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The geometry of surfaces in the

four-dimensional Möbius space

Marco Magliaro Luciano Mari Marco Rigoli

Dedicated to the memory of a friend: Sergio Console

Abstract

We study the conformal geometry of surfaces immersed in the four-
dimensional conformal sphere Q4, viewed as a homogeneous space
under the action of the Möbius group. We introduce the classes of
± isotropic surfaces and characterize them as those whose confor-
mal Gauss map is antiholomorphic or holomorphic. We then relate
these surfaces to Willmore surfaces and prove some interesting van-
ishing results and some bounds on the Euler characteristic of the
surfaces. Finally, we characterize − isotropic surfaces through an
Enneper-Weierstrass-type parametrization.

Mathematical subject classification: 53A30, 14M15, 32L05

1 Introduction

In recent years, the study of the geometry of submanifolds of the conformal
sphere has considerably flourished. The interest in the subject has vari-
ous motivations spanning from it being a natural extension of the theory of
curves and surfaces in the Euclidean space, to its connections with the the-
ory of integrable systems and general relativity. In particular, the theory of
Willmore surfaces has seen a great development in many directions. Among
the numerous books and papers on this subject, [6] is undoubtedly worth
mentioning, and we refer the reader to the references therein for a complete
and updated bibliography on the subject.
Of all the different possible approaches that have been employed to deal with
these topics, we chose Cartan’s method of the moving frame because of its
flexibility and intuitiveness and because, when dealing with homogeneous
spaces, it seems to us to be the fittest.
This paper studies the geometry of surfaces in the conformal 4-sphere Q4

and it is organized as follows. After a basic introduction on the generalities
of the frame reduction procedure, needed to fix the notation, in Section 3
we introduce the conformal Grassmannian of 2-planes in R6 and its Kahler-
Lorentzian structure. We also provide a holomorphic embedding of this
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2 The conformal sphere and its submanifolds 2

Grassmann manifold into a quadric in the complex projective space.
In Section 4 we define the conformal Gauss map of a surface in Q4 and, in-
spired by [13], we identify a special class of Willmore surfaces, called isotropic
surfaces, that we characterize as those surfaces whose conformal Gauss map
is holomorphic or antiholomorphic (in what follows, for the sake brevity, we
will write “− holomorphic” to mean antiholomorphic and “+ holomorphic”
instead of holomorphic). This result is stated in Theorem 4.4 and mirrors
the well known characterization of Willmore surfaces as those with har-
monic conformal Gauss map. This and other concepts and results studied
here have been introduced in the study of minimal surfaces in the Rieman-
nian 4-sphere and even in oriented Riemannian 4-manifolds. An interesting
paper in this direction, besides the aforementioned [13], is [4].
We then employ some classical techniques such as Cauchy-Riemann inequal-
ities and Carleman-type estimates that, combined with classical index the-
orems for vector fields and, more generally, for sections of suitable vector
bundles, allow us to deduce an upper bound on the Euler characteristic of
a compact, non isotropic surface. This result is stated in Theorem 4.8.
In Section 5 we consider the notion of S-Willmore surface, first introduced
by Ejiri in [9]. There, the author proved that, in the riemannian setting an
S-Willmore surface is a Willmore surface; this holds true also in our setting,
as proved in Proposition 5.2. We also prove some vanishing and holomor-
phicity results that have nice topological consequences.
In the last part of the paper, we show that, roughly speaking, − isotropic sur-
faces in the conformal 4-sphere are characterized by their conformal Gauss
map: in Theorem 6.1 and Theorem 6.4 we establish a bijection between cer-
tain − isotropic, weakly conformal branched immersions of a fixed Riemann
surface in Q4 and holomorphic maps, valued in the conformal Grassmannian,
that are solutions of a suitable Pfaffian system.

2 The conformal sphere and its submanifolds

Consider Sn and Rn with their standard metrics of constant curvatures,
and let σ : Sn\{N} → Rn be the stereographic projection, where N =
(1, 0, . . . , 0) ∈ Rn+1 is the north pole. It is well known that σ is a conformal
diffeomorphism. If n ≥ 3, by Liouville’s theorem ([8], pp.138-141; [12],
pp.52-53, [18], pp. 289-290), every conformal diffeomorphism of Sn is of the
form σ−1◦g◦σ, where g is a composition of Euclidean similarities of Rn with
possibly the inversion Rn\{0} 3 x 7→ x/|x|2. The assertion holds even for
n = 2, although a proof of this fact relies, for instance, on standard compact
Riemann surfaces theory since Liouville’s theorem is false for C. We observe
that the group of conformal diffeomorphisms of the sphere, Conf(S2), can
also be identified with the fractional linear transformations of C, either
holomorphic or anti-holomorphic. From now on, we let n ≥ 2 and we fix
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the index convention 1 ≤ A,B,C ≤ n. We denote by Qn the Darboux
hyperquadric

Qn =

{
(x0 : xA : xn+1) |

∑
A

(xA)2 − 2x0xn+1 = 0

}
⊂ Pn+1(R).

The Dirac-Weyl embedding χ : Rn → Qn is defined by

χ : x 7−→
(

1 : x :
1

2
|x|2
)

and it extends to a diffeomorphism χ ◦ σ : Sn → Qn by setting χ ◦ σ(N) =
(0 : 0 : 1). The advantage of such a representation for the sphere is that
every conformal diffeomorphism of Sn acts as a linear transformation on
the homogeneous coordinates of Qn, so that Conf(Sn) can be viewed as the
projectivized of the linear subgroup of GL(n + 2) preserving the quadratic
form that defines the Darboux hyperquadric.
Endow Rn+2 with the Lorentzian metric 〈 , 〉 represented, with respect to
the standard basis {η0, ηA, ηn+1}, by the matrix

S =

 0 0 −1
0 In 0
−1 0 0

 , (1)

and let L+ be the positive light cone, that is, L+ = {v = t(v0, vA, vn+1) ∈
Rn+2 : tvSv = 0, v0 + vn+1 > 0}. Note that L+ projectivizes to Qn
and that η0, ηn+1 ∈ L+. Moreover, there is a bijection between Conf(Sn)
and the Lorentz group of 〈 , 〉 preserving the positive light cone (usually
called the orthochronous Lorentz group). This gives a Lie group structure
to the conformal group Conf(Sn), which can be proved to be unique when
the action of Conf(Sn) on Sn is required to be smooth (see [14], pp. 95-
98). In particular, the identity component of the Lorentz group is called the
Möbius group, Möb(n), and coincides with the subgroup of the orientation
preserving elements of Conf(Sn). The transitivity of the action of Möb(n)
on the n-sphere gives Qn a homogeneous space structure, allowing us to
identify it with the space of left cosets Möb(n)/Möb(n)0, where Möb(n)0 is
the isotropy subgroup of [η0] ∈ Qn:

Möb(n)0 =


 r−1 txA 1

2r|x|
2

0 A rx
0 0 r

∣∣∣∣∣ r > 0, x ∈ Rn,

A ∈ SO(n)

. (2)

It follows that the principal bundle projection π : Möb(n)→ Qn associates
to a matrix G = (g0|gA|gn+1) the point [Gη0] = [g0] ∈ Qn. From now
on, we shall use the Einstein summation convention. Let möb(n) denote
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the Lie algebra of Möb(n); the Maurer-Cartan form Φ of Möb(n) is the
möb(n)-valued 1-form

Φ =


Φ0

0 Φ0
B 0

ΦA
0 ΦA

B ΦA
n+1

0 Φn+1
B Φn+1

n+1

 ,

with the symmetry relations

Φn+1
n+1 = −Φ0

0, ΦA
B = −ΦB

A , ΦA
n+1 = Φ0

A, Φn+1
B = ΦB

0

and satisfying the structure equation dΦ+Φ∧Φ = 0, which component-wise
reads 

dΦ0
0 = −Φ0

A ∧ ΦA
0 ;

dΦA
0 = −ΦA

0 ∧ Φ0
0 − ΦA

B ∧ ΦB
0 ;

dΦ0
A = −Φ0

0 ∧ Φ0
A − Φ0

B ∧ ΦB
A ;

dΦA
B = −ΦA

0 ∧ Φ0
B − ΦA

C ∧ ΦC
B − Φ0

A ∧ ΦB
0 .

(3)

Through a local section s : U ⊂ Qn → Möb(n), Φ pulls back to a flat Cartan
connection ψ = s∗Φ = s−1ds. In particular, the set {ψA0 } gives a local basis
for the cotangent bundle of Qn. Under a change of section s̃ = sK, where
K : U ⊂ Qn → Möb(n)0, the change of gauge becomes

ψ̃ = s̃−1ds̃ = K−1ψK +K−1dK. (4)

By the expression of Möb(n)0 in (2), we have in particular

(ψ̃A0 ) = r−1 tA(ψA0 ), (5)

where (ψA0 ) stands for the column vector whose A-th component is ψA0 . It
follows that

ψ̃A0 ⊗ ψ̃A0 = r−2ψA0 ⊗ ψA0 , ψ̃1
0 ∧ . . . ∧ ψ̃n0 = r−nψ1

0 ∧ . . . ∧ ψn0 ,

which implies that{(
U,ψA0 ⊗ ψA0

)
: U ⊂ Qn domain of a local section s : U → Möb(n)

}
defines a conformal structure on Qn, that is, a collection of locally defined
metrics varying conformally on the intersection of their domains of defini-
tion, together with an orientation (locally defined by ψ1

0 ∧ . . . ∧ ψn0 ), both
preserved by Möb(n). It is easy to prove that, with this conformal struc-
ture, χ ◦ σ : Sn → Qn is a conformal diffeomorphism. This gives sense to
the whole construction.
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Let now M be an m-dimensional, oriented manifold. We fix the index
ranges

1 ≤ i, j, . . . ≤ m, m+ 1 ≤ α, β, . . . ≤ n.

Let f : M → Qn be an immersion. A zeroth order frame field along f
is a smooth map e defined on an open set U ⊆ M with values in Möb(n)
such that π ◦ e = f|U . From now on, dealing with frames along f , we will
omit specifying their domains of definition when no possible confusion will
arise. We set

φ = e∗Φ

and observe that under a change of frames ẽ = eK, φ̃ = ẽ∗Φ expresses in
terms of φ as in (4). As a consequence, at any point p ∈ M we can choose
a zeroth order frame such that

φα0 = 0. (6)

The isotropy subgroup at this point is given by

Möb(n)1 =




r−1 txA tyB 1
2r
(
|x|2 + |y|2

)
0 A 0 rx
0 0 B ry
0 0 0 r


∣∣∣∣∣∣
r ∈ R+, A ∈ SO(m),
B ∈ SO(n−m),
x ∈ Rm, y ∈ Rn−m

.
(7)

and since it is independent of p, smooth zeroth order frame fields such that
(6) holds can be chosen in an appropriate neighborhood of each point of M
by general theory, see [18].
A zeroth order frame field e such that (6) holds on its domain of definition is
called first order frame. Any two such frame fields are related by ẽ = eK,
where now K takes values in Möb(n)1.
It can be easily verified that, with respect to first order frames, the quadratic

form ds2 =
∑
i

φi0 ⊗ φi0 and the volume form dV = φ1
0 ∧ . . . ∧ φm0 define a

conformal structure on M and, with respect to these natural structures, f
becomes a conformal immersion.
Differentiating (6) and using the structure equations of Möb(n) and Cartan’s
lemma, we find that there exist (locally defined) functions hαij such that

φαi = hαijφ
j
0, hαij = hαji. (8)

We use (4) and (7) to obtain that, under a change of first order frame fields

h̃αij = rBβ
αA

l
j(A

k
i h

β
lk −A

l
iy
β). (9)

Taking the trace of (9) with respect to i and j we obtain

h̃αii = rBβ
α(hβkk −my

β).
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The next step is therefore to consider at any point p ∈M a first order frame
such that

hαkk = 0. (10)

The isotropy subgroup is given by

Möb(n)D =




r−1 txA 0 1
2r|x|

2

0 A 0 rx
0 0 B 0
0 0 0 r


∣∣∣∣∣∣
A ∈ SO(m),
B ∈ SO(n−m),
r ∈ R+, x ∈ Rm

, (11)

which is again independent of the point p considered, so that first order
frames with the above property can be smoothly chosen in an appropriate
neighborhood of any point. We define a Darboux frame field along f as
a first order frame field for which (10) holds.
Any two Darboux frame fields are related again by ẽ = eK where now K is
a smooth function taking values in Möb(n)D.

We observe that for Darboux frames (9) becomes

h̃αij = rBβ
αA

l
jA

k
i h

β
kl. (12)

For further details on the generality of the frame reduction procedure, we
refer the reader to [17], [19], [18].
Differentiating (8), using the structure equations and Cartan’s lemma, with
respect to a Darboux frame e we have

dhαij − hαikφkj − hαkjφki + hβijφ
α
β + hαijφ

0
0 + δijφ

0
α = hαijkφ

k
0, (13)

for some (locally defined) functions hαijk symmetric in the lower indices.
Taking the trace of (13) with respect to i and j and using (10) we obtain

φ0
α = pαkφ

k
0 (14)

where we have set

pαk =
1

m
hαiik. (15)

We say that a point p ∈ M is an umbilical point if and only if for some
(hence any) Darboux frame

hαij = 0 at p.

A totally umbilical submanifold is actually an m-dimensional sphere, as
stated in the following proposition.

Proposition 2.1. Let f : M → Qn be an immersion, M oriented, m =
dimM ≥ 2, for which hαij ≡ 0 at every point. Then, there exists Qm ⊂ Qn
such that f(M) ⊆ Qm. Furthermore, if M is compact, f is a diffeomorphism
onto Qm.
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The proof relies on a standard technique in the method of the moving
frame and therefore we omit it.
The form (11) of the isotropy subgroup Möb(n)D of Darboux frames along f
suggests the following considerations: let us consider the matrix of 1-forms
Ψ defined by

Ψ =

 φ0
0 φ0

i 0
φi0 φij φ0

i

0 φi0 −φ0
0

 . (16)

We can clearly think of Ψ as taking values in the Lie algebra of Möb(m).
Under a change of Darboux frames ẽ = eK, where K takes values in
Möb(n)D, we have

Ψ̃ = K̄−1ΨK̄ + K̄−1dK̄,

with

K̄ =

 r−1 txA r
2 |x|

2

0 A rx
0 0 r

 ,

x ∈ Rm, A ∈ SO(m), r ∈ R+.
We therefore conclude that Ψ defines a Cartan connection on M .
Moreover, we can define a suitable vector bundle N over M whose role
should parallel that of the normal bundle of an isometric immersion into
a Riemannian manifold. In order to do this, with respect to any Darboux
frame, we define the fiber Np to be the (n − m)-dimensional vector space
generated by {eα}. Because of (11), it is trivial to see that the bundle N
is well defined and on it there is a naturally defined inner product ( , ) for
which {eα} is an orthonormal basis at p. With respect to this inner product
we define a metric connection

D : Γ(N)→ Γ(T ∗M ⊗N)

by setting
Deα = φβα ⊗ eβ.

The curvature forms Λαβ are defined via the structure equations

dφαβ = −φαγ ∧ φ
γ
β + Λαβ .

Using the structure equations of the group Möb(n) and (8), setting

⊥ταβij = hαkih
β
kj − h

α
kjh

β
ki, (17)

we obtain

Λαβ =
1

2
⊥ταβijφ

i
0 ∧ φ

j
0.

Observe that we have the symmetry relations

⊥ταβij = −⊥ταβji = −⊥τβαij
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Moreover, with respect to Darboux frames ẽ, e

⊥τ̃αβij = r2Bγ
αB

ρ
βA

t
iA

v
j
⊥τγρtv

It follows that we can define a tensor ⊥τ by locally setting

⊥τ = ⊥ταβijφ
i
0 ⊗ φ

j
0 ⊗ eα ⊗ eβ.

We will call ⊥τ the normal curvature tensor.

3 The conformal Grassmannian

Set s = n −m ≥ 1 and let {ε0, . . . , εm, εm+1, . . . , εn, εn+1} be the standard
basis of Rn+2. Fix as an origin in the Grassmann manifold of oriented s-
planes in Rn+2, Gs

(
Rn+2

)
, the point O = [εm+1, . . . , εn] and consider the

orbit Qs
(
Rn+2

)
of the point O under the left action (by matrix multiplica-

tion) of the group Möb(n) onto Gs
(
Rn+2

)
. Then the isotropy subgroup of

the action on the orbit at the point O is given by

H0 =




a tz 0 b
x A 0 y
0 0 B 0
c tw 0 d


∣∣∣∣∣∣∣∣∣
 a tz b

x A y
c tw d

 ∈ Möb(m),

B ∈ SO(s)

 ⊆ Möb(n).

(18)
Note that, since H0 ⊆ Möb(n), z, w, x, y, a, b, c, d, A cannot be chosen ar-
bitrarily but have to satisfy certain compatibility relations between them
that will be essential in determining that certain quantities are globally well
defined.

Thus Qs
(
Rn+2

)
is identified with the homogeneus space Möb(n)/H0

with the canonical projection

π̂ : Möb(n)→ Qs
(
Rn+2

)
given by

π̂ : P 7→ [Pm+1, . . . , Pn] (19)

where P0, PA, Pn+1 are the columns of the matrix P .
On their common domain of definition, two local sections of the bundle
π̂ : Möb(n)→ Qs

(
Rn+2

)
are related by s̃ = sK where K is a function taking

values in H0. Considering the components Φ0
α, Φi

α, Φα
0 of the Maurer-Cartan

form of Möb(n) and setting ϕ = s∗Φ, we find that their pull-backs under
the sections s, s̃ are related by the following transformation laws:

ϕ̃0
α = dϕ0

βB
β
α − yiϕiβB

β
α + bϕβ0B

β
α

ϕ̃iα = −wiϕ0
βB

β
α +Aki ϕ

k
βB

β
α − ziϕβ0B

β
α

ϕ̃α0 = c ϕ0
βB

β
α − xkϕkβB

β
α + aϕβ0B

β
α

(20)
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where the meaning of d, c, a, b, y, x, w, z, A,B is given in (18). From (20) and
the relations defining the group Möb(n), it is not hard to deduce that the
quadratic form dl2 of signature (s, s(m+ 1)) given by

dl2 = −ϕ0
α ⊗ ϕα0 − ϕα0 ⊗ ϕ0

α +
∑
i,α

ϕiα ⊗ ϕiα (21)

is well defined on Qs
(
Rn+2

)
and determines a pseudo-metric on it. In par-

ticular the forms ϕ0
α, ϕα0 , ϕiα constitute a local (non orthonormal) coframe

on Qs
(
Rn+2

)
whose dimension is s(m+ 2). It is convenient to set

θ0,α = ϕα0 , θα,0 = ϕ0
α, θα,i = ϕiα (22)

and to order the pairs (α, 0), (α, i), (0, α) as

(γ, 0) < (β, i) < (0, α) ∀α, β, γ, i
(0, β) < (0, α) iff β < α

(β, j) < (α, i) iff β < α or β = α and j < i

(β, 0) < (α, 0) iff β < α. (23)

Thus, representing with the symbols Ã, B̃, . . . the s(m + 2) indices (α, 0),
(α, i), (0, α), we can write dl2 as

dl2 = g
ÃB̃
θÃ ⊗ θB̃ (24)

with (
g
ÃB̃

)
=

 0 0 −Is
0 Ism 0
−Is 0 0

 s = n−m. (25)

The Levi-Civita connection forms θÃ
B̃

with respect to the previous coframe
are therefore characterized by the equations{

dθÃ = −θÃ
B̃
∧ θB̃

g
ÃC̃
θC̃
B̃

+ g
B̃C̃
θC̃
Ã

= 0.
(26)

This allows us to determine the connection forms by simply taking exterior
derivatives of (22) and using the structure equations of the group Möb(n).
We obtain

θα,0β,0 = δαβϕ
0
0 + ϕαβ , θα,0β,i = δαβϕ

0
i , θα,00,β = 0

θα,iβ,0 = δαβϕ
i
0, θα,iβ,k = δαβϕ

i
k + δikϕ

α
β , θα,i0,β = δαβϕ

0
i

θ0,α
β,0 = 0, θ0,α

β,i = δαβϕ
i
0, θ0,α

0,β = ϕαβ − δαβϕ0
0

(27)

and, by a simple computation, one checks the validity of the skew-symmetry
relations given by the second of (26).
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It is worth considering the special case s = 2, that is m = n− 2. Indeed,
starting from the 2n independent forms ϕ0

α, ϕiα, ϕα0 we can construct the n
independent forms over C

ζ0 = ϕ0
n−1 + iϕ0

n, ζk = ϕkn−1 + iϕkn, ζn−1 = ϕn−1
0 + iϕn0 . (28)

Using the structure equations, it is immediate to verify that their differen-
tials belong to the ideal they generate, showing that Q2

(
Rn+2

)
is a complex

manifold, in fact complex Lorentzian. Indeed the complex structure J in-
duced by the forms (28) is determined by

ζ0(X + iJX) = ζk(X + iJX) = ζn−1(X + iJX) = 0 ∀X ∈ TQ2

(
Rn+2

)
,

that is

ϕ0
n−1(X) = ϕ0

n(JX) ϕkn−1(X) = ϕkn(JX) ϕn−1
0 (X) = ϕn0 (JX).

It is therefore trivial to verify that the metric dl2 is Hermitian-Lorentzian:

dl2(JX, JY ) =− ϕ0
n−1(JX)ϕn−1

0 (JY )− ϕ0
n(JX)ϕn0 (JY )+

− ϕn−1
0 (JX)ϕ0

n−1(JY )− ϕn0 (JX)ϕ0
n(JY )+

+ ϕin−1(JX)ϕin−1(JY ) + ϕin(JX)ϕin(JY ) =

= dl2(X,Y ).

We verify that Q2

(
Rn+2

)
is Kähler by showing that the differential of the

Kähler form
K(X,Y ) = dl2(JX, Y )

vanishes identically. This is a simple exercise using (28) and the Maurer-
Cartan structure equations. Indeed we have that

K =− ϕ0
n−1 ∧ ϕn0 − ϕn−1

0 ∧ ϕ0
n + ϕin−1 ∧ ϕin = (29)

=
i

2

(
−ζ0 ∧ ζn−1 − ζn−1 ∧ ζ0 + ζk ∧ ζk

)
,

therefore dK = 0.
Finally we describe the complex projective structure of the conformal Grass-
mannian.

Proposition 3.1. There is a holomorphic embedding of the conformal Grass-
mannian Q2

(
Rn+2

)
into the hyperquadric of Pn+1

C whose homogeneous equa-
tion is

−2x0xn+1 +

n∑
A=1

(xA)2 = 0. (30)
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Proof. There is a natural injection of Q2

(
Rn+2

)
in Pn+1

C defined as follows.
Let [Gεn−1, Gεn], with G ∈ Möb(n), be a 2-plane of Q2

(
Rn+2

)
. The map

sending [Gεn−1, Gεn] to the projectivization of the complex, non-zero vector
G(εn−1 + iεn) is well defined and injective, and thus provides a complex
projective representation for the whole conformal Grassmannian of 2-planes
in Rn+2.
Indeed, let [Gεn−1, Gεn] and [G′εn−1, G

′εn] be two representatives for the
same 2-plane in Q2

(
Rn+2

)
, then G and G′ must differ by an element of the

isotropy subgroup H0, namely G′ = GH for some H ∈ H0. But H has an
expression as in (18), with B ∈ SO(2), that is

B =

(
cos θ − sin θ
sin θ cos θ

)
,

for some θ ∈ R, so we have

G′(εn−1 + iεn) =GH(εn−1 + iεn) =

=G(cos θεn−1 + sin θεn − i sin θεn−1 + i cos θεn) =

=e−iθG(εn−1 + iεn)

which projects to the same complex projective class as G(εn−1 +iεn). As for
injectivity, if G(εn−1 +iεn) and G′(εn−1 +iεn) project to the same projective
class, then there exists ρ > 0 and θ ∈ R such that

G′(εn−1 + iεn) = ρeiθG(εn−1 + iεn) = ρGH(εn−1 + iεn),

where

H =


In−1 0 0 0

0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


clearly belongs to H0. So [Gεn−1, Gεn] and [G′εn−1, G

′εn] are in fact the
same 2-plane in Q2

(
Rn+2

)
.

We will show that, as a matter of fact, Q2

(
Rn+2

)
can be identified with an

open submanifold of the projective quadric of homogeneous equation (30).
As we have explained above, the image in Pn+1

C of a 2-plane of Q2

(
Rn+2

)
is

the projective class of a complex vector of the form G(εn−1 + iεn), for some
G ∈ Möb(n). Now, the vector εn−1 + iεn trivially satisfies equation (30),
and therefore lies in the quadric. Note that the quadric (30) is represented
by the matrix

S =

 0 0 −1
0 In 0
−1 0 0
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introduced in (1) and, since G ∈ Möb(n),

t[G(εn−1 + iεn)]S[G(εn−1 + iεn)] = t(εn−1 + iεn)tGSG(εn−1 + iεn) =

= t(εn−1 + iεn)S(εn−1 + iεn) = 0.

Therefore G(εn−1 + iεn) lies in the quadric (30).
However, the conformal Grassmannian does not cover the whole quadric.
Indeed the points of the quadric coming from a 2-plane in Q2

(
Rn+2

)
are

those that have a representative v + iw ∈ Cn+2 such that, with respect to
the Lorentzian product in Rn+2, ‖v‖2 = ‖w‖2 > 0. This leaves out the
projective classes represented by vectors v+ iw where v and w are isotropic
and non zero. All such vectors lie in the quadric but cannot be obtained
from εn−1 or εn through a matrix of Möb(n), because such matrices preserve
the Lorentzian norm defined through the matrix S.

4 The geometry of surfaces in Q4

Let f : M → Q4 be an oriented immersed surface. Assume that M has been
given the structure of a Riemann surface starting from an assigned metric
g and assume that f is conformal in the sense that the conformal structure
that it induces on M coincides with that of M as a Riemann surface.
We let e : U ⊂ M → Möb(n) be a local first order frame along f , so that,
according to (6),

φα0 = 0 3 ≤ α ≤ 4

and the isotropy subgroup is given by (7). Then

φαi = hαijφ
j
0, hαij = hαji 1 ≤ i, j ≤ 2 (31)

and we have the transformation laws (9).
Starting from first order frames, we are now going to introduce a number

of geometric invariants. We let Lα denote the Hopf transform of the
symmetric matrix (hαij), that is

Lα =
1

2
(hα11 − hα22)− ihα12. (32)

Setting

A =

(
cos t − sin t
sin t cos t

)
and using (9), we compute

h̃α11 = rBβ
α

(
cos2 t hβ11 + 2 cos t sin t hβ12 + sin2 t hβ22 − y

β
)
,

h̃α22 = rBβ
α

(
sin2 t hβ11 − 2 sin t cos t hβ12 + cos2 t hβ22 − y

β
)
,
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h̃α12 = rBβ
α

(
− sin t cos t(hβ11 − h

β
22) + (− sin2 t+ cos2 t)hβ12

)
.

From the above formulae, we can deduce the one expressing the transforma-
tion of Lα under a change of first order frames, that is

L̃α = re2itBβ
αL

β. (33)

Therefore, setting

B =

(
cos s − sin s
sin s cos s

)
,

we obtain that
L̃3 ± iL̃4 = re2ite∓is

(
L3 ± iL4

)
. (34)

Using this, we see that the real, locally defined 2-forms

ω± =
∣∣L3 ± iL4

∣∣2 φ1
0 ∧ φ2

0, (35)

are in fact globally defined and smooth. We will say that f : M → Q4 is +
or − isotropic respectively if ω+ ≡ 0 or ω− ≡ 0.
Note that, when f is at the same time + and − isotropic, then

hα12 = 0, hα11 = hα22.

Thus, passing to a Darboux frame, hαij = 0 for every α, i, j, and f(M) ⊆
Q2 ⊂ Q4 according to Proposition 2.1.

We underline the fact that the forms ω± are invariant with respect to
first order frames.

It is also easy to see, using (9), that the 2-form

w =
1

4

{∑
α

(hα11 − hα22)2 + 4(hα12)2

}
φ1

0 ∧ φ2
0 =

(
|L3|2 + |L4|2

)
φ1

0 ∧ φ2
0 (36)

is globally defined. In particular the form η is globally defined, which satisfies

w = ω± ∓ η. (37)

We now identify η. A simple computation, using the definitions of w and
ω± yields

η = −i
(
L3L4 − L4L3

)
φ1

0 ∧ φ2
0. (38)

Expressing it in terms of the hαij ’s we obtain

−i
(
L3L4 − L4L3

)
= h3

11h
4
12 − h3

22h
4
12 − h3

12h
4
11 + h3

12h
4
22.

If we specialise to a Darboux frame e along f , since hα11 +hα22 = 0 we obtain

−i
(
L3L4 − L4L3

)
= 2(h3

11h
4
12 − h3

12h
4
11).
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We go back to the normal bundle N introduced in Section 2. The curvature
KN of this bundle is now given by

Λ3
4 =

1

2
⊥τ3

4ijφ
i
0 ∧ φ

j
0 = KNφ

1
0 ∧ φ2

0

and using (17) we deduce that

KN = −i
(
L3L

4 − L4L
3
)

(39)

or, in other words
dφ3

4 = KNφ
1
0 ∧ φ2

0 = η. (40)

Using (37), (40) and the generalized Gauss-Bonnet theorem, having set

W (f) =

∫
M

w (41)

in the case of M compact, we obtain

Theorem 4.1. Let f : M → Q4 be an immersion of a compact orientable
surface; then

W (f) =

∫
M
ω± ∓ 2πχ(N) (42)

where χ(N) is the Euler number of the bundle N introduced above.

The functional W (f) defined in (41) for M compact or, more generally
on compact domains of M , is called the Willmore functional.

Corollary 4.2. Let f : M → Q4 be an immersion of a compact orientable
surface. Then ∫

M
ω± ≥ ±2πχ(N)

equality holding if and only if f(M) = Q2 ⊂ Q4.

Proof. An easy computation shows that

w =
1

2

∑
i,j,α

(hαij)
2φ1

0 ∧ φ2
0,

so, clearly, W (f) ≥ 0 and W (f) = 0 if and only if f(M) = Q2 ⊂ Q4 by
Proposition 2.1.

Remark 4.3. Suppose that M is compact and orientable; (42) implies that,
if M is either + or − isotropic, then the values of W (f) are “quantized”.
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Our next goal is to give a geometric interpretation to + and − isotropic
immersions. Towards this aim we introduce the conformal Gauss map. We
let Q2

(
R6
)

be the conformal Grassmannian of 2-planes introduced in Sec-
tion 3. As we have seen, Q2

(
R6
)

has the structure of a Kähler-Lorentzian
manifold with a local basis of (1, 0)-type forms given by

ζ0 = ς∗Φ0
3 + iς∗Φ0

4, ζk = ς∗Φk
3 + iς∗Φk

4, ζ3 = ς∗Φ3
0 + iς∗Φ4

0, (43)

where ς is any local section of π̂.
Let f : M → Q4 be an immersed oriented surface and let e be a (local)
Darboux frame along f . The conformal Gauss map γf : M → Q2

(
R6
)

is
defined by setting

γf : p 7→ [e3, e4]p

where with [e3, e4]p we denote the oriented 2-plane generated by the vectors
e3, e4 at the point p.
We observe that, under a change of Darboux frames, γf is in fact globally
well defined, and the orientation of the 2-plane [e3, e4] is also preserved.
We set, in a Darboux frame e,

kα =
1

2
(pα1 − ipα2 ), (44)

where pαk was defined in (15).

Theorem 4.4. Let f : M → Q4 be an immersed oriented Riemann surface.
Then f is ± isotropic if and only if γf : M → Q2

(
R6
)

is ∓ holomorphic.

Proof. We recall that, given a Riemann surface M , a map f : M → Q2

(
R6
)

is respectively ± holomorphic (that is, holomorphic or antiholomorphic) if
the pull-back of the forms ζ0, ζk, ζ3 in (43) is respectively of type (1, 0) or
(0, 1).
We begin by observing that if e is any Darboux frame along f , then the
following diagram is commutative.

Möb(4)

π̂

yy

π

##
Q2

(
R6
)

Q4

M

γf

ee
e

OO

f

;;

This fact enables us to compute in a simple way γ∗fζ
0, γ∗fζ

k, γ∗fζ
3. Indeed,

setting
θ0,α = ς∗Φα

0 , θα,0 = ς∗Φ0
α, θα,i = ς∗Φi

α (45)
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and using (15), (44) and (31) we have:
γ∗fθ

α,0 = pαkφ
k
0

γ∗fθ
α,i = −hαikφk0

γ∗fθ
0,α = 0.

(46)

In order to see this, we observe that

γ∗f ς
∗Φ = (π̂ ◦ e)∗ς∗Φ = e∗(ς ◦ π̂)∗Φ.

And since π̂ ◦ (ς ◦ π̂) = π̂, then for every g in the inverse image through π̂
of the domain of definition of ς, it holds

ς(π̂(g)) = gK̃(g),

where K̃ is an H0-valued function. Therefore

(ς ◦ π̂)∗Φg = K̃(g)−1g−1dgK̃(g) + K̃(g)−1dK̃g,

and since K̃(g)−1dK̃g has values in the Lie algebra of H0, we deduce that

(ς ◦ π̂)∗Φα
0 g0

=
(
K̃(g0)−1g−1

0 dgg0K̃(g0)
)α

0

(ς ◦ π̂)∗Φ0
αg0

=
(
K̃(g0)−1g−1

0 dgg0K̃(g0)
)0

α

(ς ◦ π̂)∗Φα
i g0

=
(
K̃(g0)−1g−1

0 dgg0K̃(g0)
)α
i
.

If for a fixed g̃ we replace the section ς with the section ςK̃(g̃)−1 obtained
multiplying ς by a constant matrix, we will have defined a new section
ς̃ which satisfies, at the point g̃ (and in general only there), the equality
ς̃(π̂(g̃)) = g̃, and therefore

(ς̃ ◦ π̂)∗Φα
0 g̃ =

(
g̃−1dgg̃

)α
0

= Φα
0 g̃

(ς̃ ◦ π̂)∗Φ0
αg̃ =

(
g̃−1dgg̃

)0
α

= Φ0
αg̃

(ς̃ ◦ π̂)∗Φα
i g̃ =

(
g̃−1dgg̃

)α
i

= Φα
i g̃.

Now let us fix p0 ∈M and set g̃ = e(p0). Given a section ς defined in a neigh-
borhood of γf (p0), and possibly replacing it with the section ςK̃(e(p0))−1,
which we shall still call ς, we have at the point p0

ς(π̂(e(p0))) = e(p0),

and thus (
γ∗f ς
∗Φα

0

)
p0

= (e∗(ς ◦ π̂)∗Φα
0 )p0

= (e∗Φα
0 )p0

= φα0 p0
= 0(

γ∗f ς
∗Φ0

α

)
p0

= φ0
αp0

= pαk (p0)φk0p0(
γ∗f ς
∗Φα

i

)
p0

= φαi p0
= hαik(p0)φk0p0

.
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Hence, setting ϕ = φ1
0 + iφ2

0 and observing that, if αk, βk are real-valued
functions, one has

(αk + iβk)φ
k
0 =

{
α1 + β2

2
+ i

β1 − α2

2

}
ϕ+

{
α1 − β2

2
+ i

β1 + α2

2

}
ϕ, (47)

we get, with the aid of (32), at the point p0,

γ∗fζ
0 =

(
k3 + ik4

)
ϕ+

(
k3 − ik4

)
ϕ

γ∗fζ
1 = −1

2

(
L3 + iL4

)
ϕ− 1

2

(
L3 − iL4

)
ϕ

γ∗fζ
2 = − i

2

(
L3 + iL4

)
ϕ+

i

2

(
L3 − iL4

)
ϕ

γ∗fζ
3 = 0.

It is therefore clear, using (35), that if γf is ∓ holomorphic, then f is ±
isotropic. To prove the converse, we need to show that

L3 ± iL4 = 0 implies k3 ± ik4 = 0. (48)

Towards this aim we differentiate the first of (48) and we use (13) to perform
the computations. Note that, since we are using Darboux frames along f ,

Lα = hα11 − ihα12

and we can compute

d
(
L3 ± iL4

)
=(h3

11k − p3
k ± h4

12k)φ
k
0 ± i(h4

11k − p4
k ∓ h3

12k)φ
k
0+

+ (L3 ± iL4)
[
i(2φ2

1 ∓ φ4
3)− φ0

0

]
,

Now, using (47), some further computation yields

d
(
L3 ± iL4

)
= (L3±iL4)

[
i(2φ2

1 ∓ φ4
3)− φ0

0

]
+(ζ3±iζ4)ϕ+(k3±ik4)ϕ (49)

where, for ease of notation, we have set

ζα = kα − i(hα112 − ihα122). (50)

Now, if the first of (48) holds, then in particular the coefficient of ϕ̄ in (49)
must vanish, which is the claim.

Let us now further analyze the quantities kα defined in (44). It is not
hard to show that under a change of Darboux frames

k̃3 ± ik̃4 = r2eite∓is
{
k3 ± ik4 +

1

2
(x1 + ix2)(L3 ± iL4)

}
. (51)
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For p > 2, consider the condition

∃γ ∈ Lploc(M) such that
∣∣k3 ± ik4

∣∣ ≤ γ∣∣L3 ± iL4
∣∣ a.e. (52)

Of course we have to check that this condition actually makes sense, since
the quantities involved strongly depend on the choice of the Darboux frame.
To this end we use (51) and (34) and observe that if condition (52) holds for
some Darboux frame, then for any other Darboux frame we can estimate∣∣∣k̃3 ± ik̃4

∣∣∣ = r2

∣∣∣∣k3 ± ik4 +
1

2
(x1 + ix2)(L3 ± iL4)

∣∣∣∣ ≤
≤ r2

(
γ +

1

2

∣∣x1 + ix2
∣∣)∣∣L3 ± iL4

∣∣ = r

(
γ +

1

2

∣∣x1 + ix2
∣∣)∣∣∣L̃3 ± iL̃4

∣∣∣.
Therefore condition (52) still holds, provided we replace γ with another
suitable function in Lploc(M). We recall the following result by Eschenburg
and Tribuzy (see [10]).

Lemma 4.5. Let U ⊂ C be an open domain containing 0 and f : U → Cn

a smooth function satisfying the Cauchy-Riemann condition∣∣∣∣∂f∂z̄
∣∣∣∣ ≤ γ|f | (53)

for some Lp-function γ with p > 2. Then, in a neighborhood of the origin,
either f ≡ 0 or

f(z) = zkf0(z)

for some nonnegative integer k and a continuous function f0 such that
f0(0) 6= 0.

We also recall that, if E →M is a complex vector bundle over a Riemann
surface M , a smooth section s of E is said to be of analytic type if it either
vanishes identically or, near any zero p, we have

s = zks0

for some positive integer k and some continuous section s0 with s0(p) 6= 0,
where z is any holomorphic chart centered at p. Sections of analytic type,
and particularly functions of analityc type, are quite useful in many different
settings, and have therefore been studied thoroughly (see e.g. [2]).
Cauchy-Riemann conditions have many applications in this context, starting
with the following

Proposition 4.6. Let f : M → Q4 be an immersion satisfying (52). Then
either γf is ± holomorphic or the set I∓ of ∓ isotropic points of M is
discrete.
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Proof. Keeping in mind the expression (49) for the differential of the func-
tions L3 ± iL4, we use (52) in order to apply Lemma 4.5 to these functions.
The claim then follows readily.

Let us now consider the canonical projection p : R6 \{0} → P5
R, sending

x to its projective class [x]. Given two Darboux frames e and ẽ along
f : M → Q4, we have

p∗ẽ0 ẽα = rBβ
αp∗e0eβ.

Indeed, since p(λx) = p(x) for every λ ∈ R∗ and for every x ∈ R6 \ {0},
then p∗λxλ∗xv = p∗xv, that is p∗λxλv = p∗xv. Therefore

p∗ẽ0 ẽα = p∗r−1e0 ẽα = p∗e0(rẽα) = rBβ
αp∗e0eβ.

Hence, setting Eα = p∗e0eα, we get

Ẽα = rBβ
αEβ. (54)

It follows that the bundle P over M locally spanned by E3, E4 is globally

well defined. Let Pc be its complexification and Pc = P
(1,0)
c ⊕ P

(0,1)
c the

splitting of Pc into (1, 0) and (0, 1) parts, locally spanned by E3 − iE4 and
E3 + iE4 respectively. Observe that under a change of Darboux frames, by
virtue of (54) we have

Ẽ3 ± iẼ4 = re∓is(E3 ± iE4). (55)

On the other hand, if ϕ = φ1
0 + iφ2

0 is the form that gives M its complex
structure, we have that

ϕ̃ = r−1e−itϕ. (56)

From (34), (55) and (56) we conclude that

µ∓ =
(
L3 ∓ iL4

)
(E3 ± iE4)⊗ ϕ⊗ ϕ

are sections of the bundles

P (0,1)
c ⊗ T ∗M (1,0) ⊗ T ∗M (1,0) and P (1,0)

c ⊗ T ∗M (1,0) ⊗ T ∗M (1,0)

respectively, which are globally defined on M . Under assumption (52) we
can deduce that these sections either vanish identically or have isolated zeros
with positive integer multiplicities. Indeed, since ϕ is a holomorphic section
of T ∗M (1,0), then

D ∂
∂z̄
µ∓ = d(L3∓ iL4)

(
∂

∂z̄

)
(E3± iE4)⊗ϕ2 +(L3∓ iL4)D ∂

∂z̄
(E3± iE4)⊗ϕ2

and now, using (49), assumption (52), and the fact that P
(1,0)
c and P

(0,1)
c

are line bundles, we have∥∥∥D ∂
∂z̄
µ∓

∥∥∥ ≤ γ|L3 ∓ iL4|
∥∥E3 ± iE4

∥∥ = γ‖µ∓‖
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for some γ ∈ Lploc(M). Thus the sections µ∓ satisfy a Cauchy-Riemann type
inequality; we can therefore apply Lemma 4.5 to their local trivializations
and deduce that they are of analytic type.
Assume now M compact. By the Poincaré-Hopf index theorem (see, e.g.
[10] and [11]) we have

Proposition 4.7. Let M be a compact Riemann surface and L a complex
line bundle over M . If s 6≡ 0 is a section of L of analytic type, then the
Euler number of L, χ(L), is equal to the sum of the orders of the zeros of s.

By virtue of this result, assuming γf not ± holomorphic and letting
z(µ∓) be the sum of the orders of the zeros of µ∓, then using the properties
of the Chern classes of line bundles we obtain{

z(µ−) = −2χ(M) + χ
(
P

(0,1)
c

)
= −2χ(M)− χ(P )

z(µ+) = −2χ(M) + χ
(
P

(1,0)
c

)
= −2χ(M) + χ(P ).

We have therefore proved the following

Theorem 4.8. Let f : M → Q4 be an immersed compact surface satisfying
(52). Then either γf : M → Q2

(
R6
)

is ± holomorphic or

2χ(M) ≤ −|χ(P )|.

5 Willmore surfaces and S-Willmore surfaces

We recall that an immersion f : M → Qn is a Willmore surface if it is a
critical point of the Willmore functional, that is if, for any compact K ⊆M
and any smooth variation ft : M → Qn with support in K, we have

d

dt

∣∣∣
t=0

WK(ft) = 0,

where

WK(f) =

∫
K

w. (57)

It is a known fact that an immersed surface f : M → Qn is Willmore if and
only if its conformal Gauss map is harmonic (as was first proved in [15]).
We shall see that this is still true with our representation of the conformal
Grassmannian and our definition of the conformal Gauss map. To this end,
we introduce the following geometric quantities. Consider the equality

φ0
α = pαkφ

k
0 (58)

(note that in what follows we can consider arbitrary dimension m ≥ 2 and
codimension n). Taking the exterior derivative of the above equation and
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using the Maurer-Cartan structure equations together with Cartan’s lemma,
we obtain

dpαi − pαkφki + pβi φ
α
β + 2pαi φ

0
0 − hαkiφ0

k = pαikφ
k
0 (59)

with
pαik = pαki. (60)

With a simple but tedious computation, one verifies that under a change of
Darboux frames we have

p̃αij =r3Bβ
αA

k
iA

t
j

(
pβkt + xlhβlkt − x

txlhβlk − x
kxlhβlt −

1

2
xlxlhβkt − 2xtpβk − 2xkpβt

)
+

+ r3Bβ
αδij

(
xlxthβlt + xlpβl

)
(61)

so that, tracing with respect to i and j

p̃αii = r3Bβ
α

(
pβtt + (m− 2)

(
2xlpβl + xlxthβlt

))
(62)

showing that, when m = 2, the system of equations

pαii = 0 (63)

is conformally invariant.
It was proved in [16] and [5] that condition (63) is equivalent to f being
a Willmore surface. As a matter of fact, (63) is also equivalent to the
harmonicity of the conformal Gauss map. This result is summarized in the
following

Theorem 5.1. Let f : M → Qn be an immersed oriented Riemann surface
with conformal Gauss map γf : M → Qn−2

(
Rn+2

)
. Then f is a Willmore

surface if and only if γf is harmonic.

The proof of this result is achieved by direct computation of the tension
field of the conformal Gauss map.
Let us now go back to surfaces in Q4. In this context the concepts of har-
monicity and ± holomorphicity of the conformal Gauss map both make
sense, and since ± holomorphicity implies harmonicity, we find that ±
isotropic surfaces in Q4 are in particular Willmore surfaces.

In [9], Ejiri has introduced the notion of S-Willmore surface. In our
setting, with respect to a Darboux frame along f , the notion corresponds to
the two following conditions

(a) Lαeα//\Lαeα
(b) kαeα//L

αeα,
(64)

whose conformal invariance is apparent once we recognize that, at p ∈ M ,
condition (5.2a) is equivalent to∣∣∣∣∣ L3 L4

L3 L4

∣∣∣∣∣ 6= 0 that is L3L4 − L3L4 6= 0,
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and, by (39), this translates to

KN (p) 6= 0.

On the other hand, condition (5.2b) can be expressed as

k3L4 − k4L3 = 0.

The quantity on the left-hand side, under a change of Darboux frames, obeys
the transformation law

k̃3L̃4 − k̃4L̃3 = r3e3it(k3L4 − k4L3),

as can be readily seen using (33), thus the element of

3⊗
T ∗M (1,0)

α1 = (k3L4 − k4L3)ϕ⊗ ϕ⊗ ϕ (65)

is globally defined on M and condition (5.2b) is satisfied at p ∈ M if and
only if

α1(p) = 0.

Ejiri proved that, in the Riemannian setting, an S-Willmore surface is a
Willmore surface. This can be easily checked in our setting, too.

Proposition 5.2. Let f : M → Q4 be an S-Willmore surface, namely an
immersed oriented Riemann surface such that KN 6= 0 and α1 = 0. Then f
is a Willmore surface.

Proof. Suppose f is S-Willmore. In particular k3L4 − k4L3 = 0 on M .
Differentiating the left-hand side and using the structure equations, we find

d(k3L4 − k4L3) =− 3(k3L4 − k4L3)(φ0
0 + iφ1

2) +
1

2
(Q3L4 −Q4L3)ϕ+

+ (k3ζ4 − k4ζ3)ϕ+
1

4
(p3
kkL

4 − p4
kkL

3)ϕ, (66)

where

Qα =
1

2
(pα11 − pα22)− ipα12

and ζα has been defined in (50). This can be shown through a quite lengthy,
but straightforward, computation, that we omit.
Now, setting k3L4 − k4L3 = 0 in (66), we can deduce that, in particular,

p3
kkL

4 = p4
kkL

3.

Assume by contradiction that f is not a Willmore surface, that is, either
p3
kk 6= 0 or p4

kk 6= 0, say p3
kk 6= 0. Then we have

iKN = L3L4 − L3L4 =
p4
kk

p3
kk

(L3L3 − L3L3) = 0

which contradicts (5.2a).
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From the proof of Theorem 4.4, we have that γf is ± holomorphic if and
only if k3 = ±ik4 and L3 = ±iL4, hence in this case we automatically have
α1 = 0, so that

Proposition 5.3. Let f : M → Q4 be a ± isotropic immersed surface.
Then f is S-Willmore if and only if KN 6= 0 on M .

The next risult is another application of Lemma 4.5.

Proposition 5.4. Let f : M → Q4 be an immersion without umbilical
points and such that the set of ± isotropic points is not discrete. If f satisfies
condition (52), then f is S-Willmore.

Proof. By Proposition 4.6, f must be ± isotropic. This implies α1 = 0 and

KN = −i(L3L4 − L3L4) = ∓2
∣∣L4
∣∣2 = ∓2

∣∣L3
∣∣2.

Therefore KN (p) = 0 if and only if p is an umbilical point, and the result
follows.

Observe that under a change of Darboux frames we have

p̃3
kkL̃

4 − p̃4
kkL̃

3 = r3e3it
(
p3
kkL

4 − p4
kkL

3
)
, (67)

therefore, applying once more Lemma 4.5 we have the following

Theorem 5.5. Let f : M → Q4 be an immersion such that

∃γ ∈ Lploc(M) such that
∣∣p3
kkL

4 − p4
kkL

3
∣∣ ≤ γ∣∣k3L4 − k4L3

∣∣ a.e.
(68)

for some p > 2. Then either α1 ≡ 0 or its zero set is discrete. In this latter
case, for M compact we have

z(α1) = −3χ(M),

where z(α1) is the sum of the orders of the zeros of α1.

Remark 5.6. If M is a Willmore surface, condition (68) is automatically
satisfied. Moreover, if M is a topological 2-sphere, then α1 ≡ 0.

Proposition 5.7. Let f : M → Q4 be a Willmore surface. Then α1 is
holomorphic.

Proof. Let e be a Darboux frame along f and g = φ1
0 ⊗ φ1

0 + φ2
0 ⊗ φ2

0 be the
local metric on M defined by e. There exists a local isothermal coordinate

z = x+ iy on M such that g
(
∂
∂x ,

∂
∂x

)
= g
(
∂
∂y ,

∂
∂y

)
= r2; therefore g̃ = r−2g

is a flat local metric, conformally related to g. Since
{
r−1 ∂

∂x , r
−1 ∂

∂y

}
is an

orthonormal frame for g, we can consider the locally defined, SO(2)-valued
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function A given by Ai1 = φi0
(
r−1 ∂

∂x

)
, Ai2 = φi0

(
r−1 ∂

∂y

)
. If we set ẽ = eK,

with K defined by

K =


r−1 0 0 0
0 A 0 0
0 0 I 0
0 0 0 r


then ẽ is a Darboux frame, since K is obviously Möb(n)D-valued. Moreover,

trivially φ̃1
0 ⊗ φ̃1

0 + φ̃1
0 ⊗ φ̃2

0 = g̃ and the dual frame to the coframe
{
φ̃i0

}
is

just
{
∂
∂x ,

∂
∂y

}
. Indeed, for instance,

φ̃1
0

(
∂

∂x

)
= r−1Aj1φ

j
0

(
∂

∂x

)
= φj0

(
r−1 ∂

∂x

)
φj0

(
r−1 ∂

∂x

)
= 1.

Now, from the structure equations, we have dϕ̃ = (φ̃0
0+iφ̃1

2)∧ϕ̃ and, denoting

Z =
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and W = Z we get

dϕ̃(W,Z) = d(ϕ̃(W ))(Z)− d(ϕ̃(Z))(W ) + ϕ̃([Z,W ]) = 0

since ϕ̃(W ) = 0, ϕ̃(Z) = 1 and [Z,W ] = 0. On the other hand

[(φ̃0
0 + iφ̃1

2) ∧ ϕ̃](Z,W ) = −(φ̃0
0 + iφ̃1

2)(W ),

proving that φ̃0
0 + iφ̃1

2 is of type (1, 0), and hence can be expressed as

φ̃0
0 + iφ̃1

2 = µϕ̃, for some locally defined complex valued function µ.
Now, with respect to ẽ, (65) is the expression of α1 in a local holomorphic
trivialization of the bundle

⊗3 T ∗M (1,0) so, in order to check if α1 is holo-
morphic (that is, if ∂̄α1 = 0) we only need to check that the differential
of its coefficient in such trivialization, k3L4 − k4L3, is a local form of type
(1, 0). But, assuming that f is Willmore, (66) (with respect to the frame ẽ)
shows that this is exactly the case.

6 Enneper-Weierstrass type representations for sur-
faces in Q4

So far we have considered immersions of oriented surfaces in the conformal
sphere Q4 and we have associated to them certain maps with values in the
conformal Grassmannian Q2

(
R6
)
, i.e. the conformal Gauss map. This map

has some remarkable properties, for instance it is holomorphic if and only if
the original immersion is − isotropic. Now we are going to do the converse:
starting from a holomorphic map γ with values in Q2

(
R6
)

we want to see if,
and under what conditions, it is possible to retrieve a Q4-valued map whose
conformal Gauss map is exactly the map γ.
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First of all, let us observe that, given a − isotropic immersion f : M → Q4,
the conformal Gauss map γf is constant if and only if f is totally umbilical,
namely f(M) ⊆ Q2, or equivalently WK(f) = 0 for any compact domain
K ⊂M .

Let M be a Riemann surface and γ : M → Q2

(
R6
)

a non constant holo-
morphic map. Let ϕ be a (local) (1, 0)-form defining the complex structure
on M and let s : U ⊂ Q2

(
R6
)
→ Möb(4) be a local section of π̂. Then

γ∗ζ0 = Λ0ϕ, γ∗ζk = Λkϕ, γ∗ζ3 = Λ3ϕ, (69)

where ζ0, ζk and ζ3 are defined as in (28) with respect to the section s. The
vector Λ of components Λ0, Λk, Λ3 is of analytic type, i.e. it either vanishes
identically or has isolated zeros. Indeed, let ω be such that dϕ = iω ∧ ϕ;
then, differentiating (69) and using (28) and the structure equations, we
have

d(γ∗ζ0) = dΛ0 ∧ ϕ+ Λ0dϕ =
(
dΛ0 + iΛ0ω

)
∧ ϕ =

= γ∗dζ0 = −γ∗s∗(Φ0
0 + iΦ4

3) ∧ Λ0ϕ− γ∗s∗Φ0
k ∧ Λkϕ.

Hence (
dΛ0 + iΛ0ω + Λ0γ∗s∗

(
Φ0

0 + iΦ4
3

)
+ Λkγ∗s∗Φ0

k

)
∧ ϕ = 0

and similarly for d(γ∗ζk) and d(γ∗ζ3), so that we obtain
dΛ0 = −iΛ0

(
ω + γ∗s∗Φ4

3 − iγ∗s∗Φ0
0

)
− Λkγ∗s∗Φ0

k mod ϕ

dΛk = −iΛk
(
ω + γ∗s∗Φ4

3

)
− Λjγ∗s∗Φk

j − Λ0γ∗s∗Φk
0 − Λ3γ∗s∗Φ0

k mod ϕ

dΛ3 = −iΛ3
(
ω + γ∗s∗Φ4

3 + iγ∗s∗Φ0
0

)
− Λkγ∗s∗Φk

0 mod ϕ.

Thus dΛa = Ψa
bΛ

b modulo ϕ, for some gl(4,C)-valued 1-form Ψ = (Ψa
b ),

namely the vector Λ is a solution of the system

∂Λ

∂z̄
= Ψ

(
∂

∂z̄

)
Λ

and, by Lemma 4.5 (but see also [7] for a direct proof of this case), the claim
follows.
Since we assumed γ to be non constant, it follows that the zeros of Λ are
isolated, and in a neighborhood of any zero, Λ factorizes as Λ = ztΛ̃, with
Λ̃ 6= 0, z a local holomorphic chart centered at the zero and t ∈ N.
Since Q2

(
R6
)

can be identified with an open subset of a quadric in P5
C, the

map γ can be lifted to a smooth, C6 \ {0}-valued map {γ} = e3 + ie4, where
e = s ◦ γ : U ⊂ M → Möb(n) (note that e is not necessarily an immersion,
because in general γ is not). Denoting φ = e−1de, we have

Λ0ϕ = γ∗ζ0 = e∗Φ0
3 + ie∗Φ0

4 = φ0
3 + iφ0

4,

Λkϕ = γ∗ζk = φk3 + iφk4,

Λ3ϕ = γ∗ζ3 = φ5
3 + iφ5

4,
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and since de = eφ,

d{γ} = i(e3 + ie4)φ3
4 + e0(φ0

3 + iφ0
4) + ek(φ

k
3 + iφk4) + e5(φ5

3 + iφ5
4) =

= i{γ}φ3
4 + (Λ0e0 + Λkek + Λ3e5)ϕ

If p : C6 \ {0} → P5
C is the canonical projection, then γ = p ◦ {γ} and

dγx = γ∗x = p∗{γ}(x){γ}∗x = ϕp∗{γ}(x)

(
Λ0e0 + Λkek + Λ3e5

)
.

The complex tangent line to the curve γ(M) at the point γ(x) is therefore the
vector space spanned over C by the non-zero vector p∗{γ}(x)(Λ

0e0 + Λkek +
Λ3e5). This prompts us to define a new map, called the “derivative” of γ,
γ′ : M → P5

C which associates to the point x ∈ M the projectivization of
the non-zero vector Λ0e0 + Λkek + Λ3e5. This map is trivially well defined
and does not depend on the choice of the section s.
We will need to add the further assumption that γ′ be valued in the quadric
Q2

(
R6
)
; this happens if and only if the vector t(Λ0,Λk, 0, 0,Λ3) satisfies the

equation
−2Λ0Λ3 + ΛkΛk = 0.

Definition 6.1. A map γ : M → Q2

(
R6
)

will be called a totally isotropic
holomorphic map if it is holomorphic, non constant, and if γ′ is valued
in Q2

(
R6
)
.

Let s̃ be another local section of the bundle π̂ : Möb(4)→ Q2

(
R6
)
, and

ẽ = s̃ ◦ γ. Then ẽ = eK where K takes values in H0 as defined in (18). At
any point p ∈M we can therefore choose a section such that Λ3 = 0, hence
Λ0 = a, Λ1 = λ and Λ2 = iλ, for some a, λ ∈ C. Since Λ is of analytic type,
such sections can be locally smoothly chosen in a neighborhood of p. The
frame e corresponding to such section will be called an isotropic frame,
and the isotropy subgroup for such frames is exactly Möb(n)D as defined in
(11). With this choice of frame, (69) rewrites as

γ∗ζ0 = aϕ, γ∗ζ1 = λϕ, γ∗ζ2 = iλϕ, γ∗ζ3 = 0. (70)

We can associate, to any totally isotropic holomorphic map γ, a map Jγ :
M → Q4 defined as follows. Let e be any isotropic frame along γ and set
Jγ = [e0]. In this way Jγ is well defined, because isotropic frames change
by matrices in Möb(n)D. Differentiating the second and third equalities of
(70), we obtain

d(γ∗ζ1) =− φ1
0 ∧ γ∗ζ0 − φ1

2 ∧ γ∗ζ2 − iφ4
3 ∧ γ∗ζ1 − φ0

1 ∧ γ∗ζ3 =

=
(
−aφ1

0 − iλφ1
2 − iλφ4

3

)
∧ ϕ,

d(γ∗ζ2) =(−aφ2
0 − λφ2

1 + λφ4
3) ∧ ϕ,
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but on the other hand γ∗ζ2 = iγ∗ζ1, so we have(
−iaφ1

0 + λφ1
2 + λφ4

3

)
∧ ϕ =

(
−aφ2

0 − λφ2
1 + λφ4

3

)
∧ ϕ

that is, ia
(
φ1

0 + iφ2
0

)
∧ ϕ = 0. Differentiating the last of (70) we get

0 = d(γ∗ζ3) =
(
−λφ1

0 − iλφ2
0

)
∧ ϕ.

Therefore we have obtained

a
(
φ1

0 + iφ2
0

)
∧ ϕ = 0

λ
(
φ1

0 + iφ2
0

)
∧ ϕ = 0

Since Λ is of analytic type, outside a discrete set (the set of zeros of a and
λ), we must have

φ1
0 + iφ2

0 = µϕ (71)

for some locally defined complex function µ, whose vanishing is independent
of the choice of the isotropic frame. Differentiating (71), we have

dµ ∧ ϕ+ iµω ∧ ϕ = dφ1
0 + idφ2

0 = µφ0
0 ∧ ϕ+ iµφ1

2 ∧ ϕ,

that is
dµ = −iµ

(
ω − φ1

2 + iφ0
0

)
mod ϕ.

Therefore µ is of analytic type, and so it either vanishes identically or has
isolated zeros.
Let us now consider an open set U ⊂ M where µ is nonzero and let e be
an isotropic frame along γ defined on U . Then e is trivially a zeroth order
frame along Jγ , since π ◦ e = Jγ . Moreover, it is a first order frame, since
from (70)

0 = γ∗ζ3 = φ3
0 + iφ4

0,

so φα0 = 0. Also, Jγ is a conformal immersion on U , since the only points
where Jγ is not an immersion are the zeros of µ. In the case of µ vanishing
identically, then Jγ is constant. Indeed in this case not only φα0 = 0, but
also φ1

0 = φ2
0 = 0. So

dJγ = p∗de0 = p∗(e0φ
0
0 + eAφ

A
0 ) = φA0 p∗eA = 0

where p : R6 \ {0} → P5
R is the canonical projection.

Thus, either Jγ is constant on M or it is a weakly conformal branched
immersion. Assume to be in this latter case; we will prove that an isotropic
frame e along γ is a Darboux frame along Jγ .
To this end we use (70) to deduce that

γ∗ζ2 = i γ∗ζ1. (72)
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Now we set, as usual, φαi = hαijφ
j
0, hαij = hαji, and observe that

γ∗ζk = e∗(Φk
3 + iΦk

4) = −φ3
k − iφ4

k = −(h3
kj + ih4

kj)φ
j
0

and equation (72) is equivalent to the following system{
h3

1j = h4
2j

h3
2j = −h4

1j

which gives
h3

11 = h4
21 = −h3

22, h4
11 = −h3

21 = −h4
22.

Moreover, it is trivial to see that, outside the branch points of Jγ , we have
γJγ = γ, and Jγ is − isotropic, since γJγ is holomorphic by assumption.

On the other hand, consider a weakly conformal branched immersion
f : M → Q4 with the property that its Gauss map γf can be continuously
extended to the branch points, and let e be any Darboux frame along f . If
f is − isotropic (outside the branch points), then γf is holomorphic, and in
this case, with the notations of (69), we have

Λ0 = k3+ik4, Λ1 = −1

2

(
L3 + iL4

)
, Λ2 = − i

2

(
L3 + iL4

)
, Λ3 = 0,

so that
−2Λ0Λ3 +

∑
k

ΛkΛk = 0

and γf is a totally isotropic map. Furthermore, Jγf = f .
We have therefore proved the following

Theorem 6.1. Let M be a Riemann surface. There is a bijective correspon-
dence between − isotropic, non totally umbilical, weakly conformal branched
immersions f : M → Q4, whose conformal Gauss map can be continu-
ously extended at the branch points, and non constant, holomorphic, totally
isotropic maps γ : M → Q2

(
R6
)

with non constant associated map Jγ. The
bijection is realized via the conformal Gauss map.

Using an appropriate Grassmann bundle, we can extend the previous
result so as to include the totally umbilical surfaces.
Let us consider the product manifold Q4×Q2

(
R6
)

and define Q2(Q4) as the
orbit of the point ([η0], [ε3, ε4]) ∈ Q4 ×Q2

(
R6
)

with respect to the natural
left action (defined componentwise) of the group Möb(4). In other words

Q2(Q4) = {([η], [s1, s2]) | η = Pη0, s1 = Pε3, s2 = Pε4, P ∈ Möb(4)}.
(73)

It is trivial to see that Möb(4) acts transitively on Q2(Q4), the action being
given, for P ∈ Möb(4) and ([η], [s1, s2]) ∈ Q2(Q4), by

P ([η], [s1, s2]) = ([Pη], [Ps1, Ps2]).
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Let us compute the isotropy subgroup of the point ([η0], [ε3, ε4]). If P ∈
Möb(4) fixes the point ([η0], [ε3, ε4]), then in particular it must fix the first
component, hence P must be an element of G0, defined in (2), so it is bound
to be of the form

P =

 r−1 txA 1
2r|x|

2

0 A rx
0 0 r

 .

But, for P [ε3] to belong to [ε3, ε4], we must have x3 = 0, A1
3 = A2

3 = 0 and
analogously, imposing P [ε4] ∈ [ε3, ε4], we deduce x4 = 0 and A1

4 = A2
4 = 0.

Putting these conditions together we find that P ∈ Möb(n)D. Since in
turn any element of Möb(n)D fixes ([η0], [ε3, ε4]), we can conclude that the
isotropy subgroup is exactly Möb(n)D. Hence Q2(Q4) ' Möb(4)/Möb(n)D
is realized as a homogeneous space with projection

π̄ : Möb(4)→ Q2(Q4)

given by
π̄ : P 7→ ([Pη0], [Pε3, P ε4]),

that is, π̄ = π × π̂. Also, we will denote by π̌ : Q2(Q4)→ Q4 the canonical
projection

π̌ : ([η], [s1, s2]) 7→ [η].

Observe that Q2(Q4) has a natural integrable complex structure defined as
follows: let ξ be a local section of the bundle π̄ : Möb(4) → Q2(Q4); then
we declare the forms

σ−1 = ξ∗Φ1
0 + iξ∗Φ2

0,

σ0 = ξ∗Φ0
3 + iξ∗Φ0

4,

σk = ξ∗Φk
3 + iξ∗Φk

4,

σ3 = ξ∗Φ3
0 + iξ∗Φ4

0

(74)

a local basis of the space of the forms of type (1, 0) over Q2(Q4). In order
to do this, first we need to check that the ideal they generate is differential.
Setting, for the sake of simplicity, ϕ = ξ∗Φ and using the structure equations,
we have

dσ−1 =− σ−1 ∧ (ϕ0
0 + iϕ1

2)− ϕ1
3 ∧ ϕ3

0 − ϕ1
4 ∧ ϕ4

0 − iϕ2
3 ∧ ϕ3

0 − iϕ2
4 ∧ ϕ4

0 =

=− σ−1 ∧ (ϕ0
0 + iϕ1

2) + iσ1 ∧ ϕ4
0 + iσ2 ∧ ϕ3

0 + σ3 ∧ (ϕ1
3 + ϕ2

4)

and likewise for the differentials of the other forms. Lastly, one can easily
check that the space generated by these forms is well defined, i.e., it is
independent of the choice of the section ξ.
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Proposition 6.2. The fibers of π̌ : Q2(Q4)→ Q4 are integral submanifolds
of the (invariantly defined) Pfaffian system{

σ−1 = 0

σ3 = 0.
(75)

Proof. Since Q2(Q4) ⊂ Q4 ×Q2

(
R6
)
, for ([η], [s1, s2]) ∈ Q2(Q4), we have

T([η],[s1,s2])Q2(Q4) ⊂ T[η]Q4 × T[s1,s2]Q2

(
R6
)
.

Thus, we can regard a tangent vector of Q2(Q4) as a pair (X,V ) with
X ∈ T[η]Q4 and V ∈ T[s1,s2]Q2

(
R6
)
. Now π̌ is the projection on the first

component, so
π̌∗([η],[s1,s2])(X,V ) = X

and
ker π̌∗([η],[s1,s2]) =

{
(0, V ) ∈ T([η],[s1,s2])Q2(Q4)

}
We want to prove that {

σ−1
([η],[s1,s2])(0, V ) = 0

σ3
([η],[s1,s2])(0, V ) = 0,

or equivalently that, if ξ is a local section of π̄ : Möb(4)→ Q2(Q4), then

ξ∗ΦA
0 ([η],[s1,s2])(0, V ) = 0.

To this end we set g = ξ([η], [s1, s2]) and compute

ξ∗ΦA
0 ([η],[s1,s2])(0, V ) =ΦA

0 g(ξ∗([η],[s1,s2])(0, V )) =
(
Φg(ξ∗([η],[s1,s2])(0, V ))

)A
0

=

=(g−1)Ab
(
ξ∗([η],[s1,s2])(0, V )

)b
0
,

where in the last equality we used the definition of the Maurer-Cartan form
for classical groups (see [1] or [3] for details):

ΦP (X) = P−1X.

Now take ([η̃], [s̃1, s̃2]) in the domain of ξ, set g̃ = ξ([η̃], [s̃1, s̃2]) and observe
that

π̄(ξ([η̃], [s̃1, s̃2])) = π̄(g̃) = ([g̃η0], [g̃ε3, g̃ε4])

and, since π̄ ◦ ξ = id,

([η̃], [s̃1, s̃2]) = (π̄ ◦ ξ)([η̃], [s̃1, s̃2]) = ([g̃η0], [g̃ε3, g̃ε4]).

In particular we have that [η̃] = [g̃η0] and

[g̃η0] = [g̃0] = [(ξ([η̃], [s̃1, s̃2]))0] = [ξ0([η̃], [s̃1, s̃2])],
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that is, the projective class of the vector ξ0([η̃], [s̃1, s̃2]) coincides with that
of η̃. In other words, calling

p : R6 \ {0} → P5
R

the canonical projection, we find that p(ξ0([η̃], [s̃1, s̃2])) = p(η̃). Hence p ◦
ξ0 = π̌ and

(p ◦ ξ0)∗([η̃],[s̃1,s̃2])(0, V ) = π̌∗([η̃],[s̃1,s̃2])(0, V ) = 0,

that is
p∗ξ0([η̃],[s̃1,s̃2])ξ0∗([η̃],[s̃1,s̃2])(0, V ) = 0.

Thus ξ0∗([η̃],[s̃1,s̃2])(0, V ) ∈ ker p∗ξ0([η̃],[s̃1,s̃2]), implying

ξ0∗([η̃],[s̃1,s̃2])(0, V ) = λξ0([η̃], [s̃1, s̃2])

for some λ ∈ R. Therefore(
ξ∗([η],[s1,s2])(0, V )

)b
0

= λ(ξ([η], [s1, s2]))b0 = λgb0.

So eventually,

ξ∗ΦA
0 ([η],[s1,s2])(0, V ) = λ(g−1)Ab g

b
0 = λδA0 = 0.

Let us consider the canonical projection c : Q2(Q4) → Q2

(
R6
)

defined
by

c([η], [s1, s2]) = [s1, s2],

which makes the following diagram commutative

Möb(4)

π̄

~~

π̂

  
Q2(Q4)

c // Q2

(
R6
)

that is, π̂ = c ◦ π̄.

Proposition 6.3. The map c : Q2(Q4) → Q2

(
R6
)

defined above is holo-
morphic.

Proof. Fix p0 = ([η], [s1, s2]) ∈ Q2(Q4) and consider ξ a local section of the
bundle π̄ : Möb(4)→ Q2(Q4), defined on a neighborhood of p0 and ς a local
section of the bundle π̂ : Möb(4) → Q2

(
R6
)

defined on a neighborhood of
[s1, s2]. We have to show that c∗ζ0, c∗ζk and c∗ζ3, defined as in (28), are
forms of type (1, 0).
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Set g0 = ξ(p0). As in the proof of Theorem 4.4, we can assume that the
section ς satisfies ς(π̂(g0)) = g0, and

(ς ◦ π̂)∗(Φ0
α)g0 = (Φ0

α)g0 .

Then, observing that c = π̂ ◦ ξ, we have that(
c∗ζ0

)
p0

=
(
ξ∗π̂∗ζ0

)
p0

= ξ∗
(
π̂∗ς∗(Φ0

3 + iΦ0
4)
)
g0

= ξ∗Φ0
3g0

+ iξ∗Φ0
4g0

= σ0
p0
,

and analogously for c∗ζk and c∗ζ3.

Definition 6.2. Let f : M → Q4 be an immersed oriented surface. The
conformal Gauss lift Γf : M → Q2(Q4) is defined as

Γf = f × γf ,

that is, given p ∈M and e any Darboux frame along f , defined on a neigh-
borhood of p,

Γf = π̄ ◦ e;

in other words,
Γf : p 7→ ([e0]p, [e3, e4]p).

We are now ready to state the generalization of Theorem 6.1.

Theorem 6.4. Let M be a Riemann surface. There is a bijective cor-
respondence between − isotropic, weakly conformal branched immersions
f : M → Q4 whose conformal Gauss map can be continuously extended
at the branch points, and holomorphic maps Γ : M → Q2(Q4), solutions of
the Pfaffian system {

σ3 = 0
σ2 − iσ1 = 0

but not of σ−1 = 0. The bijection is realized via the conformal Gauss lift
Γf .

Proof. Let f : M → Q4 be as in the statement of the theorem. Then, in
order to show that the conformal Gauss lift Γf is holomorphic, we proceed
as for the conformal Gauss map γf in the proof of Theorem 4.4. Let us
fix p0 ∈ M such that it is not a branch point for f and choose a Darboux
frame e along f defined on a neighborhood U of p0 and a section ξ of the
bundle π̄ : Möb(4) → Q2(Q4) defined in a neighborhood of Γf (p0). We
set e(p0) = g0; then since π̄ ◦ (ξ ◦ π̄) = π̄, there must exist a function
K : π̄−1(U)→ Möb(n)D such that, for every g ∈ π̄−1(U)

ξ(π̄(g)) = gK(g)

and
(ξ ◦ π̄)∗Φg = K(g)−1g−1dgK(g) +K(g)−1dKg
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In particular we have

(ξ ◦ π̄)∗Φk
0g =

(
K(g)−1g−1dgK(g)

)k
0

(ξ ◦ π̄)∗Φ0
αg =

(
K(g)−1g−1dgK(g)

)0
α

(ξ ◦ π̄)∗Φk
αg =

(
K(g)−1g−1dgK(g)

)k
α

(ξ ◦ π̄)∗Φα
0 g =

(
K(g)−1g−1dgK(g)

)α
0
,

because K−1dK is valued in the Lie algebra of the group Möb(n)D. Replac-
ing, if necessary, the section ξ with ξK(g0)−1, we can assume that

ξ(π̄(g0)) = g0

and hence

(ξ ◦ π̄)∗Φk
0g0

= Φk
0g0

(ξ ◦ π̄)∗Φ0
αg0

= Φ0
αg0

(ξ ◦ π̄)∗Φk
αg0

= Φk
αg0

(ξ ◦ π̄)∗Φα
0 g0

= Φα
0 g0

.

Therefore we can compute(
Γ∗fσ

−1
)
p0

=
(
(ξ ◦ π̄ ◦ e)∗(Φ1

0 + iΦ2
0)
)
p0

=
(
e∗(Φ1

0 + iΦ2
0)
)
p0

= ϕp0 (76)

and likewise for σk and σ3. This proves the holomorphicity of Γf outside
the set of branch points of f . But since f is continuous and by assumption
γf can be continuously extended to the branch points, then Γf = f × γf is
continuous on M , and therefore holomorphic.
The same computation also proves that Γf is a solution of the Pfaffian
system σ3 = 0, σ2 − iσ1 = 0, since it is easily verified that

Γ∗fσ
3 = 0,

Γ∗fσ
1 = −1

2

(
L3 + iL4

)
ϕ

Γ∗fσ
2 = − i

2

(
L3 + iL4

)
ϕ.

Moreover, (76) assures that

Γ∗fσ
−1 6= 0.

On the contrary, assume Γ : M → Q2(Q4) is a holomorphic map such that
Γ∗σ3 = 0, Γ∗σ2 = iΓ∗σ1 and Γ∗σ−1 6= 0 and define fΓ = π̌ ◦Γ. For any local
section ξ of π̄, the map e = ξ ◦ Γ is a local frame along fΓ, since

π ◦ e = π ◦ ξ ◦ Γ = π̌ ◦ π̄ ◦ ξ ◦ Γ = π̌ ◦ Γ = fΓ.
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Moreover, let ϕ be a local (1, 0)-form defining the complex structure on M ;
then, since Γ is holomorphic, there must exist a smooth function µ 6≡ 0 such
that

e∗(Φ1
0 + iΦ2

0) = Γ∗σ−1 = µϕ.

As usual, we set φ = e∗Φ, so that the previous equality becomes φ1
0 + iφ2

0 =
µϕ. Differentiating this last equality and using the structure equation we
can deduce that

dµ = −iµ
(
ω − φ1

2 + iφ0
0

)
mod ϕ,

where ω is such that dϕ = iω ∧ϕ. Hence µ is of analytic type, and its zeros
must be isolated and of finite order, proving that fΓ is a weakly conformal
branched immersion. In addition, since by assumption Γ∗σ3 = 0, we know
that e is a first order frame along fΓ. We can prove that e is actually a
Darboux frame along fΓ using

Γ∗σ2 = iΓ∗σ1. (77)

Indeed, setting as usual φαi = hαijφ
j
0, hαij = hαji,

Γ∗σk = e∗(Φk
3 + iΦk

4) = −φ3
k − iφ4

k = −(h3
kj + ih4

kj)φ
j
0

and equation (77) becomes {
h3

1j = h4
2j

h3
2j = −h4

1j

which gives
h3

11 = h4
21 = −h3

22, h4
11 = −h3

21 = −h4
22.

Now since e = ξ ◦Γ is a Darboux frame along fΓ, it makes sense to consider
its conformal Gauss map, defined as usual as

γfΓ
= [e3, e4] = π̂ ◦ e

outside the branch points of fΓ. We want to prove that γfΓ
can be continu-

ously extended at the branch points, and that the extension is holomorphic.
To this end, we define γ : M → Q2

(
R6
)

as follows

γ = c ◦ Γ (78)

and observe that Proposition 6.3 implies that γ is holomorphic. By the
commutativity of the following diagram

Möb(4)

π̄

~~

π̂

  
Q2(Q4)

c //

π̌

��

Q2

(
R6
)

Q4 M
fΓ

oo

Γ
``

γ

>>
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we have that, on the open set where γfΓ
is defined,

γfΓ
= π̂ ◦ e = π̂ ◦ ξ ◦ Γ = c ◦ π̄ ◦ ξ ◦ Γ = c ◦ Γ = γ.

Therefore γfΓ
is holomorphic, hence fΓ is − isotropic. Lastly, we obviously

have
ΓfΓ

= π̄ ◦ e = π̄ ◦ ξ ◦ Γ = Γ

and
fΓf = π̌ ◦ Γf = π̌ ◦ π̄ ◦ e = π ◦ e = f,

so the claim is proved.
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Math. Nachr. 96 (1980), 165–183.

[18] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics,
vol. 166, Springer-Verlag, New York, 1997, Cartan’s generalization of
Klein’s Erlangen program, With a foreword by S. S. Chern.

[19] R. Sulanke, Submanifolds fo the Möbius space II. Frenet Formulas and
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Via Saldini 50, I-20133, Milano, Italy
e-mail: marco.rigoli@unimi.it


