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Abstract

1 Let M be a connected, non-compact m-dimensional Riemannian
manifold. In this paper we consider smooth maps ϕ : M → Rn with
images inside a non-degenerate cone. Under quite general assump-
tions on M , we provide a lower bound for the width of the cone in
terms of the energy and the tension of ϕ and a metric parameter. As
a side product, we recover some well known results concerning har-
monic maps, minimal immersions and Kähler submanifolds. In case
ϕ is an isometric immersion, we also show that, if M is sufficiently
well-behaved and has non-positive sectional curvature, ϕ(M) cannot
be contained into a non-degenerate cone of R2m−1.

1 Introduction

In a famous paper Omori, [O], studied minimal immersions of manifolds
into cones of Euclidean space and in the process he proved (a version of)
what is by now known as the Omori-Yau maximum principle. This powerful
tool has since then been applied to solve several geometric problems from
Yau’s pioneering work on the generalized Schwarz lemma, to the study of
the group of conformal diffeomorphisms of a manifold, [PRS2], to the theory
of submanifolds (see also the very recent papers [APD] and [AG]) and so on;
for a short account one can consult [PRS1] and the references therein. The
Omori-Yau principle can be briefly stated in the following form:

1Mathematic subject classification 2000: primary 53C42, 35B50; secondary
53C21.
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Let (M, 〈, 〉) be a complete Riemannian manifold and let u ∈
C2(M) be a function satisfying u∗ = supM u < +∞. Then,
under appropriate geometric assumptions on the manifold there
exists a sequence {xk} ⊂M with the following properties:

(i) u(xk) > u∗−1

k
, (ii) |∇u|(xk) <

1

k
, (iii) ∆u(xk) <

1

k

for every k ∈ N.

It turns out that in many applications property (ii) plays no role. This fact
suggests to ignore it and to look for possibly lighter geometric assumptions
to ensure the validity of conclusions (i) and (iii). Indeed, in [PRS2] the
authors show that the sole assumption of stochastic completeness of (M, 〈, 〉)
(that is, the property of the Brownian motion on M to have infinite intrinsic
lifetime) is equivalent to the simultaneous validity of (i) and (iii) for every
u ∈ C2(M), u∗ < +∞, on an appropriate sequence.
To distinguish between the two situations we shall refer to this new statement
as to the weak maximum principle. These two principles are indeed different.
For instance, one immediately realizes that stochastic completeness does not
even imply geodesic completeness (as an example, consider the standard
punctured Euclidean space Rn\{o}).

As a matter of fact, geometric applications often lead to consider differ-
ential inequalities of the form

∆u ≥ b(x)f(u)

for some b(x) ∈ C0(M), f(t) ∈ C0(R). This and a number of other consid-
erations have suggested to generalize the known results on stochastic com-
pleteness and the weak maximum principle to a wider class of elliptic oper-
ators. In particular, to symmetric diffusion operators L = b−1div(A∇) on
L2(M, bdx), where A, b are positive smooth functions on M . Theorem 3.10
of [PRS1] states the equivalence between L-stochastic completeness (here L
means that the diffusion having infinite intrinsic lifetime is that generated by
L) and the weak maximum principle for L. For a detailed account, one can
consult [PRS1], [RSV], where the authors deal even with the case u∗ = +∞.
Together with diffusions, one can also consider the full Hessian operator. In
this case we state the following definition:

The weak maximum principle for the Hessian operator holds on
M if for every u ∈ C2(M), u∗ < +∞, there exists a sequence
{xk} ⊂M such that

u(xk) > u∗ − 1

k
, sup
v ∈ TxkM
|v| = 1

Hessxku(v, v) <
1

k
(1.1)
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It is worth to observe, in view of applications, that L-stochastic complete-
ness and the weak maximum principle for the Hessian can be granted via
the existence of appropriate proper functions defined in a neighborhood of
infinity in M . This is achieved by the use of Khas’minskii test (see [PRS1],
where for convenience the result is stated for the Laplacian only) and of its
generalization in the case of the Hessian (see again [PRS1] and also question
33 in [PRS4]). Observe that adding the condition |∇u(xk)| < 1/k to (1.1)
gives the well known Omori-Yau maximum principle for the Hessian.

In this paper we shall make use of Theorem 1.9 (and subsequent remarks),
Theorem 3.10 and Proposition 3.18 of [PRS1] to prove the geometrical re-
sults that we are now going to describe.

Let (Rn, 〈, 〉), n ≥ 2, be the n-dimensional Euclidean space endowed with
its canonical flat metric. Fix an origin o ∈ Rn and a unit vector v ∈ Sn−1.
We set Co,v,θ, shortly C, to denote the non-degenerate cone with vertex in o,
direction v and width θ, θ ∈ (0, π/2), that is,

C =
{
z ∈ Rn\{o} :

〈 z − o
|z − o|

, v
〉
≥ cos(θ)

}
. (1.2)

Let (M, (, )) be a connected, m-dimensional Riemannian manifold (m ≥ 2),
and let

ϕ : (M, (, )) −→ (Rn, 〈, 〉)
be a smooth map. We indicate with |dϕ|2 the square of the Hilbert-Schmidt
norm of the differential dϕ (in other words, twice the energy density of ϕ)
and with τ(ϕ) the tension field of ϕ. In case ϕ is an isometric immersion,
|dϕ|2 = m and τ(ϕ) = mH, where H is the mean curvature vector. We fix
an origin q ∈M and we consider the distance function from q, r(x) = d(x, q).
We set Br for the geodesic ball with radius r centered at q.

Since the work of Omori, the study of maps with image contained in a
cone has captured the attention of researchers. Indeed, important progresses
in the understanding of their geometry have been made by a number of
authors and in particular, regarding the content of the present paper, by
[BK], [PRS1] and by [A], where through stochastic methods it is proved
that if M is stochastically complete and ϕ is an harmonic map with energy
density bounded from below away from zero, ϕ(M) cannot be contained
into any non-degenerate cone of Rn. However, all these references limit
themselves to consider the harmonic (or minimal) case.

On the contrary, the two main results in this paper aim at determining
a lower bound for the width of the cone containing ϕ(M) when ϕ is merely
a smooth map or an isometric immersion, where of course we expect the
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estimate to depend on the position of ϕ(M) in the cone.

To state the next theorems, given η > 0, we define

Aη = sup
ξ ∈ (0, 1)

α ∈ (0,min{1, η
√

1− ξ})

ξα2
√

1− α2. (1.3)

The constant Aη can be easily computed, but the actual value is irrelevant
for our purposes. Note also that Aη is non-decreasing as a function of η.

Theorem 1.4. Let M be a connected, non-compact m-dimensional Rieman-
nian manifold, and let

ϕ : (M, (, )) −→ (Rn, 〈, 〉)

be a map of class C2 such that |dϕ(x)|2 > 0 on M . Consider the elliptic
operator L = |dϕ|−2∆, and assume that M is L-stochastically complete. Let
C = Co,v,θ be a cone with vertex at o ∈ Rn\ϕ(M), let πv be the hyperplane or-
thogonal to v passing through o and let d(πv, ϕ(M)) be the Euclidean distance
between this hyperplane and ϕ(M).

If ϕ(M) is contained in C, then

cos(θ) ≤

√
1

A1

d(πv, ϕ(M)) sup
M

[ |τ(ϕ)|
|dϕ|2

]
. (1.5)

In case ϕ is an isometric immersion, we can replace A1 with Am in (1.5)
obtaining a sharper estimate.

Remark 1. Note that, in case

sup
M

[ |τ(ϕ)|
|dϕ|2

]
= +∞

and d(πv, ϕ(M)) = 0, that is, ϕ(M) ”gathers around the origin o”, as we
shall see in the proof, we have no restriction on θ.

Remark 2. The condition that L = |dϕ|−2∆ generates a conservative dif-
fusion (i.e. L-stochastic completeness) is implied by∫ ξ

0

|dϕ|2dt = +∞ Px a.s for some (hence, every) x ∈M,

where the integral is evaluated along the paths of the Brownian motion
Xt starting from x, and ξ is the intrinsic lifetime of Xt. As in the case
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of ∆-stochastic completeness, no geodesic completeness is required. If M
is complete, L-stochastic completeness can be obtained using generalized
versions of a previous work of Grigor’Yan [G], see [S] and [PRS1] (Theorem
3.15 and subsequent propositions). In particular, if there exist C > 0, β ∈ R
such that

|dϕ(x)|2 ≥ C

(1 + r(x))β
on M (1.6)

and
r1−β

log(Vol(Br))
6∈ L1(+∞), (1.7)

then the weak maximum principle for L = |dϕ|−2∆ holds. It is worth to
observe that (1.7) implies β ≤ 2, but no restriction on nonnegativity of β is
needed. In case β = 2, an application of [S] leads to slightly improving (1.7)
to

log r

r log(Vol(Br))
6∈ L1(+∞).

The converse of the above result is in general false; indeed, it is well known
that, on a radially symmetric model in the sense of Greene and Wu, [GW],
∆-stochastic completeness is equivalent to the condition

Vol(Br)

Vol(∂Br)
6∈ L1(+∞), (1.8)

which is implied by (1.7) with β = 0 but not equivalent. We remark, in
passing, that it is an open problem to establish whether or not (1.8) is
sufficient for ∆-stochastic completeness on a generic complete manifold.

Remark 3 (Sharpness of inequality 1.5). Due to the form of (1.5), we
cannot expect the result to be significant when ϕ(M) is far from πv, in
the following sense: for every M , C and ϕ satisfying the assumptions of
Theorem 1.4, and for every k ≥ 0, we can consider the map ϕk = ϕ + kv.
Then d(πv, ϕk(M)) = d(πv, ϕ(M)) + k, while the other parameters in the
RHS of (1.5) remain unchanged. Therefore, for k sufficiently large inequality
(1.5) becomes meaningless unless τ(ϕ) ≡ 0. On the contrary, we show with
a simple example that, when d(πv, ϕ(M)) is very small, (1.5) is sharp in the
following sense: for every fixed hyperplane πv, and for every origin o ∈ πv,
there exists a family of maps ϕd, d > 0 representing d(πv, ϕd(M)), such that,
if we denote with θd the width of the non-degenerate tangent cone containing
ϕd(M),

cos2(θd)

d
≥ C when d→ 0+,

for some constant C > 0. Indeed, for every fixed d > 0 consider the hyper-
surface ϕd : Rm → Rm+1 given by the graph ϕ(x) = (x, |x|2 + d), with the
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induced metric. Indicating with πv the hyperplane xm+1 = 0, we have by
standard calculations

|τ(ϕd)| =
2m+ 8(m− 1)|x|2

(1 + 4|x|2)3/2
and |dϕd|2 = m

Therefore supM |τ(ϕd)|/|dϕd|2 = 2. Moreover, for the tangent cone passing
through the origin

cos2(θd) =
4d

1 + 4d
,

thus, since d ≡ d(πv, ϕd(M)), we reach the desired conclusion.

As an immediate consequence of Theorem 1.4, we recover Atsuji’s result
[A]:

Corollary 1.9. Let ϕ : M → Rn be harmonic and such that |dϕ|2 ≥ C
for some positive constant C. If M is stochastically complete, then ϕ(M)
cannot be contained in any non-degenerate cone of Rn. In particular, a
stochastically complete manifold cannot be minimally immersed into a non-
degenerate cone of Rn.

Note that even the statement of [A] in its full generality requires |dϕ|2 ≥
C > 0, an assumption that can be overcome by the weighted requests (1.6),
(1.7). Furthermore, in case β = 0 we can replace ∆-stochastic completeness
and the uniform control from below in (1.6) with the properness of ϕ.

Corollary 1.10. Let (M, (, )) be a Riemannian manifold. Then, there does
not exist any proper harmonic map ϕ : M → Rn, such that |dϕ(x)| > 0 on
M and ϕ(M) is contained into a non-degenerate cone of Rn.

Remark 4. It is a well known open problem to deal with the case θ = π/2,
that is, when the cone degenerates to a half-space and the dimension m is
greater than 2. When m = 2, n = 3, by Hoffman-Meeks’ half-space Theorem
[HM] the only properly embedded minimal surfaces in a half-space are affine
planes. On the contrary, if m ≥ 3 there exist properly embedded minimal
hypersurfaces even contained between two parallel hyperplanes (the so called
generalized catenoids). It is still an open problem to find sufficient conditions
on M,ϕ in order to have a Hoffman-Meeks’ type result, and it seems quite
difficult to adapt the methods of the proof of (1.4) for this purpose.

The next application of Theorem 1.4 has a topological flavor. This result,
which is interesting when ϕ is not proper, ensures that some kind of ”pa-
tological” gathering around points of ϕ(M)\ϕ(M) does not occur when the
map is sufficiently well behaved. To make the corollary more transparent,
we state it using the sufficient conditions (1.6) and (1.7). First we introduce
the following
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Definition 1.11. Let S be a convex subset of Rn. A point p ∈ S is called
an n-corner of S if it is the vertex of a non-degenerate cone containing S.

Corollary 1.12. Let (M, (, )) be a complete Riemannian manifold and let
ϕ : M → Rn be a map of class C2. Suppose that (1.6) holds, and that

|τ(ϕ)(x)| ≤ C̃

r(x)β
for r(x)� 1, (1.13)

for some C̃ > 0 and β ∈ R as in (1.6). Assume also that (1.7) holds. Then,
the convex envelope Conv(ϕ(M)) contains no n-corners.

The second main theorem of this paper is obtained with a modification
of the idea used in the proof of Theorem 1.4. We obtain

Theorem 1.14. Let ϕ : (M, (, ))→ Rn be an isometric immersion of an m-
dimensional manifold satisfying the weak maximum principle for the Hessian
into a non-degenerate cone Co,v,θ. Assume the codimension restriction

0 < n−m < m (1.15)

and suppose that the sectional curvature of M satisfy

MSectx ≤ χ2 ∀ x ∈M (1.16)

for some constant χ ≥ 0. Then

cos(θ) ≤
√
d(πv, ϕ(M))

χ

A1

, (1.17)

where A1 is as in (1.3).

Remark 5. With the notation MSectx ≤ g(x) for some function g on M ,
we mean that, for every x ∈ M and every 2-plane π ≤ TxM , the sectional
curvature of π in x satisfy MSectx(π) ≤ g(x).

As a consequence, we get the following corollaries: the former generalizes
results of Tompkins [T], Chern-Kuiper [CK] and Jorge-Koutroufiotis [JK],
whereas the latter improves on [D], Theorem 8.3.

Corollary 1.18. Let (M, 〈, 〉) be a complete m-dimensional Riemannian
manifold with sectional curvature satisfying

−B2(1 + r(x)2)
N∏
j=1

log(j) r(x) ≤ MSectx ≤ 0, (1.19)

for some B > 0, N ∈ N and where log(j) stands for the j-iterated logarithm.
Then, M cannot be isometrically immersed into a non-degenerate cone of
R2m−1.
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Corollary 1.20. Let (M2m, 〈, 〉, J) be a Kähler manifold such that the weak
maximum principle for the Hessian holds. Then ϕ(M) cannot be isometri-
cally immersed into a non-degenerate cone of R3m−1.

Remark 6. The inequality on the left of (1.19) provides a sharp sufficient
condition for the full Omori-Yau maximum principle for the Hessian. Indeed,
it would be sufficient that this inequality hold along 2-planes containing ∇r
(see Theorem 1.9 of [PRS1]). As far as we know, it is an open problem to
obtain other general sufficient conditions ensuring the validity of the weak
maximum principle for the Hessian.

2 Proof of the Theorems

2.1 Proof of Theorem 1.4

First of all we observe that

d(πv, ϕ(M)) = inf
xo∈M
〈ϕ(xo), v〉,

and that the right hand side of (1.5) is invariant under homothetic transfor-
mations of Rn. We choose o as the origin of global coordinates, and for the
ease of notation we set

b = cos(θ) b ∈ (0, 1).

Furthermore, for future use, note that ϕ(M) ⊆ C implies

〈ϕ(x), v〉 ≥ b|ϕ(x)| > 0 ∀ x ∈M. (2.1)

Next, we reason by contradiction and we suppose that (1.5) is false. There-
fore, there exists xo ∈M such that

〈ϕ(xo), v〉 sup
x∈M

[ |τ(ϕ(x))|
|dϕ(x)|2

]
< A1b

2.

By definition, and the fact that the inequality is strict, we can find

ξ ∈ (0, 1) , α ∈
(

0,
√

(1− ξ)
)

such that

〈ϕ(xo), v〉 sup
x∈M

[ |τ(ϕ(x))|
|dϕ(x)|2

]
<
(
ξα2
√

1− α2
)
b2,
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thus:

〈ϕ(xo), v〉|τ(ϕ(x))| <
(
ξα2
√

1− α2
)
b2|dϕ(x)|2 ∀ x ∈M. (2.2)

For the ease of notation we set T = 〈ϕ(xo), v〉 > 0 and a = bα; the last
relation becomes

T |τ(ϕ(x))| < ξa2
√
b2 − a2

b
|dϕ(x)|2 ∀ x ∈M. (2.3)

Note also that
a ∈ (0, b

√
(1− ξ)

)
⊆ (0, b). (2.4)

Now, we define the following function:

u(x) =
√
T 2 + a2|ϕ(x)|2 − 〈ϕ(x), v〉,

and we note that, by construction, u(xo) > 0. We first claim that

u < T on M : (2.5)

indeed, an algebraic manipulation shows that (2.5) is equivalent to

〈ϕ(x), v〉2 + 2T 〈ϕ(x), v〉 − a2|ϕ(x)|2 > 0 on M.

On the other hand, using (2.1) the LHS of the above inequality is bounded
from below by (b2 − a2)|ϕ(x)|2 > 0 since a < b, and the claim is proved.

We now consider the closed non empty set:

Ωo = {x ∈M : u(x) ≥ u(xo)}.

Using (2.1) and the definition of Ωo we deduce:√
T 2 + a2|ϕ(x)|2 ≥ b|ϕ(x)|+ u(xo). (2.6)

Since u(xo) > 0 by construction, we can square inequality (2.6) to obtain

(b2 − a2)|ϕ(x)|2 + 2bu(xo)|ϕ(x)|+ u(xo)
2 − T 2 ≤ 0. (2.7)

Since (b2−a2) > 0, the LHS of the above inequality is a quadratic polynomial
in |ϕ(x)| with two distinct roots α− < 0 < α+ (use Cartesio rule and (2.5)),
where α± are given by

α± =
[
b2 − a2

]−1
{
±
√

(b2 − a2)T 2 + a2u(xo)2 − bu(xo)
}

;
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therefore, (2.7) implies

|ϕ(x)| ≤
[
b2 − a2

]−1
{√

(b2 − a2)T 2 + a2u(xo)2 − bu(xo)
}

on Ωo. (2.8)

We then use the elementary inequality
√

1 + t2 ≤ 1 + t on R+
0 to deduce[

b2 − a2
]−1
{√

(b2 − a2)T 2 + a2u(xo)2 − bu(xo)
}

=
au(xo)

b2 − a2

√
1 +

(b2 − a2)T 2

a2u(xo)2
− bu(xo)

b2 − a2

≤ au(xo)

b2 − a2

(
1 +

T
√
b2 − a2

au(xo)

)
− bu(xo)

b2 − a2

=
T√

b2 − a2
− u(xo)

b+ a

and thus (2.8) together with u(xo) > 0 yields

|ϕ(x)| ≤ T√
b2 − a2

= ϕmax on Ωo. (2.9)

To compute ∆u, we fix a local orthonormal frame {ei} and its dual coframe
{θi}. Then, writing du = uiθ

i, a simple computation shows that

ui =
a2〈dϕ(ei), ϕ〉√
T 2 + a2|ϕ|2

− 〈dϕ(ei), v〉, (2.10)

and taking the covariant derivative we have ∇du = uijθ
i ⊗ θj, where

uij = −a
4〈dϕ(ei), ϕ〉〈dϕ(ej), ϕ〉

(T 2 + a2|ϕ|2)3/2
− 〈∇dϕ(ei, ej), v〉

+
a2〈∇dϕ(ei, ej), ϕ〉+ a2〈dϕ(ei), dϕ(ej)〉√

T 2 + a2|ϕ|2
.

Tracing the above expression we get

∆u = 〈 S
|ϕ|

ϕ−v, τ(ϕ)〉+S
|dϕ|2

|ϕ|
− 1

|ϕ|2
S2√

T 2 + a2|ϕ|2

m∑
i=1

〈ϕ, dϕ(ei)〉2 (2.11)

on M , where we have defined

S = S(x) =
a2|ϕ(x)|√

T 2 + a2|ϕ(x)|2
. (2.12)
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Note that, by (2.1), ∣∣∣ S|ϕ|ϕ− v∣∣∣2 ≤ S2 − 2bS + 1, (2.13)

and that

m∑
i=1

〈ϕ, dϕ(ei)〉2 ≤


|ϕ|2

m∑
i=1

|dϕ(ei)|2 = |ϕ|2|dϕ|2;

|ϕ|2 =
1

m
|ϕ|2|dϕ|2 if ϕ is isometric.

(2.14)

The possibility, for the isometric case, of substituting A1 with Am in (1.5)
depends only on the above difference. Since the next passages are the same,
we carry on with the general case. Substituting (2.13), (2.14) in (2.11) it
follows that

∆u ≥ −|τ(ϕ)|
√
S2 − 2bS + 1 + S

|dϕ|2

|ϕ|
− S2√

T 2 + a2|ϕ|2
|dϕ|2. (2.15)

We now restrict our estimates on the RHS of (2.15) on Ωo. Then, (2.9) holds
and from (2.3) we obtain

|τ(ϕ)|
|dϕ|2

<
ξa2
√
b2 − a2

Tb
=

ξa2√
T 2 + a2ϕ2

max

≤ ξa2√
T 2 + a2|ϕ|2

=
ξS

|ϕ|
.

Inserting this inequality into (2.15) we have

∆u ≥ a2|dϕ|2√
T 2 + a2|ϕ|2

[
1− ξ

√
S2 − 2bS + 1− S2

a2

]
. (2.16)

We want to find a strictly positive lower bound for (1− ξ
√
S2 − 2bS + 1−

S2/a2) on Ωo. Since 1− 2bS + S2 represents a convex parabola and since S
is increasing in the variable |ϕ| on [0, ϕmax], its maximum is attained either
in 0 or in ϕmax. Since S(0) = 0, S(ϕmax) = a2/b > 0 we have

S(ϕmax)
2 − 2bS(ϕmax) + 1 = 1 + a2

(a2

b2
− 2
)
< 1 = S(0)2 − 2bS(0) + 1,

thus we can roughly bound as follows:

1− ξ
√
S2 − 2bS + 1− S2

a2
≥ 1− ξ − a2

b2

11



and the RHS of the above inequality is strictly positive since a ∈ (0, b
√

1− ξ).
Therefore, (2.16) together with (2.9) yield

Lu = |dϕ|−2∆u ≥ a2√
T 2 + a2|ϕ|2

[
1− ξ − a2

b2

]
≥ δ on Ωo, (2.17)

for some δ > 0.
There are now two possibilities:

i) xo is an absolute maximum for u on M . By assumption |dϕ(xo)|2 >
0, and the finite form of the maximum principle yields ∆u(xo) ≤ 0,
so that Lu(xo) ≤ 0. Since xo ∈ Ωo (2.17) immediately gives the
contradiction.

ii) Int(Ωo) = {x ∈ M : u(x) > u(xo)} 6= ∅. In this case, since u(x) is
bounded above on M , it is enough to evaluate inequality (2.17) along
a sequence {xk} realizing the weak maximum principle for L, that is
u(xk) > u∗ − 1/k, Lu(xk) < 1/k. Note that this sequence eventually
lies in Int(Ωo).

This concludes the proof. N

2.2 Proof of Corollary 1.9

If M is stochastically complete and |dϕ|2 ≥ C, then it is straightforward to
deduce that M is L-stochastically complete, where L = |dϕ|−2∆. Indeed,
for every u ∈ C2(M) with u∗ < +∞, along the sequence {xk} realizing the
weak maximum principle for ∆ we have also

Lu(xk) = |dϕ(xk)|−2∆u(xk) ≤
1

Ck
.

The result follows setting τ(ϕ) ≡ 0 in Theorem 1.4. N

2.3 Proof of Corollary 1.10

From (2.9) in the proof of Theorem 1.4 we deduce that ϕ(Ωo) is bounded,
hence ϕ(Ωo) is compact. The properness assumption implies that ϕ−1(ϕ(Ωo))
is compact, thus Ωo is compact. Therefore, it is enough to use the finite form
of the maximum principle in (2.17). N

12



2.4 Proof of Corollary 1.12

We reason by contradiction and let p ∈ Conv(ϕ(M)) be an n-corner.

- If p ∈ Conv(ϕ(M))\ϕ(M) fix a small ball around p contained in
Rn\ϕ(M), and cut the corner transversally with an hyperplane suf-
ficiently near to p; it is immediate to see that in this way we produce
a convex set containing ϕ(M) and strictly smaller than Conv(ϕ(M)),
contradiction.

- Suppose now p ∈ ϕ(M), and let x ∈ M such that ϕ(x) = p. Consider
the map dϕ|x; by assumption, there exists a direction v ∈ TxM such
that |dϕ|xv| 6= 0, thus by continuity we can take a curve

γ : (−ε, ε)→M , γ(0) = x , γ′(0) = v

with ε small such that |dϕ|γ(t)(γ
′(t))| 6= 0 on (−ε, ε). Therefore, ϕ ◦ γ

is an immersed curve in Rn, and this fact contradicts the assumption
that p is an n-corner.

- If p ∈ ϕ(M)\ϕ(M), choose πv as the hyperplane orthogonal to the di-
rection of the cone and passing through p. It follows that d(ϕ(M), πv) =
0. By (1.6) and (1.13), we argue that |τ(ϕ)|/|dϕ|2 is bounded above
on M . By Remark 2, (1.6) and (1.7) ensure that M is L-stochastically
complete, where L = |dϕ|−2∆. By Theorem 1.4 we conclude the va-
lidity of (1.5) which gives θ = π/2, contradiction. N

2.5 Proof of Theorem 1.14

We follow the proof of Theorem 1.4 verbatim substituting (2.2) with

〈ϕ(xo), v〉χ <
(
ξα2
√

1− α2
)
b2 (2.18)

for some ξ ∈ (0, 1), α ∈ (0,
√

1− ξ), (2.3) with

Tχ <
ξa2
√
b2 − a2

b
(2.19)

and arrive up to inequality (2.9) included. Next, we fix x ∈ Ωo and we let
X, Y ∈ TxM be orthonormal vectors spanning the 2-plane π. From Gauss
equations and (1.16) we have

〈II(X,X), II(Y, Y )〉 − |II(X, Y )|2 =M Sect(π) ≤ χ2, (2.20)
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where II is the second fundamental form. Since 0 < n − m < m, by
Otsuki lemma (see [D], Lemma 3.1) it follows that there exists a unit vector
W ∈ TxM such that

|II(W,W )| ≤ χ

hence, from (2.19) and (2.9) we deduce

|II(W,W )| < ξa2
√
b2 − a2

Tb
=

ξa2√
T 2 + a2ϕ2

max

≤ ξa2√
T 2 + a2|ϕ(x)|2

. (2.21)

Next, we let γ : [0, ε) → M , ε > 0, be the geodesic characterized by the
initial data

γ(0) = x , γ′(0) = W.

Call s ∈ [0, ε) the arc-length parameter and define the function

g : [0, ε)→ R g(s) = u(γ(s)).

A simple computation, using the fact that ϕ is an isometric immersion, gives:

g′′(s) = 〈 S

|ϕ(γ)|
ϕ(γ)− v, II(γ′, γ′)〉+

S

|ϕ(γ)|
− S3

a2|ϕ(γ)|3
〈dϕ(γ′), ϕ(γ)〉2,

(2.22)
where S has the expression in (2.12), evaluated at x = γ(s). Since∣∣∣ S|ϕ|ϕ− v∣∣∣2 ≤ 1 + S2 − 2bS , 〈dϕ(γ′), ϕ〉2 ≤ |dϕ(γ′)|2|ϕ|2 = |ϕ|2

Setting So = S(γ(0)), evaluating at s = 0 we deduce

g′′(0) ≥ −|II(W,W )|
√
S2
o − 2bSo + 1 +

a2 − S2
o√

T 2 + a2|ϕ(γ)|2
. (2.23)

Inserting (2.21) into (2.23) we get

g′′(0) ≥ a2√
T 2 + a2|ϕ(γ)|2

[
1− ξ

√
1 + S2

o − 2bSo −
S2
o

a2

]
. (2.24)

Proceeding as in the proof of Theorem 1.4, since a ∈ (0, b
√

1− ξ) ⊂ (0, b)

g′′(0) ≥ a2√
T 2 + a2|ϕ(γ)|2

[
1− ξ − a2

b2

]
≥ a2

√
b2 − a2

bT
[1− ξ − a2

b2
] = δ > 0,

where δ is independent from x ∈ Ωo and from W .
On the other hand, a standard computation using the fact that γ is a geodesic

14



and the definition of the Hessian of a function, gives g′′(0) = Hessxu(W,W ).
Putting together the last two inequalities we obtain

Hessxu(W,W ) ≥ δ > 0. (2.25)

If xo is an absolute maximum of u, then from (2.25) we immediately contra-
dict the finite maximum principle, otherwise

Int(Ωo) = {x ∈M : u(x) > u(xo)} 6= ∅ (2.26)

and (2.25) gives

inf
x∈Int(Ωo)

sup
Y ∈ TxM
|Y | = 1

Hessxu(Y, Y ) ≥ δ > 0, (2.27)

contradicting the validity of the weak maximum principle for the Hessian
operator since the function u in bounded above on M . This completes the
proof of Theorem 1.14. N

2.6 Proof of Corollary 1.18

By (1.19), using Theorem 1.9 of [PRS1] we have the validity of the weak
maximum principle for the Hessian. The result follows immediately setting
χ = 0 and n = 2m− 1. N

2.7 Proof of Corollary 1.20

The proof follows the same lines as in [D], so we only sketch it. From the
assumptions, since the codimension is m − 1 < m, for every x ∈ M the
theory of flat bilinear forms ensure the existence of a vector Z ∈ TxM ,
|Z| = 1 such that II(JZ, JZ) = −II(Z,Z). We define u,Ωo as in Theorem
1.14. Expression (2.22) gives at every point x, and for every X ∈ TxM ,
|X| = 1

Hessxu(X,X) ≥ 〈 S

|ϕ(x)|
ϕ(x)− v, II(X,X)〉+

S

|ϕ(x)|

(
1− S2

a2

)
.

This calculation is independent from the value of a ∈ (0, b). If a is chosen
to be sufficiently small that S2/a2 < δ < 1 (note that, by definition, on Ωo

it holds S = O(a2) and S/|ϕ| ≥ a2/T ), evaluating along a sequence {xk}
satisfying the weak maximum principle for the Hessian we deduce, for k
sufficiently large,

〈 S

|ϕ(xk)|
ϕ(xk)− v, II(Xk, Xk)〉 ≤ Hessxu(Xk, Xk)−

S

|ϕ(xk)|
(1− δ)

≤ 1

k
− a2

T
(1− δ) < 0
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for every Xk ∈ TxkM, |Xk| = 1. This fact contradicts the existence of Z. N

3 Ending remarks

We end the paper with some observations regading Theorem 1.14 and Corol-
lary 1.18. In particular, we stress the difference of applicability between the
weak maximum principles for the Laplacian and for the full Hessian opera-
tor. A first striking difference is pointed out by Proposition 40 of [PRS4],
which states that every Riemannian manifold satisfying the weak maximum
principle for the Hessian must be non-extendible (that is, non isometric to
any proper open subset of another Riemannian manifold). For example, for
every Riemannian manifold M and p ∈M , M\{p} does not satisfy the weak
maximum principle for the Hessian. This is in sharp contrast to Theorem
IX.3 of [C], whose immediate application is the following

Proposition 3.1. Let (M, 〈, 〉) be a stochastically complete m-dimensional
manifold with Riemannian measure µ, and let K ⊂M be a compact subman-
ifold of dimension k ≥ 0 such that M\K is connected. Then, if m− k ≥ 2,
M\K is stochastically complete.

Proof:
Denoting with Bε = {x : d(x,K) < ε} and with pε the Dirichlet heat kernel
on M\Bε, by Theorem IX.1 of [C] pε ↑ p uniformly on compact subsets of
M\K × [0,+∞). Therefore, the Dirichlet heat kernel p̃ of M\K coincides
with p|M\K , and since µ(K) = 0 the Brownian motion Xt on M\K satisfies

P(Xt ∈M\K | X0 = x) =

∫
M\K

p̃(x, y, t)dµ(y) =

∫
M

p(x, y, t)dµ(y) = 1

for every t > 0, x ∈M\K, and this shows that M\K is stochastically com-
plete. N

For those familiar with stochastic calculus and potential theory this propo-
sition may look almost trivial since it turns out that, in these assumptions,
the set K is polar with respect to the Brownian motion (i.e. it has zero
capacity).
Since, by Theorem 1.9 of [PRS1], geodesic completeness and a well-behaved
sectional curvature imply the full Omori-Yau maximum principle for the
Hessian, one might ask if, keeping a well-behaved sectional curvature and re-
laxing geodesic completeness to the property of non-extendibility, one could
prove the validity of the weak maximum principle for the Hessian. This is
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false, as the following simple counterexample shows. Consider on Euclidean
space R3 the standard cone

M = {x = (x1, x2, x3) 6= (0, 0, 0) : x3 =
√
x2

1 + x2
2}.

In polar coordinates (r, θ), where r ∈ (0,+∞) and θ ∈ [0, 2π), the cone can
be parametrized as x1 = r cos θ, x2 = r sin θ, x3 = r. Therefore, the induced
metric reads

ds2 = 2dr2 + r2dθ2;

this shows that the cone is trivially non-extendible as a Riemannian manifold
(every such extension N must contain only one point not in M , but the
metric is singular in r = 0) but, since M is a flat embedded hypersurface
trivially contained into a non-degenerate cone, from Theorem 1.14 the weak
maximum principle for the Hessian necessary fails. We conclude the remark
observing that M is stochastically complete. Indeed, from the form of the
metric we deduce that the normal projection onto the hyperplane x3 =
0 gives a quasi-isometry between M and R2\{(0, 0)}, preserving divergent
sequences and such that the derivatives of the metric on M are controlled
by those of R2\{(0, 0)}. Therefore, stochastic completeness follows applying
a slight modification of Proposition 3.4 in [PRS1].

Added in proof. With the article in press, we found that the very
recent paper [RM] is deeply related both to our work and to Atsujis paper
[A]. Indeed, the author has succeeded in recovering Atsujis result with the
aid of a geometrical approach via the weak maximum principle very similar
to the one presented here and in [PRS1].
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