ω. Its associated eigenspace is

1-dimensional and spanned by any nontrivial solution u of{
∆u+ λ1(Ω)u = 0 on Ω,

u = 0 on ∂Ω.
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The relations between the fundamental tone of open sets of M and their geometric

invariants has been the subject to an intensive research in the past 50 years. Among a

huge literature, we limit ourselves to quote the classics [5, 6, 15] and references therein for

a detailed picture. In particular, a great effort has been done to estimate the fundamental

tone of minimal submanifolds of well-behaved ambient spaces (for instance, in [8, 9, 14,

16, 18]). In this paper, we move a step further by giving lower bounds for the fundamental

tone of manifolds which are minimally immersed in ambient spaces Nn ×f Qq carrying

a warped product structure. As we shall see in the last section, the generality of our

setting allows applications to submanifolds in pieces of cylinders, cones, tubes, spheres,

also improving certain recent results in the literature ([7, 8, 9]). We remark that there

have been an increasing interest in the study of minimal and constant mean curvature

submanifolds in product spaces N × R, after the discovery of many beautiful examples

such as those in [24, 25], and this motivates a thorough investigation of the spectrum of

such submanifolds.

To introduce our main result, Theorem 8 below, we shall need some preliminary mate-

rial, and we therefore prefer to postpone the statement of Theorem 8 after some defini-

tions and a brief overview of basic results. Section 2 also contains a key technical lemma,

Lemma 3 below. The statement and proof of Theorem 8 will appear in Section 3, and

the final Section 4 is devoted to applications.

2. Preliminaries

Isometric immersions

Let M and W be smooth Riemannian manifolds of dimension m and n+ q respectively

and ϕ : M ↪→ W be an isometric immersion. Consider a smooth function F : W → R
and the composition F ◦ ϕ : M → R. Identifying X with dϕ(X), the Hessian of F ◦ ϕ at

x ∈M is given by

HessM (F ◦ ϕ)(x) (X,Y ) = HessWF (ϕ(x)) (X,Y ) + 〈∇F, σ(X,Y )〉ϕ(x), (2·1)

where σ(X,Y ) is the second fundamental form of ϕ. Tracing (2·1) with respect to an

orthonormal basis {e1, . . . em},

∆M (F ◦ ϕ)(x) =

m∑
i=1

{
HessWF (ϕ(x)) (ei, ei) + 〈∇F,

m∑
i=1

σ(ei, ei)〉

}

=

m∑
i=1

HessWF (ϕ(x)) (ei, ei) +m〈∇F,H〉, (2·2)

where H = m−1tr(σ) is the normalized mean curvature vector. Formulae (2·1) and (2·2)

are well known in the literature, see [22].

Models and Hessian comparisons

Hereafter, we denote with R+
0 = [0,+∞). Let g ∈ C2(R+

0 ) be positive in (0, R0), for some

0 < R0 ≤ ∞, and satisfying

g(0) = 0, g′(0) = 1.

The κ-dimensional model manifold Qκg constructed from the function g is just the ball

BR(o) ⊆ Rκ with metric given, in polar geodesic coordinates centered at o, by

ds2
g = dr2 + g(r)2 〈 , 〉Sκ−1 ,
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where 〈 , 〉Sκ−1 is the standard metric on the unit (κ − 1)-sphere. The radial sectional

curvature and the Hessian of the distance function r on Qκg are given by the expressions

Krad = −g
′′(r)

g(r)
, Hess r =

g′(r)

g(r)

(
ds2 − dr ⊗ dr

)
.

From the first relation, we see that a model can, equivalently, be specified by prescribing

its radial sectional curvature G ∈ C∞(R+
0 ) and recovering g as the solution of{

g′′ −Gg = 0,

g(0) = 0, g′(0) = 1,
(2·3)

on the maximal interval (0, R0) where g > 0. For future use, we will denote with G− the

negative part of G, i.e. G− = max{0,−G}.

For the proof of our main results we will make use of the following version of the

Hessian Comparison Theorem, see [21] and [27, Chapter 2].

Theorem 1. Let Qq be a complete Riemannian q-manifold. Fix a point o ∈ Q, denote

by ρ
Q

(x) the Riemannian distance function from o and let Do = Q\cut(o) be the domain

of the normal geodesic coordinates centered at o. Given G ∈ C∞(R+
0 ), let g be the solution

of the Cauchy problem (2·3), and let (0, R0) ⊆ [0,+∞) be the maximal interval where g

is positive. If the radial sectional curvature of Q satisfies

Krad
Q ≤ −G(ρ

Q
) (respectively, Krad

Q ≥ −G(ρ
Q

)), (2·4)

on B(o,R0), then

Hess
Q
ρ
Q
≥
g′(ρ

Q
)

g(ρ
Q

)

(
〈 , 〉Q− dρQ ⊗ dρQ

)
(respectively, ≤)

on Do ∩B(o,R0)\{o}, in the sense of quadratic forms.

Eigenvalues and Eigenfunctions

The generalized version of Barta’s Eigenvalue Theorem [4], proved in [9] will be important

in the sequel.

Theorem 2. Let Ω be an open set in a Riemannian manifold M and let f ∈ C2(Ω),

f > 0 on Ω. Then

λ∗(Ω) ≥ inf
Ω

(
−∆f

f

)
. (2·5)

We recall that, given a model Qκg with g > 0 on (0, R0), and given R ∈ (0, R0), the

first eigenfunction v of the geodesic ball Bg(R) centered at o is radial. This can be easily

seen by proving that its spherical mean

v̄(r) =
1

g(r)κ−1

∫
∂Bg(R)

v

is still an eigenfunction associated to λ1(Bg(R)) and using the fact that the space of first

eigenfunctions has dimension 1. With a slight abuse of notation, we can thus identify the

first eigenfunction v ∈ C∞(Bg(R)) of Bg(R) with the solution v : [0, R]→ R ofv′′ + (κ− 1)
g′

g
v′ + λ1(Bg(R))v = 0 on (0, R),

v(0) = 1, v′(0) = 0, v(R) = 0, v > 0 on [0, R).

(2·6)
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Note that, multiplying the ODE by gκ−1, integrating and using the initial condition, one

can easily argue that v′ < 0 on (0, R].

We will need the following technical lemma, which extends a result due to Bessa-Costa,

see [7, Lemma 2.4].

Lemma 3. Let Qκg be a model manifold with radial sectional curvature −G(r), and

suppose that g′ > 0 on [0, R). Let v ∈ C2(Bg(R)) be a first positive eigenfunction of

Bg(R) ⊂ Qκg . If

λ1(Bg(R)) ≥ κ‖G−‖L∞([0,R]). (2·7)

Then the following inequality holds:

κ
g′(t)

g(t)
v′(t) + λ1(Bg(R))v(t) ≤ 0, t ∈ (0, R]. (2·8)

Proof. For simplicity of notation, we denote by λ = λ1(Bg(R)). Multiplying (2·6) by

gκ−1 we deduce that v(t) satisfies the following differential equation:{
(gκ−1v′)′ + λgκ−1v = 0 on (0, R),

v(0) = 1, v′(0) = 0, v(R) = 0, v > 0 on [0, R).
(2·9)

Our aim is to deduce (2·8) via some modified Sturm-type arguments. In order to do so,

we search for a positive function µ solving

κµ′(t)
g′(t)

g(t)
+ λµ(t) = 0 on (0, R). (2·10)

Integrating, we get that logµ(t) = −λ
κ

∫ t

0

g(s)

g′(s)
ds is a solution, giving

µ(t) = e

−λ
κ

∫ t

0

g(s)

g′(s)
ds


.

The above expression is well defined since g′ > 0 on [0, R). Since µ′(t) = −λ
κ

g(t)

g′(t)
µ(t)

we deduce

µ′(t)v(t)− v′(t)µ(t)= −λ
κ

g(t)

g′(t)
e

−λ
κ

∫ t

0

g(s)

g′(s)
ds


v(t)−v′(t)e

−λ
κ

∫ t

0

g(s)

g′(s)
ds



=− 1

κ

g(t)

g′(t)
e

−λ
κ

∫ t

0

g(s)

g′(s)
ds

(
κ
g′(t)

g(t)
v′(t) + λv(t)

)
. (2·11)

From (2·11) we see that κ
g′(t)

g(t)
v′(t) + λv(t) ≤ 0 on (0, R) if and only if

µ′(t)v(t)− v′(t)µ(t) ≥ 0 on (0, R),

and we are going to prove this last inequality.
Differentiating (2·10) and multiplying by (1/κ) both sides of the equality, we have

µ′′(t)
g′(t)

g(t)
+ µ′(t)

[
G(t)−

(
g′(t)

g(t)

)2

+
λ

κ

]
= 0,
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that is,

µ′′(t) = −µ′(t) g(t)

g′(t)

[
G(t)−

(
g′(t)

g(t)

)2

+
λ

κ

]
.

Since µ′(t)
g(t)

g′(t)
= −λ

κ
µ(t)

(
g(t)

g′(t)

)2

we can rewrite µ′′(t) in the following way:

µ′′(t) =
λ

κ
µ(t)

[
G(t)

(
g(t)

g′(t)

)2

− 1 +
λ

κ

(
g(t)

g′(t)

)2
]
.

Multiplying the above equation by gκ−1(t), and then adding and subtracting the term

(κ− 1)gκ−2(t)g′(t)µ′(t), we obtain

(gκ−1µ′)′(t) = −λgκ−1(t)µ(t)

[
−G(t)

κ

(
g(t)

g′(t)

)2

− λ

κ2

(
g(t)

g′(t)

)2

+ 1

]
. (2·12)

Next, we multiply (2·12) by v(t) and (2·9) by −µ(t), and we add them to get

(gκ−1µ′)′(t)v(t)− (gκ−1v′)′(t)µ(t) =
λ

κ
gκ−1(t)µ(t)v(t)

(
g(t)

g′(t)

)2 [
G(t) +

λ

κ

]
.

Integrating from 0 to t gives

gκ−1 (µ′v − v′µ) (t) =

∫ t

0

λ

κ
gκ−1(s)

(
g(s)

g′(s)

)2 [
G(s) +

λ

κ

]
µ(s)v(s)ds. (2·13)

Now, from (2·7) we deduce that

λ

κ
gκ−1(t)

(
g(t)

g′(t)

)2 [
G(t) +

λ

κ

]
µ(t)v(t) ≥ 0,

whence µ′(t)v(t)− v′(t)µ(t) ≥ 0 for t ∈ (0, R), as claimed.

Remark 4. It is important to find conditions to ensure the lower bound (2·7). For

instance, if −G(r) = B2, where B is a positive constant, then the solution g
B

of (2·3) is

g
B

(r) = B−1 sin(Br), thus g′
B
> 0 on [0, π/(2B)). (2·14)

The function g
B

yields the model manifold Qκg
B

= Sκ(B2), the κ-dimensional sphere

of constant sectional curvature B2 and diameter diamSκ(B2) = π/B. Note that the first

eigenvalue of the geodesic ball of Sκ(B2) of radiusR = π/2B is λ1(BSκ(B2)(π/2B)) = κB2

and v(r) = cos(Br) is its first eigenfunction.
When −G(r) ≤ B2 and R ≤ π/(2B), by Sturm’s argument a solution g of (2·3)

satisfies
g′

g
≥
g′
B

g
B

> 0 on
[
0,

π

2B

)
.

By Cheng’s Comparison Theorem (version proved by Bessa-Montenegro in [10]),

λ1(Bg(R)) ≥ λ1(Bg
B

(R)), R ∈
[
0,

π

2B

)
.

In order to get λ1(Bg(R)) ≥ κ‖G−‖L∞([0,R)) it is sufficient to have

λ1(Bg
B

(R)) = λ1(BSκ(B2)(R)) ≥ κ‖G−‖L∞([0,R)). (2·15)
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On the other hand, we can see κ‖G−‖L∞([0,R)) as a first eigenvalue of a ball of radius R̃

in a κ-dimensional sphere of sectional curvature B̃2, i.e.

κ‖G−‖L∞([0,R)) = λ1(BSκ(B̃2)(R̃)),

where R̃ =
π

2
√
‖G−‖L∞([0,R))

and B̃2 = ‖G−‖L∞([0,R)).

We then conclude that the inequality (2·15) holds whenever

R ≤ π

2
√
‖G−‖L∞([0,R))

·

Remark 5. We remark that if

t

∫ ∞
t

G−(s)ds ≤ 1

4
for every t ∈ R+,

then both g and g′ are strictly positive on R+. This criterion has been proved in [13,

Prop. 1.21].

A preliminary computation.

From now on, we will consider the case when the ambient space is a warped product

Wn+q = N ×f Q of two Riemannian manifolds (Nn, 〈, 〉N ) and (Qq, 〈, 〉Q), with the

Riemannian metric on W given by

〈〈 , 〉〉 = 〈 , 〉N + f2〈 , 〉Q

for some smooth positive function f : N → R+. We fix the index convention

1 ≤ j, k ≤ n, n+ 1 ≤ α, β ≤ n+ q.

For (p, q) ∈ W , we choose a chart (U,ψ) on N around p, with coordinate tangent basis
{∂j} = {∂/∂ψj}, and a chart (V, φ) on Q around q, with basis {∂α} = {∂/∂φα}. Then,
with respect to the product chart (U ×V, ψ×φ) around (p, q), the Hessian of F at (p, q)
has components

HessWF (∂j , ∂κ) = HessNF (∂j , ∂κ),

HessWF (∂j , ∂α) = ∂j∂αF −
1

f
∂jf∂αF,

HessWF (∂α, ∂β) = HessQF (∂α, ∂β) +
1

f

〈
∇Nf,∇F

〉
N
〈〈∂α, ∂β〉〉 ,

(2·16)

where HessNF and HessQF mean respectively Hess (F ◦ iN ) and Hess (F ◦ iQ) and the

inclusions are given by

iN : (N, 〈, 〉N )→ N ×f {q} ⊆ N ×f Q, x 7→ (x, q),

iQ : (Q, 〈, 〉Q)→ {p} ×f Q ⊆ N ×f Q, y 7→ (p, y).

From (2·16) we observe that if F (p, q) = f(p) ·h(q), where f is the warping function and

h : Q→ R is a smooth function on Q, then HessWF has a block structure, that is

HessWF (X,Z) = 0 ∀X ∈ T(p,q)

(
N ×f {q}

)
, Z ∈ T(p,q)

(
{p} ×f Q

)
.

More precisely, we have the following result.

Lemma 6. Let F ∈ C∞(N ×f Q) be given by F (p, q) = f(p) · h(q), where h ∈ C∞(Q).
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Then 
HessWF (X,Y ) = hHessNf(X,Y ),

HessWF (X,Z) = 0,

HessWF (Z,W ) = fHessQh(Z,W ) + h

∣∣∇Nf ∣∣2
N

f
〈〈Z,W 〉〉 ,

(2·17)

for every X,Y ∈ T(p,q)

(
N ×f {q}

)
and Z,W ∈ T(p,q)

(
{p} ×f Q

)
.

3. Main results

Let ϕ : Mm → Nn×f Qq, m > n, be a minimal immersion. Hereafter, we shall require

the following

Assumption 7. Suppose that the radial sectional curvature of Q satisfies

Krad
Q ≤ −G(ρ

Q
), where G ∈ C∞(R+

0 ),

where ρ
Q

(x) = distQ(o, x). We assume that the solution g of (2·3) is positive and g′ > 0

on [0, R), and that BQ(o,R) ⊆ Q\cut(o).

Let v : Bg(R) → R be the first eigenfunction of the ball Bg(R) ⊂ Qm−ng . As remarked,

up to normalizing and possibly changing sign v > 0 on Bg(R), v is radial and solvesv′′(t) + (m− n− 1)
g′(t)

g(t)
v′(t) + λ1(Bg(R))v(t) = 0, t ∈ (0, R)

v(0) = 1, v(R) = 0, v > 0 on [0, R), v′ < 0 on (0, R].

(3·1)

Observe that, when m = n+ 1, the equation simply becomes

v′′(t) + λ1(Bg(R))v(t) = 0.

Theorem 8. Let ϕ :Mm → Nn ×f Qq be an m-dimensional submanifold minimally

immersed into the warped product space (Nn ×f Qq, 〈〈 , 〉〉), where

〈〈 , 〉〉 = 〈 , 〉N + f2〈 , 〉Q,

0 < f ∈ C∞(N), Q satisfies Assumption 7 and m > n. Suppose that the warping function

f satisfies

HessNf(·, ·)−
∣∣∇Nf ∣∣2

N

f
〈, 〉N ≤ 0. (3·2)

Let U ⊆ N be an open subset, and let Ω ⊂ ϕ−1(U×fBQ(o,R)) be a connected component.

Then, if R is such that

R ≤ π

2
√
‖G−‖L∞([0,R))

(3·3)

the following estimate holds:

λ∗(Ω)≥ inf
p∈U

(
λ1(Bg(R))−m |∇Nf |2N (p)

|f(p)|2

)
, (3·4)

where Bg(R) is the geodesic ball of radius R in the model manifold Qm−ng or the interval

[−R,R] if m = n+ 1.
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Proof. We start defining F : U ×f BQ(o,R) → R by F (p, q) = f(p) · h(q), where

h ∈ C∞(BQ(o,R)) is given by h(q) = (v ◦ ρ
Q

)(q) and v ∈ C∞([0, R]) is the solution of

(3·1). By Theorem 2, we have that

λ∗(Ω) ≥ inf
Ω

(
−∆(F ◦ ϕ)

F ◦ ϕ

)
. (3·5)

We are going to give a lower bound for −∆(F ◦ϕ)/(F ◦ϕ). Let x ∈ Ω and let {e1, . . . , em}
be an orthonormal basis for TxΩ. Let ϕ(x) = (p(x), q(x)), t(x) = ρ

Q
(q(x)) and denote

by P
N

: T
(p,q)

(
N ×f Q

)
→ T

(p,q)

(
N ×f {q}

)
and P

Q
: T

(p,q)

(
N ×f Q

)
→ T

(p,q)

(
{p}×f Q

)
the orthogonal projections onto the tangent spaces of the two fibers. Then, by (2·2) and
the minimality of M , the Laplacian of F ◦ ϕ at x has the expression

∆ (F ◦ ϕ)(x) =

m∑
i=1

HessWF (ϕ(x))(ei, ei)

=

m∑
i=1

[
HessWF (ϕ(x))(PNei, PNei) + HessWF (ϕ(x))(PQei, PQei)

]
where W = N ×f Q. Using Lemma 6, and writing t = t(x) for the ease of notation, we
deduce

∆ (F ◦ ϕ)(x) = v(t)

m∑
i=1

HessNf(PNei, PNei)(p) + f(p)

m∑
i=1

HessQv(t)(PQei, PQei)

+ v(t)

∣∣∇Nf ∣∣2
N

f
(p)

m∑
i=1

〈〈
PQei, PQei

〉〉
. (3·6)

Let {E1, . . . , En} be an orthonormal basis for TpN , and consider the tangent basis{
∂/∂ρ

Q
, {∂/∂θγ}n+q

γ=n+2

}
, associated to normal coordinates at Q. Then the set {ξl}n+q

l=1

given by

ξj = Ej ∀j = 1, . . . , n, ξn+1 =
1

f

∂

∂ρ
Q

, ξγ =
1

f

∂

∂θγ
∀γ = n+ 2, . . . , n+ q

is an orthonormal basis of T(p,q)

(
N ×f Q

)
. So, we can write ei as a linear combination

of vectors of this basis in the following way:

ei =

n∑
j=1

aji · ξj + bi · ξn+1 +

n+q∑
γ=n+2

cγi · ξγ ,

for constants aji , bi, c
γ
i satisfying

n∑
j=1

(aji )
2 + b2i +

n+q∑
γ=n+2

(cγi )2 = 1, ∀i = 1, . . . ,m. (3·7)

From

∇Qv(t) = v′(t)
∂

∂ρ
Q

, HessQv(t) = v′(t)HessQρQ + v′′(t)dρ
Q
⊗ dρ

Q
,
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we can rewrite (3·6) in the following way:

∆(F ◦ ϕ)(x) =v(t)

m∑
i=1

HessNf(PNei, PNei)(p) + f(p)

m∑
i=1

[
PQei(v

′(t))

〈
∂

∂ρQ
, PQei

〉
Q

+ v′(t)HessQρQ(PQei, PQei)
]

+ v(t)

∣∣∇Nf ∣∣2
N

f
(p)

m∑
i=1

〈〈
PQei, PQei

〉〉
=v(t)

m∑
i=1

(
HessNf(PNei, PNei) +

∣∣∇Nf ∣∣2
N

f

(
1− 〈〈PNei, PNei〉〉

))
(p)

+
1

f(p)

(
v′′(t)

m∑
i=1

b2i + v′(t)

m∑
i=1

n+q∑
γ=n+2

(cγi )2HessQρQ

(
∂

∂θγ
,
∂

∂θγ

))
.

Using (3·2) and the fact that v is positive we have

−∆(F ◦ ϕ)(x) ≥ − 1

f(p)

[
mv(t)|∇Nf |2N (p) + v′′(t)

m∑
i=1

b2i

+ v′(t)

m∑
i=1

n+q∑
γ=n+2

(cγi )2Hess
Q
ρ
Q

(
∂

∂θγ
,
∂

∂θγ

)]
.

Since v′(t) ≤ 0, we can apply the Hessian Comparison Theorem, to obtain

−∆(F ◦ ϕ)(x) ≥ − 1

f(p)

[
mv(t)

∣∣∣∇Nf ∣∣∣2
N

(p) + v′′(t)

m∑
i=1

b2i

+v′(t)
g′(t)

g(t)

m∑
i=1

n+q∑
γ=n+2

(cγi )2
]

= − 1

f(p)

[
v′′(t)

m∑
i=1

b2i + v′(t)
g′(t)

g(t)

(
m−

m∑
i=1

n∑
j=1

(aji )
2 −

m∑
i=1

b2i

)
+mv(t)

∣∣∣∇Nf ∣∣∣2
N

(p)
]

where the last equality follows by an algebraic manipulation that uses (3·7) summed for
i = 1, . . . ,m. Now, by a simple rearranging,

−∆(F ◦ ϕ)(x) ≥ − 1

f(p)

[
v′′(t) + (m− n− 1)v′(t)

g′(t)

g(t)
− v′′(t)

(
1−

m∑
i=1

b2i

)

+v′(t)
g′(t)

g(t)

(
n−

m∑
i=1

n∑
j=1

(aji )
2+1−

m∑
i=1

b2i

)
+mv(t)

∣∣∣∇Nf ∣∣∣2
N

(p)
]
.

From (3·1) we get

−∆(F ◦ ϕ)(x)≥ v(t)

f(p)

(
λ1(Bg(R))−m

∣∣∣∇Nf ∣∣∣2
N

(p)

)
+

1

f(p)

[
v′′(t)

(
1−

m∑
i=1

b2i

)
−v′(t)g

′(t)

g(t)

(
n−

m∑
i=1

n∑
j=1

(aji )
2+1−

m∑
i=1

b2i

)]
. (3·8)

We claim that the last line of (3·8) is nonnegative, that is,

v′′(t)

(
1−

m∑
i=1

b2i

)
− v′(t)g

′(t)

g(t)

n− m∑
i=1

n∑
j=1

(aji )
2 + 1−

m∑
i=1

b2i

 ≥ 0. (3·9)
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To prove this, we substitute v′′(t) = −(m− n− 1)v′(t)
g′(t)

g(t)
− λ1(Bg(R))v(t) in (3·9) to

get

v′′(t)

(
1−

m∑
i=1

b2i

)
− v′(t)g

′(t)

g(t)

n− m∑
i=1

n∑
j=1

(aji )
2 + 1−

m∑
i=1

b2i

 =

−
(

(m− n)v′(t)
g′(t)

g(t)
+ λ1(Bg(R))v(t)

)(
1−

m∑
i=1

b2i

)
(3·10)

−v′(t)g
′(t)

g(t)

n− m∑
i=1

n∑
j=1

(aji )
2

 ,

so that (3·9) is equivalent to show that

−
(

(m− n)v′(t)
g′(t)

g(t)
+ λ1(Bg(R))v(t)

)(
1−

m∑
i=1

b2i

)
(3·11)

−v′(t)g
′(t)

g(t)

n− m∑
i=1

n∑
j=1

(aji )
2

 ≥ 0.

Now, in our assumption (3·3), by Remark 4 it holds

λ1(Bg(R)) ≥ (m− n)‖G−‖L∞([0,R]).

Hence, applying Lemma 3 we infer that

(m− n)v′(t)
g′(t)

g(t)
+ λ1(Bg(R))v(t) ≤ 0.

Moreover, it is clear that
(
1−

∑m
i=1 b

2
i

)
≥ 0, and finally we observe the inequality

m∑
i=1

n∑
j=1

(aji )
2 =

n∑
j=1

(
m∑
i=1

〈〈ei, ξj〉〉

)
=

n∑
j=1

|P
M
ξj |2 ≤

n∑
j=1

|ξj |2 =

n∑
j=1

1 = n,

where P
M

is the projection on M .

Keeping in mind that v′ ≤ 0, this concludes the proof of the claimed (3·11). From (3·8)

we have

−∆(F ◦ ϕ)

F ◦ ϕ
(x) ≥ 1

f2(p)

(
λ1(Bg(R))−m

∣∣∇Nf ∣∣2
N

(p)
)
. (3·12)

Therefore, by (3·5) we conclude the desired (3·4).

Remark 9. In the case N = R, we observe that the mean curvature function of the

fibers {p} ×f Q is given by H(y) = f ′(y)/f(y). Therefore, condition (3·2) is equivalent

to fH′ ≤ 0, that is, H′ ≤ 0. There exists a large class of functions for which H′ ≤ 0. For

instance, f(y) = constant, f(y) = y and f(y) = ecy, where c ∈ R.

4. Applications

To show the generality of Theorem 8, we conclude this paper with a number of different

examples, and we discuss the sharpness of the estimates produced.
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4·1. Balls

In the limiting case when N is a point, computations hold with the obvious simplifi-

cations and we get the following result, which is basically known (see QUOTATION!!)

Corollary 10. Let ϕ :Mm → Qq be an m-dimensional submanifold minimally im-

mersed into Qq. Suppose that Q satisfies Assumption 7. Let Ω ⊂ ϕ−1(BQ(o,R)) be a

connected component with

R ≤ π

2
√
‖G−‖L∞([0,R))

·

Then

λ∗(Ω) ≥ λ1(Bmg (R)).

Here Bmg (R) is a geodesic ball of radius R in an m-dimensional model manifold Qmg .

For instance, a minimal submanifold ϕ : Mm → Rq in a ball of radius R has fundamental

tone greater or equal than that of the flat m-ball of radius R:

λ∗(M) ≥ λ1(BmR ) =
(cm
R

)2

,

where cm is the first zero of the Jm/2−1-Bessel function. Similarly, the first eigenvalue

of a minimal submanifold ϕ : Mm → Sq+ contained in half of a unit sphere is greater or

equal than that of the upper half m-sphere:

λ∗(M) ≥ λ1

(
BSm(π/2)

)
= m.

We underline that, although the sphere is well studied, the first eigenvalue λ1(BSm(r))

for r 6∈ {π/2, π} is still pretty much unknown. Estimates for spherical cups have been

developed in [1, 28, 29] for dimension two, [20] for dimension three and [2, 3, 12] for

all dimensions.

4·2. Cylinders

A very similar situation occurs when the ambient space is a cylinder R×Qq. Considering

f = 1 and N = R in Theorem 8 we obtain a generalized version of Theorem 1.1 of [7].

Corollary 11. Let ϕ :Mm → R × Qq be an m-dimensional submanifold minimally

immersed into R×Qq with Q satisfying the Assumption 7. Let Ω ⊂ ϕ−1(R×BQ(o,R))

be a connected component with

R ≤ π

2
√
‖G−‖L∞([0,R))

·

Then

λ∗(Ω) ≥ λ1(Bm−1
g (R)). (4·1)

Here, Bm−1
g (R) is a geodesic ball of radius R in an (m− 1)-dimensional model manifold

Qm−1
g .

Note that, differently from Corollary 10, here the comparison ball in estimate (4·1)

has dimension m − 1 and not m. In particular, when Qq = Rq in the last corollary we

get the following result in the Euclidean space proved by Bessa and Costa in [7].

Corollary 12. Let ϕ : Mm → Rq+1 be an m-dimensional submanifold minimally
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immersed into Rq+1. Let Ω ⊂ ϕ−1(R×BRq (o,R)) be a connected component. Then

λ∗(Ω) ≥ λ1(BRm−1(o,R)) =
(cm−1

R

)2

. (4·2)

Here cm−1 is the first zero of the J(m−1)/2−1-Bessel function.

4·3. Pseudo-hyperbolic and hyperbolic spaces

The pseudo-hyperbolic spaces, introduced by Tashiro in [31], are warped products

R×f Qq with

(i) f(y) = aeby, or (ii) f(y) = a cosh(by),

for some constants a, b > 0. In the case (i), we observe that condition (3·2) is satisfied,

as it shows

f ′′ − (f ′)2

f
=

{
0 in case (i),

ab2/ cosh(by) > 0 in case (ii).

We state the following corollary in the case f(y) = eby.

Corollary 13. Let ϕ : Mm → R×ebyQq be an m-dimensional submanifold minimally

immersed into R ×eby Qq, with Q satisfying Assumption 7. Let Ω ⊂ ϕ−1
(
(α, β) ×eby

BQ(o,R)
)

be a connected component with

R ≤ π

2
√
‖G−‖L∞([0,R))

·

Then,

λ∗(Ω) ≥
λ1(Bm−1

g (R))

e2bβ
−mb2. (4·3)

Here Bm−1
g (R) is the geodesic ball of (m− 1)-dimensional model space Qm−1

g .

Foliating through horospheres, we can represent the hyperbolic space Hq+1 as the warped

product R×ey Rq. By Corollary 13 we have the following eigenvalue estimate.

Corollary 14. Let ϕ :Mm → Hq+1 be an m-dimensional submanifold minimally

immersed into Hq+1. Let Ω ⊂ ϕ−1((−∞, β) ×ey BRq (o,R)) be a connected component.

Then

λ∗(Ω) ≥ λ1(BRm−1(o,R))

e2β
−m = e−2β

(cm−1

R

)2

−m, (4·4)

where cm−1 is the first zero of the J(m−1)/2−1-Bessel function.

4·4. Cones

A (q+ 1)-dimensional cone Cq+1(Q) ⊆ Rm over an open subset Q ⊂ Sq can be seen as

the warped product Cq+1(Q) = (0,+∞) ×f Q where f(y) = y. In order to match with

Assumption 7 we shall suppose that Q ⊂ BSq (o,R) for some R ≤ π/2. More generally,

we can consider cones Cq+1(Q) over open subsets Q ⊂ W of Riemannian manifolds W ,

with Q satisfying Assumption 7. We have the following result.

Corollary 15. Let ϕ : Mm → Cq+1(Q) be a m-dimensional submanifold minimally

immersed into Cq+1(Q) with Q satisfying the Assumption 7. Let Ω ⊂ ϕ−1
(
(0, a) ×y
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BQ(o,R)
)

be a connected component with

R ≤ π

2
√
‖G−‖L∞([0,R))

·

Then,

λ∗(Ω) ≥ 1

a2

(
λ1(Bm−1

g (R))−m
)
, (4·5)

where Bm−1
g (R) is the geodesic ball of radius R in the model manifold Qm−1

g .

Exploiting the warped product structure of the sphere Sq+1 = (0, π)×sin ySq, our estimate

can be applied for minimal submanifolds in sectors of Sq+1 which are different from

spherical cups, leading to the next

Corollary 16. Let ϕ : Mm → Sq+1 = (o, π)×sin y Sq be an m-dimensional subman-

ifold minimally immersed into Sq+1. Let Ω ⊂ ϕ−1((o, r) ×sin y BSq (θ)), θ < π/2 be a

connected component. Then

λ∗(Ω) ≥


λ1(BSm−1(θ))−m

(sin r)2
if r ≤ π/2,

λ1(BSm−1(θ))−m if r ≥ π/2.

(4·6)

These estimates are effective when θ is small, that is, when the minimal submanifold is

contained in a small slice of the sphere. In particular, in this case they improve on the

estimates in Corollary 10 when both are applicable.

4·5. Essential spectrum

The ideas developed above can be applied to study the essential spectrum of −∆

of submanifolds properly immersed into the hyperbolic spaces with fairly weak bounds

on the mean curvature vector. Via Persson formula ([26] and [11, Prop. 3.2]), one can

express the bottom of the essential spectrum of −∆ as follows: for every exhaustion of

M by relatively compact open sets {Kj} with Lipschitz boundary,

inf σess(−∆) = lim
j→+∞

λ∗(M\Kj). (4·7)

It therefore follows that −∆ has purely discrete spectrum if and only if

lim
j→+∞

λ∗(M\Kj) =∞.

Our next application regards the essential spectrum of graph hypersurfaces of Hq+1 whose

boundary lies in a relatively compact region of Hq∞, the boundary at infinity of Hq+1.

Corollary 17. Consider the upper half-space model of the hyperbolic space Hq+1,

q ≥ 2, with coordinates (x0, x1, . . . , xq) = (x0, x̄) and metric

〈 , 〉 =
1

x2
0

(
dx2

0 + dx2
1 + . . .+ dx2

q

)
,

and let Hq∞ be its boundary at infinity, with chart x̄. Consider a hypersurface without

boundary ϕ : Mq → Hq+1 that can be written as the graph of a function u over a

relatively compact, open set W ⊆ Hq∞, and denote with H(x̄) its mean curvature. For

z > 0, define

Hz = sup
{∣∣H(x̄)

∣∣ : x̄ ∈W, u(x̄) = z
}
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If

lim
z→0

z2Hz = 0, (4·8)

then M has purely discrete spectrum.

Proof. Setting y = log x0, we can rewrite the metric on Hq+1 as the one of the warped

product R×ey Rq. In our assumptions, since M has no boundary and is a graph over W

it holds y(ϕ(x)) → −∞ as x diverges in Mq. We identify the factor Rq in the warped

product structure with Hq∞ endowed with the Euclidean metric, we fix an origin o ∈ Hq∞
and we let R be large enough that W ⊂ BRq (o,R). Let {zj} ↓ 0+ be a chosen sequence,

set βj = log zj ↓ −∞ and define

Kj = ϕ−1
(
(βj ,+∞)×W

)
, Ωj = M\Kj .

In our assumptions, Kj is relatively compact for every j and {Kj} is a smooth exhaustion

of M . Consider a positive first eigenfunction v of the geodesic ball BRq−1(o, 2R), with

the normalization ‖v‖L∞ = 1. Define F : (−∞, βj)×ey BRq (o, 2R)→ R as

F (y, p) = ey · h(p),

where h(p) = v(ρRq (p)). By Theorem 2 and formula (2·2),

λ∗(M \Kj) ≥ inf
M\Kj

−∆(F ◦ ϕ)

F ◦ ϕ

= inf
M\Kj

− 1

F ◦ ϕ

[
q∑
i=1

Hess Hq+1F (ϕ(x)) (ei, ei) + q〈∇F,H〉

]
.

The proof of Theorem 8, in particular inequality (3·12), shows that, for x ∈M\Kj ,

− 1

F ◦ ϕ

q∑
i=1

Hess Hq+1F (ϕ(x)) (ei, ei) ≥
λ1(BRq−1(o, 2R))

e2y(x)
− q,

therefore, on M \Kj ,

−∆(F ◦ ϕ)

F ◦ ϕ
(x) ≥ λ1(BRq−1(o, 2R))

e2y(x)
− q − q |H| |∇F |

F
(ϕ(x)).

On the other hand, ∇F = F ∇y+ey∇h and thus |∇F |/F ≤ 1 + |∇h|/h. Since 1 ≥ h > 0

on BRq−1(o,R), we infer that

sup
BRq−1 (o,R)

|∇F |
F
≤ C(R),

where

C(R) = 1 + sup
BRq−1 (o,R)

|∇h|
h

> 0.

From the above, we have

λ∗(M \Kj) ≥ inf
M\Kj

[
λ1(BRq−1(o, 2R))− qC(R)|H(x)|e2y(x) − qe2y(x)

e2y(x)

]
. (4·9)

In our assumptions, on M\Kj ,

|H(x)|e2y(x) ≤ Hx0(x)e
2y(x) = Hx0(x)

[
x0(x)

]2
.
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By (4·8), this latter goes to zero uniformly for x ∈M\Kj and divergent j. In particular,

for each fixed ε > 0, there exists jε large such that, for j ≥ jε, |H(x)|e2y(x) ≤ ε on

M\Kj . It therefore follows that, for j large enough,

λ∗(M \Kj) ≥ inf
M\Kj

[
λ1(BRq−1(o, 2R))− qC(R)ε− qx0(x)2

x0(x)2

]
.

Choosing ε sufficiently small, letting j → +∞ and using that x0(x)2 ≤ e2βj → 0+ for

x ∈M\Kj and divergent j, we deduce that λ∗(M\Kj)→ +∞, and the claim follows by

Persson formula.

To conclude, we consider the essential spectrum of submanifolds satisfying some strong

non-properness assumption. This includes submanifolds with bounded image immersed

in a complete manifold. We begin with recalling the following

Definition 18. Let M , W be Riemannian manifolds and let ϕ : M → W be an iso-

metric immersion. The limit set of ϕ, denoted by limϕ, is a closed set defined as follows

limϕ =
{
p ∈W ; ∃ {pk} ⊂M, distM (o, pk)→∞ and distW (p, ϕ(pk))→ 0

}
.

Observe that:

• An isometric immersion ϕ : M →W is proper if and only if limϕ = ∅.
• The closure of the set ϕ−1[W \Tε(limϕ)] may not be a compact subset of M . Here

Tε(limϕ) = {y ∈W : dist
W

(y, limϕ) < ε} is the ε-tubular neighborhood of limϕ.

Definition 19. An isometric immersion ϕ : M →W is strongly non-proper if for all

ε > 0 the closed subset ϕ−1(W \ Tε limϕ) is compact in M .

Remark 20. A strongly non-proper immersions is not necessarily bounded: for ex-

ample, the graph immersion ϕ : B1(0)\{0} ⊂ Rm → Rm × R given by

ϕ(x) = (w, z) =

(
x,

1− r(x)

r(x)
sin
(
r(x)(1− r(x)

))
is strongly non-proper, and limϕ = {w = 0} ∪ {r(w) = 1, z = 0}.

Corollary 21. Let ϕ :Mm → Nn×f Qq be a strongly non-proper minimal submani-

fold. Suppose that Q satisfies Assumption 7. Assume in addition that the warping function

f satisfies infN f > c1 > 0, supN |∇f | ≤ c2 <∞ and

HessNf(·, ·)−
∣∣∇Nf ∣∣2

N

f
〈, 〉N ≤ 0.

Then, if limϕ ⊂ N ×f {o}, the spectrum of M is discrete.

Proof. Let Tj(N) = N ×f BQ(o, 1/j), for j large enough that BQ(o, 2/j) b M is

a regular, convex ball. Let Kj = ϕ−1 [(N ×f Q) \ Tj(N)] be an exhaustion of M by

relatively compact, open sets. Note that ϕ(M \Kj) ⊂ Tj(N). We now proceed as in the

proof of Corollary 17. Define F = f(p)vj(ρQ(q)), where vj is the first eigenfunction of

Bg(2/j) ⊂ Qm−ng , normalized according to ‖vj‖L∞ = 1, and note that

‖∇ logF‖
L∞(Tj(N))

≤ ‖∇ log f‖+ ‖∇ log vj‖ ≤
c2
c1

+ ‖∇ log vj‖.
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By gradient estimates (see for instance, [23, Thm. 6.1].)

‖∇ log vj‖L∞(Tj)
=

∥∥∥∥v′jvj
∥∥∥∥
L∞([0,j])

≤ C · j,

for some absolute constant C > 0, and so ‖∇ logF‖
L∞(Tj)

≤ Cj. Using formula (4·9) and

proceeding as in the proof of Corollary 17, we have that

λ∗(M \Kj) ≥ inf
p∈N

(
λ1(Bg(2/j))−m |∇Nf |2N (p)

|f(p)|2

)

−m‖H‖L∞(M)‖∇ logF‖L∞(Tj).

Since

λ1(Bg(2/j))−m |∇Nf |2N (p)

|f(p)|2
≥ λ1(Bg(2/j))−mc22

c21
,

we deduce

λ∗(M \Kj) ≥
λ1(Bg(2/j))−mc22

c21
−m‖H‖

L∞(M)
Cj.

Taking into account the standard asymptotic λ1(Bg(2/j)) ∼ Cj2, for some C > 0, we

conclude that

lim
j→+∞

λ∗(M \Kj) = +∞,

and the thesis follows by Persson formula.
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