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Abstract: Infrared (IR) spectroscopy is among the most powerful spectroscopic techniques available
for the morphological and physico-chemical characterization of catalytic systems, since it provides
information on (i) the surface sites at an atomic level, (ii) the nature and structure of the surface or
adsorbed species, as well as (iii) the strength of the chemical bonds and (iv) the reaction mechanism.
In this review, an overview of the main contributions that have been determined, starting from IR
absorption spectroscopy studies of catalytic systems for H2O2 direct synthesis, is given. Which kind of
information can be extracted from IR data? IR spectroscopy detects the vibrational transitions induced
in a material by interaction with an electromagnetic field in the IR range. To be IR active, a change in
the dipole moment of the species must occur, according to well-defined selection rules. The discussion
will be focused on the advancing research in the use of probe molecules to identify (and possibly,
quantify) specific catalytic sites. The experiments that will be presented and discussed have been
carried out mainly in the mid-IR frequency range, between approximately 700 and 4000 cm−1,
in which most of the molecular vibrations absorb light. Some challenging possibilities of utilizing IR
spectroscopy for future characterization have also been envisaged.

Keywords: H2O2 direct synthesis; IR spectroscopy; FTIR characterization; Diffuse Reflectance
Fourier Transform IR characterization; catalyst characterization; Pd catalysts; AuPd catalysts;
bimetallic catalysts

1. The Direct Synthesis of Hydrogen Peroxide from Molecular Hydrogen and Oxygen

Hydrogen peroxide is a benign and environmentally friendly oxidising reagent extensively
employed in the production of both fine and bulk chemicals. Moreover, it finds application in water
treatment, paper and pulp bleaching, textiles, and in large-scale selective oxidation processes, such as
the epoxidation of olefins, the hydroxylation of aromatics, and the synthesis of cyclohexanone oxime,
which is strategic for nylon-6 production (Figure 1) [1]. These applications would greatly benefit from
on-site, moderate-scale production facilities in order to reduce transport costs. However, H2O2 is
produced worldwide on a multi-million ton scale annually by the energy intensive Riedl−Pfleiderer
anthraquinone oxidation process [2]. Significant amounts of organic waste due to the anthraquinone,
along with several energy consuming separation and concentration steps, and the use of benzene as
the solvent are the main drawbacks of the process, which is economically feasible only in large-scale
plants. In this frame, the research is devoted to the development of new economic scalable methods
for the direct synthesis of H2O2 starting from hydrogen and oxygen and to the optimization of efficient
oxidation catalysts able to work in the presence of H2O2 for sustainable production.
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with tin [49,50], with nickel [51], with tellurium [52], and with zinc [53,54], has been extensively 65 
studied and it is considered as the best catalyst in terms of both activity and selectivity, the latter 66 
being fundamental for commercial applications [19,55]. Rh and Ru additives have detrimental 67 
effects on the H2O2 yields because they promote H2O2 decomposition and/or enhance H2 to H2O 68 
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Figure 1. Main applications of H2O2.

The direct synthesis reaction can be considered as a dream reaction involving molecular H2 and
O2, in which the formation of H2O2 takes place upon proton−electron transfer to O2 and *OOH
intermediates. Conversely, the formation of H2O implies the O–O bond cleavage of the surface *OOH
species [3]. As a matter of fact, H2O2 selectivity is ruled by the competitive O–H bond formation and
O–O bond cleavage.

H2O2 direct synthesis can potentially halve the cost with respect to the anthraquinone commercial
process, resulting in a much lower environmental impact, also due to the possibility to avoid chlorine
for oxidation chemistry [1,4]. In addition, the direct synthesis reaction has the potential to produce
inexpensive H2O2 at the mid-scale in geographically distributed facilities, because such facilities
would have much lower capital and operating costs than Riedl-Pfleiderer plants with comparable
dimension [5,6]. Nevertheless, no alternative process for H2O2 direct synthesis has yet been marketed,
despite several published patents [2,7–11] and literature papers [10,12–25]. Indeed, selectivity is still
far from being high and must be significantly improved for a successful industrial exploitation. Indeed,
water is the most thermodynamically favoured product (as shown in Figure 2) and the H2-O2 gas
mixtures are explosive in a very broad range of compositions (4–96%), posing severe limitations to the
practicability of the process under safe conditions.
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Palladium, either alone [26–37] or associated with gold [17,22,25,38–44], with platinum [45–48],
with tin [49,50], with nickel [51], with tellurium [52], and with zinc [53,54], has been extensively
studied and it is considered as the best catalyst in terms of both activity and selectivity, the latter being
fundamental for commercial applications [19,55]. Rh and Ru additives have detrimental effects on the
H2O2 yields because they promote H2O2 decomposition and/or enhance H2 to H2O activity [19].

The effect of the nature of the support (ZrO2, Ga2O3, CeO2, SiO2, ThO2, CeO2–ZrO2, Al2O3,
carbon etc.) on the catalytic activity and selectivity was extensively investigated [19,32,56]. Carbon
porosity and surface structure play a key role to achieve high chemoselectivity [38].

Unluckily, the catalysts employed to perform the direct synthesis of H2O2 are also active for its
decomposition. It was shown that an acid pretreatment of the carbon support of AuPd alloy catalysts
turned off the H2O2 decomposition [21]. In particular, the acid treatment induced a decrease in the
size of the bimetallic nanoparticles, which were supposed to decorate the sites, hence inhibiting the
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decomposition reaction, and hydrogen selectivity >95% were achieved. It was also demonstrated
that H2O2 can be produced over metallic Pd sites which have been geometrically and electronically
modified by additives, such as Cl−, Br−, oxygen, and/or nitrogen atoms of the support [21,57–59].

In this frame, it has also been shown that the modification with ligands of Pd nanoparticles
supported on carbon created a hybrid nanostructure with unique catalytic performance [60].

Acids and halides have been commonly added in order to improve the H2O2

selectivity [1,12,58,61,62]. Indeed, acid additives are able to impede the H2O2 decomposition, whereas
halide additives hinder water formation [1,14,61]. Nevertheless, both corrosion of the reactor and
dissolution of the catalytically-active metal occur in the presence of acid additives. Alternative acid
supports, such as solid acid supports like SO3H- functionalized mesoporous silicas [24], SO4

2−-, Cl−-,
F−-, and Br−-doped zirconia [63], insoluble heteropolyacids [64–66], and insoluble heteropolyacids
supported mesoporous silica [66,67], cesium-containing CsH3−PW12O40/MCF [68,69], and have been
reported to act as acid sources. Cs-exchanged phosphotungstic acid was employed as an acid additive
to an Au-Pd/TiO2 catalyst with significant improvement of the H2O2 synthesis rate and selectivity
with respect to the promotional effect of common oxides and non-halo acids [70].

It has also been reported that acidity of the catalysts played a crucial role in determining the
catalytic performance in the direct synthesis of hydrogen peroxide [66,67]. Approaches, such as the
catalyst wet pre-treatment method (CWPM), involving the post-modification of commercially available
Pd catalysts with aqueous solutions of Br− with different concentrations, have been shown to enhance
the selectivity [30].

2. Infrared Absorption Spectroscopy as a Tool for Catalyst Characterization

Infrared (IR) absorption spectroscopy is one of the most popular characterization tools to describe
heterogeneous catalysts [71]. In FTIR analysis, a molecule is excited to a higher vibrational energy
state upon absorption of the IR radiation. Only the molecules that undergo to a variation of the dipole
moment during the vibrational transition are IR active [72]. It should be, therefore, remembered that
both O2 and H2 molecules, i.e., the reactants involved in the direct synthesis of hydrogen peroxide,
owing to their symmetry, are IR inactive (no change of the dipole moment).

The energy associated to the excited states is related to the molecular bond vibrations, such as
stretching, bending, rocking, twisting, wagging, as well as out-of-plane deformations, which take place
at different frequencies or wavenumbers (cm−1) in the IR spectroscopic region [72]. The position of a
band is defined by Equation (1), which describes the behaviour of an anharmonic oscillator:

ν = 1/2πc·(k/µ)1/2 (1)

where ν is the frequency, c is the light speed, k is the force constant related to the bond between the
two atoms which constitute the oscillator, and µ represents the reduced mass of the oscillator. As a
consequence, the position of an IR band depends either on the strength of the bond or on the mass
(isomeric effect). This implies that the specific physicochemical properties of the molecule or adsorbate
(i.e., when performing a FTIR experiment of adsorbed probe molecules), i.e., the bonds involved and
the local environment, affect the position of the IR absorbance peak, making the technique diagnostic,
since the corresponding IR spectrum represents a fingerprint of that particular functional group,
such as C–H, O–H, C=O, C≡O, N=N, and so on. Moreover, similar vibrational modes possess similar
energetics, meaning that the interpretation of the IR spectra of unknown species is useful to identify
the specific moieties that constitute the sample. In particular, the position of the absorption bands
of the adsorbed species gives a measure of the strength of the bond between the adsorbate and the
adsorbing site [73]. Moreover, the specific frequencies of individual vibrational modes can probe the
chemical nature of the surrounding catalytic environment.
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The energy related to most of the molecular vibrations falls in the mid-infrared (MIR) region of
the electromagnetic spectrum, and this is the reason for which the largest amount published papers
reports spectra in this region, which ranges between 4000 and 400 cm−1.

Another point is that the absorbance related to each molecular vibration is proportional to the
abundance of the corresponding functional groups, hence the concentration of the species can be
derived by the Beer-Lambert Law, Equation (2):

A = −log10 I/I0 = ε·l·c (2)

where A stands for the absorbance (dimensionless), and I and I0 represent the intensity of the
transmitted and incident light, respectively. The molar absorptivity ε parameter is expressed as
L·mol−1·cm−1), the thickness of the sample l is reported in cm, and the molar concentration c is
in mol·cm−1.

2.1. FTIR Spectroscopy of Adsorbed Probe Molecules

The surface sites in catalysts can be efficiently characterized by FTIR spectroscopy of probe
molecules. FTIR spectroscopy is ideal for this approach, due to the specificity of the spectra for
each adsorbate and to the high sensitivity to the kind of surface bonding to the local environment.
The choice of the most appropriate probe molecule is therefore strategic: some probes are able to
adsorb on specific sites, which can be detected and quantified, based on the intensity of the absorption.
Other probes display different bonding on different sites, which can be identified by the corresponding
changes in the IR spectra. Generally, the use of opportune molecular probes combined with FTIR
absorption spectroscopy can provide information on:

(i) Acidic sites, in particular Brønsted sites, such as OH surface groups, and Lewis cationic sites.
In this case, basic probe molecules as for example pyridine or other amines, NH3, and acetonitrile are
typically employed [74,75]. Moreover, the acid strength can also be determined by the shift observed
in the O–H stretching region upon interaction by hydrogen bonding with weak basic probes, such as
CO and NO [76,77].

(ii) Basic sites, normally surface oxygen atoms in oxides, CO2 is usually employed, along with
other probes less commonly used such as methanol [78], and also CO. CO2 adsorption gives rise to the
formation of mono- and bidentate carbonate species, hydrogen carbonates, and linearly-coordinated
CO2, providing detailed knowledge on the basic O2− sites and Mx+–O2− pairs (Mx+ = metallic
cation) [74].

Carbon Monoxide

A separate paragraph is dedicated to carbon monoxide because this molecular probe can be
considered as the most versatile and clever probe [79]. Only vibrational modes with high cross-sections
can be readily detected by FTIR spectroscopy, and this is among the reasons for which a large fraction
of spectroscopic investigations concerns the adsorption of carbon monoxide (or other molecules
containing C–O bonds). Indeed, besides providing information on the acidic and basic sites, the
use of the CO probe offers knowledge on the nature of the metal catalytic sites, their oxidation
state, and coordination mode [77,80,81]. In addition, CO can also be employed to determine the
amount of sites with coordinative vacancies and available for catalysis. The CO molar absorptivity
is commonly high, giving rise to strong IR signals for the C–O stretching mode in a frequency range
almost without interference due to other species. The bands due to linear bonded CO can be observed
in the 2000–2170 cm−1 range, whereas the position of those related to doubly bridged species is in
the 1880–2000 cm−1 region, and multiply-bridged CO species give rise to bands below 1880 cm−1.
Moreover, the C–O stretching frequency is strongly dependant from the nature of the bond with the
surface, i.e., from the electronic properties of the adsorbent site. Due to the small size, the CO molecule
adsorption is ruled by steric hindrance effects. The frequency of the free molecule (2143 cm−1) changes
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when CO is adsorbed and such a shift is explained by the Bhyholder Model [82], in which the bond
between the adsorbent site (a metal site) and CO is the result coming from two main contributions,
which are shown in Figure 3. The first contribution is the σ donation that arises from the overlapping
of the 5σ full orbital of the carbon atom (C, with weak anti-bonding nature) and of the empty d orbital
of the metal site (M), which possesses dz2 symmetry. The result of this overlapping is an electron
density transfer from the CO molecule (lone pair on C atom) to M with an increase of the C–O bond
strength. As a consequence, according to Equation (1), the νCO blue shifts with respect to the position
of the free molecule.
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Figure 3. Metal atomic (M) orbitals and CO molecular orbitals involved in the adsorption.

The second contribution is the π back donation (dπ→pπ) with bonding character, resulting from
the overlapping among two full d orbitals of M and the anti-bonding 2π* degenerate CO molecular
orbitals. Such overlapping brings electron density in the anti-bonding CO orbital and the bond
strength is decreased. Therefore, the position of the CO band red-shifts with respect to the free
molecule. These two factors can predominate on each other based on the nature of the adsorbent:
generally, σ donation is prevalent for metal ions with high oxidation state, on the contrary π back
donation control the adsorption by neutral or partially negatively-charged metal atoms.

2.2. Experimental Setup

The experiments that are presented and discussed in this review have been carried out mainly
in the mid IR frequency range, between approximately 700 and 4000 cm−1, in which most of the
molecular vibrations absorb light. Currently, Fourier transform infrared spectrometers (FTIR) are
employed, and such instruments are fairly cheap and widespread in most analytical and research
laboratories. In FTIR instruments a Michelson interferometer processes the collimated IR light before
focusing it onto the sample and further collects and detects the resulting beam. According to Figure 4,
the IR beam is split into two equal beams, the former is refracted in the direction of a fixed mirror,
whereas the latter is transmitted to a movable mirror.
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Then, these beams are recombined by the beam splitter and further directed toward the sample.
The difference in optical path between the two beams is called retardation, and is varied over time by
scanning the movable mirror. As a consequence, an interferogram is obtained by recording the signal
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from the detector as a function of the retardation. The Fourier transformation of that signal provides
the IR spectrum, which is reported as a function of the frequency.

Modern FTIR instruments are usually equipped by glow-bar IR lamps as the source and by
mercury–cadmium–telluride (MCT) detectors for signal detection, due to the high sensitivity and
to the capability to detect most of the mid IR frequency range. Due to the opportunity to collect
simultaneously all wavelengths, higher signal-to-noise ratio can be achieved at a given scanning time.
Moreover, the throughput is determined only by the diameter of the collimated IR beam. However,
being a non-zero-background technique, FTIR instruments have limited sensitivity and glow-bar
lamps should be replaced by synchrotron radiation or by tunable IR lasers [71].

Nevertheless, the widespread acceptance of IR absorption spectroscopy to efficiently characterize
solid catalysts is mainly due to the availability of several experimental setups, which render the
technique adaptable to a number of experiments that can be tailored on the nature of the sample to
be investigated.

The most common experimental setups employed for catalyst characterization using IR absorption
spectroscopy are (i) transmission FTIR mode, (ii) diffuse reflectance (DRIFTS) mode, (iii) attenuated
total reflection (ATR) mode, in which the sample is placed in tight contact with a flat surface of the
prism used to direct the IR beam, and (iv) reflection–absorption (RAIRS) mode, in which the IR beam
is recoiled from a flat reflective surface before collection. This last setup is usually employed for model
systems in surface-science studies. In this review, we will mainly focus on the transmission FTIR and
diffuse reflectance (DRIFTS) common setups.

2.2.1. Transmission FTIR Mode

Most of the spectroscopic studies reported in the literature have been performed in transmission
mode. Generally the setup consists in a self-sustaining pellet of the powered catalyst or of a mixture
with IR transparent KBr, placed inside a cell allowing to work in controlled atmosphere, and collect in
situ IR spectra [39,40]. A schematic picture of an example of transmission mode is shown in Figure 5.
There is also the possibility to follow spectroscopically the catalytic reaction and to collect operando
IR spectra.
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Figure 5. Transmission (TIR) mode, where the IR beam is directed through a self-sustained sample
placed inside the catalytic reactor and collected after exiting for analysis.

Despite being quite popular, transmission mode setups undergo to the following constraints:
the catalyst must be transparent to IR radiation in order to obtain spectra with reasonable intensity,
the catalyst has to give the possibility to make thin self-sustaining pellets, and the intrinsic nature of
the catalyst and the final sample form, such as pellets, depositions, and monoliths, can give serious
problems for mass transport.
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2.2.2. Diffuse-Reflectance (DRIFTS) Mode

To successfully overcome the problems arising from poorly transparent catalysts, or from samples
not adequate to prepare a pellet, the diffuse-reflectance (DRIFTS) mode can be alternatively adopted.
Here, the powdered sample is placed in a cell, where the interaction with the IR beam gives
raise to scattered light, which is collected with appropriate optics (Figure 6). With this approach,
the preparation of the sample is simpler than that with transmission FTIR. Due to this experimental
setup, the intensity of DRIFT signal tends to be low and collecting good quality spectra becomes
difficult. However, the intensity of the bands can be quite more enhanced when working in DRIFT
mode with respect to the acquisition in transmission mode, due to the light multiple internal reflection
close to the sample surface, resulting also in improved sensitivity towards the surface species rather
than towards the gas phase species. On the contrary, the major drawbacks are related to the poor
reproducibility due to the variations of scattering coefficients depending on the cell geometry, on the
sample insertion procedure and on the occurrence of temperature gradient within the powdered
sample with respect to the surface.
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3. FTIR Spectroscopic Characterization: What Can Be Learned?

Usually, the use of FTIR spectroscopy is dedicated to the identification of the surface exposed
sites of the catalyst to establish structure-activity relationships. Another application deals with the
identification of the adsorbed species, and sometimes to their quantification and evolution during the
reaction. In this review, we will try to center on some meaningful examples that shed light on open
questions and improved the knowledge on the active sites involved in the H2O2 direct synthesis and
on the parameters that have a beneficial effect on both conversion and selectivity.

3.1. Nature of the Active Sites on Pd Catalysts

Many studies focused on the identification of the nature and the role of Pd sites in promoting the
direct synthesis of hydrogen peroxide from hydrogen and oxygen. In a very recent and interesting
paper, Han et al. deduced that the active sites should not be properly represented by metallic or
oxidized Pd species and elegantly pointed out that the active sites for the reaction originated from the
interfaces among Pd and PdO domains on Pd/TiO2 catalysts, as shown in Figure 7a [59]. The combined
use of high resolution transmission electron microscopy (HRTEM), X-ray Diffraction (XRD), in situ
diffuse reflectance Fourier Transform IR spectroscopy (DRIFT) of adsorbed CO, X-ray photoelectron
spectroscopy (XPS), X-ray absorption near edge structure (XANES), and Extended X-ray Absorption
Fine Structure (EXAFS) allowed to demonstrate that the structure of such Pd ensembles can be
finely tuned by varying the Pd loading, while keeping constant the particle size. Indeed, the surface
configuration of Pd atoms changed significantly for 1.0–5.0 wt% Pd loadings, whereas the size and the
crystallinity of Pd particles remains unchanged. In situ DRIFTS spectra of adsorbed CO were collected
on the Pd/TiO2 catalysts with different Pd loadings to determine the surface structure and the results
are shown Figure 7b.
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Figure 7. (a) Structural model of the Pd/TiO2 catalyst. (b) In situ DRIFTS of CO adsorption over
different catalysts at room temperature in an Ar flow (50 mL/min): A: 1.0% Pd, B: 2.0% Pd, C: 3.0% Pd,
and D: 5.0% Pd. Reprinted from J. Catal., 321, L. Ouyang, P. Tian, G. Da, X. Xu, C. Ao, T. Chen, R. Si, J.
Xu, Y. Han, The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts: Interfaces of Pd
and PdO domains, 70–80, Copyright (2018), with permission from Elsevier.

The sharp peak at 2094 cm−1 is due to CO linearly adsorbed on low coordinated metallic
Pd atoms located at the corners or at the edges of the nanoparticles. Moreover, the bands at
1978, 1932, and 1876 cm−1 are related to CO adsorbed on bridge and hollow sites of the Pd
ensembles [83]. Such absorptions decreased in intensity by decreasing the Pd loading, however,
the linear species/bridged and multibonded species ratio increases regularly. The intensity of the CO
band at 1876 cm−1 was almost nil in the case of 1.0% Pd/TiO2, which means that the increase of the
Pd content induced the formation of continuous Pd ensembles exposing flat sites, thus lowering the
amount of Pd corners or edges.

A rate in TOF of 630 h−1 along with 61% selectivity to H2O2 were obtained for the 1.0 wt% Pd
catalyst at 283 K and 1 atm in a semibatch reactor. The reasons for the good catalytic performance
were disentangled with the contribution of spectroscopic experiments focused on the Pd surface sites’
reactivity that will be discussed in Section 3.3.

The origin of Pd particle size effects on H2O2 synthesis was rarely investigated [25,57]. It was
reported that high metal dispersion of Pd nanoparticles supported on silica has a detrimental effect on
the catalytic activity and selectivity towards H2O2 [31]. Moreover, shape-dependent catalytic activity
of Pd nanocubes with {1 0 0} facets, and octahedrons with {1 1 1} facets was demonstrated [84]. The Pd
octahedron shape gave rise to higher H2O2 selectivity and productivity than the catalyst with Pd
cubes, therefore, suggesting that the Pd {1 1 1} facet is more active than the Pd {1 0 0} one. In another
paper, {1 0 0} facet-enclosed Pd nanocubes of uniform shape, size, and crystallinity were prepared
and supported on silica. It was found that the {1 0 0} Pd facet efficiently catalyzed H2O2 formation,
however, it promoted side reactions, thus decreasing the selectivity [85].

In this frame, a series of size-controlled Pd/hydroxyapatite (HAp) catalysts ranging from single
sites (Pd clusters) to nanoparticles (∼30 nm) were synthesized and tested in H2O2 direct synthesis,
showing up to 94% selectivity toward H2O2 formation when the Pd particle size is in the range
2.5–1.4 nm [57]. Extensive characterization by multi-technique approach was performed with the aim
to obtain detailed information on the role played by crystal phase, morphology, surface electronic
states, and coordination number of Pd particles (from atomic level to nanometers) and to establish a
proper size range to obtain the best catalytic performances in the H2O2 direct synthesis. In particular,
in situ CO DRIFT measurements were carried out to define the electronic structure of the surface
Pd atoms and the spectra are shown in Figure 8a. Firstly, no vibrational band related to the HAp
support was observed. The intensity of the peak at 2091 cm−1 related to CO linearly adsorbed on
atop sites increased with decreasing the Pd particle size. Conversely, a gradual decrease in intensity
of the absorption bands associated with CO adsorbed on bridged (1988–1964 cm−1) and three-fold
(1913–1873 cm−1) sites was detected [83]. More in detail, the presence of the band at 2091 cm−1,
attributed to linear adsorbed CO, signalled the presence of highly dispersed Pd atoms and clusters
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(0D and 2D particles) on the 0.5–2.0 wt% Pd catalyst. In addition, such a band did not change in
intensity by increasing the Pd content. The authors inferred that the surface local environment of the
HAp support strongly influenced the formation of these particles. Bands related to CO bridged species,
growing in intensity with the Pd content, were detected on the 0.5 wt% Pd catalyst. These spectroscopic
features, i.e., the bands observed in the 1913–1873 cm−1 range, due to CO adsorbed on Pd to hollow
sites, pointed out the presence of Pd clusters, composed of high-density sites, or larger 3D Pd particles.
In addition, the band due to linear carbonyls totally disappeared in the case of the 3.0 and 5.0 wt%
Pd catalysts, suggesting that neither 0D nor 2D particles are present at the surface of these catalysts,
due to Pd coalescence phenomena during the preparation.
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Formatted: Not HighlightFigure 8. (a) In situ DRIFTS of CO adsorption over different catalysts at 283 K in an Ar flow
(50 mL/min): a: HAp, b: 0.5 wt% Pd, c: 1.0 wt% Pd, d: 2.0 wt% Pd, e: 3.0 wt% Pd, and f: 5.0 wt% Pd.
(b) Size dependence of H2O2 selectivity over Pd/HAp catalysts: a–e: catalysts calcined at 673 K with
Pd loadings of 0.5, 1.0, 2.0, 3.0, and 5.0 wt%, respectively; f: 3.0 wt% Pd calcined at 773 K; g) 3.0 wt%
Pd calcined at 873 K; (c) Structures of catalysts corresponding to three scales of particle sizes and
proposed mechanism for H2O2 synthesis. Blue, red, white, purple, and green spheres are palladium,
oxygen, hydrogen, phosphorus, and calcium atoms, respectively. Reprinted from J. Catal., 349, P. Tian,
L. Ouyang, X. Xu, C. Ao, X. Xu, R. Si, X. Shen, M. Lin, J. Xu, Y.-F. Han, The origin of palladium particle
size effects in the direct synthesis of H2O2: is smaller better? 30–40, Copyright (2017), with permission
from Elsevier.

Based on the experimental findings in combination with DFT calculations, a structure–activity
relationship by varying the Pd particle size was established (Figure 8b). Particularly, based on the Pd
particle sizes and on the catalytic performance, three types of catalysts were identified: the first type is
the single site catalyst (Pd(IE)), which is composed of atomically dispersed Pd species, and is almost
inactive due to the lack of active sites (Figure 8c). The catalysts with 0.5–2.0 wt% Pd belong to type II,
and are mainly made up by 2D and 3D Pd sub-nanoparticles with average size ranging from 1.4 to
2.5 nm (Figure 8c). According to the experimental results and the DFT calculations, these species are
active in the H2O2 synthesis (Figure 8b), proving that the surface arrangement of Pd atoms plays a
decisive role in the catalytic activity [86]. The 3.0–5.0 wt% Pd catalysts can be classified as the third
type (Figure 8b,c), which is composed by large nanoparticles with size >2.5 nm, exposing mainly the
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Pd(1 1 1) facets. The H2O2 formation is inhibited on these sites, due to the activity of metallic Pd
towards O2 dissociation, thus decreasing the selectivity.

The HAp support helped in keeping the size distribution of the Pd particles in a defined
range, resulting in the formation of Pd particles with different geometric and electronic structures.
In particular, the interaction between Pd and OH groups of HAp favoured the generation of
sub-nanometer Pd species with a high Pdδ+/Pd0 ratio. This was ascribed to be responsible of
the remarkable improvement of H2O2 selectivity because the presence of Pdδ+ species lower the
dissociative O2 activation along with the H2O2 decomposition [59]. Hence, the Pd particles with
sub-nanometer size are strongly interacting with the support and act as primary active sites.

3.2. Site Isolation and Electronic Effects

High dispersion of Pd sites as well as incremented Pd0 content can boost the hydrogenation
rate of hydrogen peroxide, however lowering H2O2 selectivity. Theoretical studies revealed the
beneficial effect of Pd monomers, which favour H2O2 formation and, at the same time, avoid the
O–O bond dissociation [87]. Ouyang et al. studied both H2O2 direct synthesis and side reactions over
different Pd–Au/TiO2 catalysts and discovered that the productivity of hydrogen peroxide increased
by decreasing the Pd/Au ratio [86]. The in situ DRIFT spectra of CO adsorbed on Pd and Pd–Au
catalysts, are reported in Figure 9a. Different metallic Pd sites were observed on the monometallic
catalyst, and assigned to linear CO adsorbed on low coordination Pd atoms, presumably corners or
edges of the nanoparticles (the band at 2096 cm−1) [88], and to bridged and multibonded CO on Pd
ensembles formed by two or three adjacent atoms (the bands at 1977, 1910, and 1851 cm−1) [83].
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Figure 9. (a) In situ DRIFTS of CO adsorption over different catalysts at room temperature in streams of
Ar with a flow rate of 50 ml/min. A: Pd, B: Pd2.5Au0.5, C: Pd2.0Au1.0, D: Pd1.5Au1.5, E: Pd1.0Au2.0,
F: Pd0.5Au2.5. (b) Mechanism of H2O2 synthesis directly from H2 and O2 on a Pd monomer catalyst.
Reprinted from J. Catal., 311, L. Ouyang, G. Da, P. Tian, T. Chen, G. Liang, J. Xu, Y.-F. Han, Insight into
active sites of Pd–Au/TiO2 catalysts in hydrogen peroxide synthesis directly from H2 and O2, 129–136,
Copyright (2014), with permission from Elsevier.

Moreover, the intensity of these bands diminished dramatically by decreasing the Pd/Au ratio.
Conversely, the ratio of the linear CO bands vs. bridged- and multi-bonded CO bands grew from
0.4 (monometallic Pd catalyst) to 1.0 (bimetallic Pd1.0Au2.0 catalyst). Based on these observations,
the amount of surface Pd ensembles was lowered upon Au addition, whereas isolated Pd sites were
increased (geometric effect occurring between Pd and Au), due to a dilution by gold. A small red-shift
of the band related to the linear carbonyls, and a shift of the absorption of bridged carbonyls from
1977 to 1969 cm−1 were observed after Au addition. These shifts are possibly a consequence of the
charge-transfer from gold to palladium, which enhanced the electron density of the involved d orbitals,
resulting in a stronger back-donation to the 2π CO molecular orbitals. The authors suggested that
molecularly adsorbed O2 is activated without suppressing the O–O bond on Pd monomers embedded
in low-coordinated Au sites to form H2O2 (Figure 9b). These Pd isolated sites are present at the
surface of the homogeneous Pd–Au alloy observed by High Angle Annular Dark Field (HAADF)-TEM
analyses. Conversely, the Pd ensembles favoured H2O2 hydrogenation. It was also proposed that the
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sites at the interface between Au and TiO2 are active in the H2O formation directly from H2 and O2,
because of the lowest selectivity and the absence of contiguous Pd ensembles.

The promotional effect of gold was previously reported for Pd–Au/SiO2 catalysts by XPS
measurements combined with in situ DRIFT spectroscopy of adsorbed CO. These studies proved
the occurrence of surface and electronic modifications of Pd when alloyed with Au atoms, leading
to enhanced reactivity and selectivity for the H2O2 direct synthesis [89]. Very recently, Flaherty et al.
investigated Pd and AuxPd1 nanoparticles with similar size (7–11 nm) to understand the effect of
alloying Pd with Au [90]. In particular, the aim was to find better explanations for the high H2O2

selectivity of these bimetallic catalysts by measuring the steady-state formation rates of both H2O2 and
H2O with respect to the pressure, the temperature, and the nature of the solvent. The authors indicated
that H2O2 is produced by sequential surface proton-electron transfers. Interestingly, an increase of the
Au:Pd ratio corresponds to different and simultaneous increases in the activation enthalpies related
to the H2O2 and H2O production. These changes are due to the occurrence of electronic changes
induced by the addition of gold to palladium and are responsible for the improved selectivity towards
H2O2 reported for AuPd bimetallic catalysts. The Pd and AuxPd1 were characterized also by FTIR
spectroscopy, and the results are reported in Figure 10a.
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Figure 10. (a) Infrared spectra of CO adsorbed on Pd (black; 0.5 wt% Pd), Au1Pd1 (red; 0.5 wt% Pd),
and Au7Pd1 (blue; 0.014 wt% Pd) obtained after saturating surfaces under flowing CO (~15 min in
5 kPa CO, 96 kPa He, 303 K) and purging gas-phase CO with He (101 kPa, 47.5 cm3 min−1, 303 K).
Spectra are the average of 128 scans with a 4 cm−1 resolution. Peak heights were normalized by the
atop bound CO feature at 2090–2000 cm−1. (b) Steady-state H2O2 (black) and H2O formation rates (red)
and selectivity towards H2O2 (blue) on catalysts with different ratios of Au to Pd (55 kPa H2, 60 kPa O2,
305 K, 30 cm3 min−1 20% v/v methanol). Dashed bars indicate that rates were undetectable. Reprinted
from J. Catal., 357, N. M. Wilson, P. Priyadarshini, S. Kunz, D. W. Flaherty, Direct synthesis of H2O2 on
Pd and AuxPd1 clusters: Understanding the effects of alloying Pd with Au, 163–175, Copyright (2018),
with permission from Elsevier.

The absorption bands in the 2090–2000 cm−1 range are assigned to atop CO species adsorbed
on Pd, whereas those between 1960 and 1940 cm−1 are due to the formation of bridge bounded
CO on Pd [83]. Upon gold addition to Pd, the peaks related to the atop carbonyl species are
significantly red-shifted of about 90 cm−1 [91]. The ratio between the integrated areas of the bridge
bounded/atop bands was taken as an indication of the relative amount of Pd ensembles with respect
to Pd monomers [86], and decreased by adding Au to Pd, indicating the simultaneous presence of Pd
and Au atoms within the same nanoparticle.

The formation turnover rates of H2O2 and H2O are dependent on the Au content of the bimetallic
AuxPd1 nanoparticles (Figure 7b). In particular, the formation rates of 0.11 mol H2O2 (mol Pds s)−1

and 0.08 mol H2O (mol Pds s)−1 over the Au12Pd1 catalyst are lower than those obtained for the
Pd catalyst (0.40 mol H2O2 (mol Pds s)−1 and 1.4 mol H2O (mol Pds s)−1. Bare Au nanoparticles
catalysed neither H2O2 nor H2O formation, meaning that Pd is needed for the H2O2 direct synthesis
and that Pd atoms are probably the active sites. Moreover, an enhancement of the selectivity towards
H2O2 from 23% (bare Pd) up to 60% (Au12Pd1) was observed, since the decrease in H2O formation at
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increasing Au amount was larger than that of H2O2 at the experimental conditions reported in the
paper (55 kPa H2, 60 kPa O2, 305 K). These observations were in agreement with the observed decrease
of the bridge/atop CO ratio (Figure 7a), and with literature findings on AuPd nanoparticles supported
on carbon [92], TiO2 [27], and SiO2 [89]. The increase in selectivity at increasing Au amounts was
associated with greater activation enthalpies for H2O2 and H2O production on isolated Pd atoms than
on ensembles of Pd atoms [87].

With the aim of obtaining catalysts enriched with surface isolated Pd active sites for H2O2

synthesis, Zhang et al. [54] synthesized Pd-Zn bimetallic catalysts supported on alumina and with
different Pd/Zn metal ratios. The 1Pd5Zn bimetallic catalyst reached 25,431 mol kgPd

−1 h−1 of
produced H2O2, which was superior than the productivity achieved in the presence of monometallic
1Pd catalyst (8533 mol kgPd

−1 h−1).
The authors bestowed the marked improvement of catalytic activity to geometric and electronic

effects induced by Zn addition. XPS results indicated that at increasing Zn loadings the number of
surface contiguous Pd sites decreased and, at the same time, an increase of the number of isolated Pd
sites was observed. Indeed, Zn is able to disassemble the surface Pd agglomerates, thus enhancing
the amount of Pd islands and single atoms [53]. The catalysts were reduced at 300 ◦C by using a
10% H2/N2 mixture for 60 min, and then cooled in a N2 atmosphere before CO interaction at 30 ◦C for
15 min. The DRIFT spectra collected on monometallic Pd and on bimetallic PdZn catalysts are shown
in Figure 11.
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Figure 11. In situ DRIFTS of CO adsorption over different catalysts. Reprinted from Appl. Catal. A:
General, 531, S. Wang, K. Gao, W. Li, J. Zhang, Effect of Zn addition on the direct synthesis of hydrogen
peroxide over supported palladium catalysts, 89–95, Copyright (2017), with permission from Elsevier.

Bands at 2089 (linear CO adsorbed on isolated surface Pd sites [51]), 1994 (bridged CO species
on Pd edges [93]), and 1941 cm−1 (bridged CO species on Pd atoms exposed at the surface of either
(100) or (111) facets [39]) due to CO on different Pd sites were observed on the monometallic 1Pd
catalyst [88]. Upon Zn addition, a red-shift of these peaks along with a gradual decrease in intensity
of the peak at 1941 cm−1, related to bridged carbonyls on Pd atoms on either (100) or (111) facets,
was observed (red and blue curves), which almost completely disappeared in the case of the 1Pd5Zn
catalyst (pink curve). These spectroscopic features put in evidence a strong Pd surface modification
induced by the presence of Zn. In agreement with Ouyang et al. [86], the authors ascribed the observed
red-shift to an increase of the electron density of the d-orbital due to the charge transfer from Zn to
Pd species [86], resulting in an increase of the isolated Pd0 sites amount. Indeed, the Pd-Zn electronic
interaction positively promoted both H2 conversion and H2O2 productivity.

Changes in surface composition and structure of bimetallic PdZn catalysts supported on silica
were also already elegantly evaluated by Miller et al. using DRIFTS of CO adsorption combined with
electron microscopy, X-ray absorption spectroscopy, CO chemisorption, and calorimetric analysis [53].
They observed the surface changes induced by varying the pre-reduction temperature from 225 up
to 500 ◦C and reported the linear-to-bridge-bound ratio obtained by comparing the areas of the
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peaks observed on two PdZn samples with different Pd:Zn molar ratios. The results are reported
in Table 1. A significant increase in linear-bound CO was observed upon Zn addition, moreover
the addition of a Zn excess zinc (2%Pd–10%Zn catalyst) resulted in a contained enhancement of the
linear-to-bridge-bound CO ratio (2.5:1) with respect to the 3%Pd–1.8%Zn catalyst (2.1:1).

Table 1. Initial heat of CO adsorption values (±5 kJ/mol) in the presence of chemisorbed hydrogen
and linear-to-bridge ratios from DRIFTS. Reprinted from J. Catal., 318, D. J. Childers, N. M. Schweitzer,
S. Mehdi Kamali Shahari, R. M. Rioux, J. T. Miller, R. J. Meyer, Modifying structure-sensitive reactions
by addition of Zn to Pd, 75–84, Copyright (2014), with permission from Elsevier.

Sample 1 Reduction
Temperature (◦C)

CO (Initial) Heat of
Adsorption with Chemisorbed

H (kJ/mol CO) 2
Linear-to-Bridge Ratio

2Pd/SiO2
3 225 92 0.2:1

2Pd–10Zn/SiO2 300 102 2.5:1
3Pd–1.8Zn/SiO2 300 99 2.1:1

550 93 1.8:1
1 Catalysts were initially reduced under 5.11% H2/Ar (both gases, 99.999% UHP) for 2 h at the specified reduction
temperature, followed by subsequent cooling in H2. 2 Initial heat of CO adsorption determined by microcalorimetry
on a reduced Pd or PdZn surface containing chemisorbed hydrogen. 3 Monometallic Pd catalyst from previous
work studied using the modified procedure.

The comparison of the DRIFT spectra of CO adsorbed on the 3%Pd–1.8%Zn catalyst pre-reduced
at 300 and 550 ◦C (Figure 12a) put in evidence a shift from 2075 to 2070 cm−1 of the peak due to
linear CO peak by increasing the reduction temperature at 500 ◦C, indicating a small increase of the
population of linear carbonyls located at the Pd edge sites. Analogously, the absorption band related
to bridge-bounded CO species showed a broadening and a shift from 1975 to 1965 cm−1 upon the
increase of the reduction temperature. However, the linear-to-bridge ratio did not change significantly:
from 2.1:1 at 275 ◦C to 1.8:1 at 550 ◦C.
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Figure 12. (a) Normalized DRIFT spectra of the 3%Pd–1.8%Zn catalyst pre-reduced at 300 ◦C (red) and
at 550 ◦C (blue). (b) Cross-section of Pd and PdZn catalysts showing structure change as reduction
temperature increased. Reprinted from J. Catal., 318, D. J. Childers, N. M. Schweitzer, S. Mehdi Kamali
Shahari, R. M. Rioux, J. T. Miller, R. J. Meyer, Modifying structure-sensitive reactions by addition of Zn
to Pd, 75–84, Copyright (2014), with permission from Elsevier.

Based on the characterization results, the authors proposed simplified models of the catalyst
structure, which are shown in Figure 12b. In particular, the bimetallic nanoparticles of the
3%Pd–1.8%Zn catalyst have a Pd core with surface Zn atoms upon reduction at 275 ◦C, and the
surface PdZn film possesses an intermetallic alloy structure, based on the high intensity of the band
related to linear-bound CO bands. An increase in the surface PdZn intermetallic alloy, with few residual
Pd ensembles, occurs at 550 ◦C, while the nanoparticle core is Pd-rich. This is due to the limited
amount of Zn atoms interacting with Pd, resulting in the impossibility to form a fully intermetallic
PdZn alloy nanoparticle at such temperature [94].
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Conversely, in the case of the 3%Pd–1.8%Zn catalyst, a shell made up by PdZn alloy, totally
covering the Pd-rich core was proposed already at 275 ◦C. For both catalysts, the PdZn metallic surface
consists of an ordered alloy structure, and a random distribution of metallic Pd and Zn surface atoms
is very unlikely. At 550 ◦C, there is almost complete formation of the PdZn alloy shell.

However, isolated Pd atoms were responsible for the enhancement of the catalytic activity and
the authors ascribed this improvement to geometric effects rather than an electronic effect due to
alloy formation.

An excellent Pd–Te/TiO2 catalyst with almost 100% H2O2 selectivity under mild conditions
(283 K, 0.1 MPa, using a semi-batch continuous flow reactor) was recently investigated [52].
Upon addition of tellurium, Pd nanoparticles with smaller size were obtained, and such Te-modified
Pd surfaces hindered the O2 dissociative activation, favouring at the same time the non-dissociative
O2 hydrogenation. In order to find structure–activity relationships, DRIFT spectroscopy of adsorbed
CO was employed in combination with STEM-EDS, EXAFS, O2-TPD, XPS, and DFT calculations to
shed light on the electronic structure of the surface Pd atoms.

As shown in Figure 13a, the band ascribed to CO linearly adsorbed on Pd sites red-shifted from
2079 to 2051 cm−1 upon addition of Te. Moreover, according to DFT calculations, the binding energy
of CO adsorbed on low-coordinated Pd sites exposed at the surface of smaller particles was noticeably
higher than that related to CO adsorbed on the Pd terrace sites of extended surfaces. Particularly,
the amount of smaller Pd nanoparticles increased at increasing Te loading, resulting in an increase of
the low-coordinated Pd corners and edges, as indicated by the enhancement of the intensity of the band
related to linearly carbonyls and by the gradual decrease of the absorption centred at 1982–1902 cm−1

ascribed to CO on bridge and hollow sites [83]. Indeed, only the band related to CO linearly bounded
was present in the case of the Pd17Te4 and Pd3Te2 catalysts, confirming the presence of highly dispersed
clusters or isolated Pd atoms.
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Figure 13. (a) In situ DRIFTS measurement of CO adsorption over the Pd–Te/TiO2 catalysts at 283 K in
an Ar flow. (b) Proposed mechanism for the direct synthesis of H2O2 over Pd–Te/TiO2 catalysts. Blue
and brown spheres are Pd and Te atoms, respectively. Reprinted from P. Tian, X. Xu, C. Ao, D. Ding, W.
Li, R. Si, W. Tu, J. Xu, Y.-F. Han, ChemSusChem, 10, 3342–3346, Copyright (2017), John Wiley and Sons.

A mechanism explaining the role of Te in improving the catalytic activity was proposed based
on STEM-EDS, EXAFS, and CO-DRIFTS results. In particular, the reason for the noticeable catalytic
performance was ascribed to the presence of selectively active sites bimetallic Pd–Te, in which the
Te inertness toward O2 adsorption significantly inhibited the dissociative O2 activation as revealed
by XPS and O2-TPD analyses. As a matter of fact, the Pd150Te1 catalyst containing poor Te amount
showed higher selectivity than the monometallic Pd catalyst. Side reactions were noticeably inhibited
and a selectivity of almost 100% was achieved by increasing the Te/Pd atomic ratio to 1:100, because
of the increased number of surface Pd–Te sites. Indeed, a much contained increase of the Te/Pd ratio
to 1:50 and 1:17 resulted to lower selectivity (78.8% and 67.3%, respectively).

At the same time, as indicated by XRD, TEM, and CO-DRIFTS findings, the Pd particle size was
diminished at increasing Te/Pd ratios, and low-coordinated active edges and corners were formed.
Such low-coordinated sites are much more active to bind and dissociate molecular O2, with respect
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to terrace sites [95]. As a result, the selectivity to H2O2 of the Pd50Te1 and Pd17Te1 catalysts is lower
than that observed in the case of Pd100Te1. Thus, a high amount of surface Te sites would inhibit both
H2 and O2 reactant molecules adsorption, resulting in inert Pd17Te4 and Pd3Te2 materials. Indeed,
the surface Pd atoms of these catalysts are isolated by Te atoms, as revealed by EXAFS and CO-DRIFTS.
The results indicate that only by finely tuning the Pd/Te ratio it is possible to control the amount of
terrace Pd-Te sites, as well as the particle size to obtain highly-performing catalysts.

Very recently Flaherty et al. reported that the steady-state selectivity to H2O2 of AgPt octahedra
supported on silica (50%) is 10-fold greater than observed with Pt/SiO2 nanoparticles with similar size
(6%) [45]. In addition, the abundance and location of Pt atoms on the AgPt octahedra surface play a role
on the initial formation rates selectivity to H2O2. The population of these sites can be modulated either
by CO exposure at 373 K to obtain a Pt-rich surface (with 16% initial H2O2 selectivity) or by inert gases
exposure at the same temperature to achieve a Pt-poor surface (with 36% initial H2O2 selectivity).

FTIR experiments of adsorbed 12CO were then performed on the monometallic Pt catalyst and on
the AgPt catalyst pretreated in 12CO or He (Figure 14a). Firstly, it has to be recalled that 12CO does
not adsorb on the Ag sites under the adopted experimental conditions. The bands of adsorbed 12CO
on AgPtCO (black curve) and AgPtHe (red curve) octahedra differ significantly in both position and
intensity, due to modifications of surface structure of the AgPt octahedral, because the FTIR spectra
were obtained by submitting the same sample pellet to in situ CO and He pre-treatments. Conversely,
the band at 2098 cm−1 was assigned linear carbonyl species adsorbed on single Pt atoms exposed at
the surface of the nanoparticles [96] and on Pt(111) [81]. The positions of the bands related to linearly
adsorbed 12CO are significantly red-shifted at 2051 cm−1 for AgPtCO and at 2033 cm−1 in the case of
AgPtHe, revealing different extents of electron exchange between the 12CO probe. Such a feature can
be ascribed to lower dipole–dipole coupling between the 12CO molecules due to the lower coverage of
linear carbonyls, which results in a red-shift of the 12CO band [81]. In addition, the intensity of the
peaks related to the AgPt octahedra pre-treated with CO was about six times the intensity observed
for AgPtHe, which pointed out that the 12CO pre-treatment was able to extract a much bigger amount
of exposed Pt sites at the surface of the AgPt octahedra with respect to the treatment in He. Moreover,
the difference in position of about 20 cm−1 for AgPtCO and AgPtHe was in agreement with the literature
on CO adsorbed on well-coordinated Pt terraces and on under-coordinated Pt edges [96].

In order to verify the occurrence of different electronic effects on the catalysts, the singleton
frequency can be evaluated by using 13CO–12CO isotopic mixture to dilute the adsorbed 12CO
molecules and by evaluating of exchange rates between adsorbed 13CO and 12CO. The changes
in the singleton frequency of adsorbed 13CO clearly pointed out the electronic changes in Pt atoms as
shown in section b of Figure 14. In particular, a red-shift of the band related to adsorbed 13CO was
observed by decreasing the 13CO coverage (θ13

CO), signifying the occurrence of dipole–dipole coupling.
The 13CO singleton frequency was calculated by extrapolation of the spectra (shown in section a) to
a zero coverage, and obtaining 2016 ± 6 cm−1 for the monometallic Pt catalyst, 1974 ± 8 cm−1 for
AgPtCO, and 1979 ± 12 cm−1 for AgPtHe. The last two values were much lower than on the Pt catalyst,
which indicates a greater extent of electron back-donation from the Pt atoms to the CO 2π* orbitals
on the AgPt octahedra. The above findings were unexpected, since the AgPt octahedra gave higher
selectivity to H2O2 than Pt nanoparticles.

The isosteric 13CO desorption under 12CO flow on AgPtHe, AgPtCO and on Pt nanoparticles
are reported in Figure 14, section c. It can be observed that the 13CO desorption and exchange with
12CO take 400 s on Pt, whereas only about 50% and 15% 13CO exchange occurs in 800 s on AgPtHe

and AgPtCO, respectively. The 13CO desorption rates were described by Equation (3), a first-order
desorption process for surfaces containing n adsorbing sites:

− dθ13CO

dt
=

n

∑
i

ki·θ13CO,i (3)
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where ki is the rate constant for CO desorption from site i expressed in s−1. The sum of all coverages
θ13

CO,I = 1 at the exchange onset. The desorption rates for >95% of 13CO molecules from the surfaces
of the Pt nanoparticles were accurately delineated by a model that describes a uniform surface for
which n = 1. This was not true in the case of AgPtHe and AgPtCO octahedral, because two distinct
sites have to be considered to explain the desorption kinetics and the significant 13CO amount that
remain adsorbed during the experiment. H2O2 and H2O form on distinct active sites and the ratio
between those on which H2O2 is formed and those on which H2O formation occurs increased upon
Ag addition.
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Figure 14. (a) infrared spectra of adsorbed 12CO following the purge of gas-phase 12CO with He
(101 kPa, 30 cm3 min−1, 303 K) on Pt (blue), AgPtCO (black), and AgPtHe (red). Spectra are the average
of 128 scans with a 4 cm−1 resolution. Dotted lines are intended to show the peak position for each
spectrum. (b,c) Peak position of ν(C=O) for 13CO as a function of the coverage of adsorbed 13CO (θ13

CO)
(total of 1 kPa CO, 100 kPa He, 100 cm3 min−1, 298 K) and change in the coverage of θ13

CO as a
function of time during exchange with 12CO on Pt (blue triangles) and CO-treated (black squares)
and He-treated (red circles) AgPt octahedral particles (0.2 kPa 12CO, 100 cm3 min−1, 298 K; surfaces
pre-saturated with 13CO). Solid lines in (b) represent a linear fit to the data, and dashed lines in panel c
represent the fit of θ13

CO as a function of time. Adapted with permission from ACS Catalysis, N. M.
Wilson, Y.-T. Pan, Y.-T. Shao, J.-M. Zuo, H. Yang, D. W. Flaherty, Direct Synthesis of H2O2 on AgPt
Octahedra: The Importance of Ag–Pt Coordination for High H2O2 Selectivity, 8, 2880–2889. Copyright
(2018) American Chemical Society.

3.3. Reactivity of the Exposed Metal Sites

Only few studies proposed in situ approaches to investigate by FTIR spectroscopy of adsorbed
probes the reactivity of the metallic active sites upon interactions with the reagents, i.e., molecular
hydrogen and oxygen or mixtures of the two. It is worth noting that the reagents involved in the H2O2

direct synthesis are IR inactive, because there is no change in the dipole moment of the molecules upon
interaction with the IR radiation.

One very recent example on this approach is reported in the study by Han et al. [58], which has
been already discussed in Section 3.1 as for the nature of the Pd sites on Pd/TiO2 catalysts. In addition
to the common investigation carried out by adsorbing the CO probe, the authors characterized
the catalysts submitted to subsequent adsorption of molecular oxygen and hydrogen, before the
inlet of the CO probe. Indeed, the surface of the freshly reduced catalyst dramatically changed
upon O2 preadsorption: the narrow peak at 2094 cm−1 due to the linear carbonyls (see Figure 7b)
was transformed into two weak peaks at 2090 and 2064 cm−1 (Figure 15). Moreover, bridged and
multibonded CO species on Pd ensembles red-shifted to 1986, 1914, and 1874 cm−1, and also the
relative intensities were modified, due to the geometric and electronic modification of Pd atoms
induced by oxygen adsorption. Such changes were accompanied by an increase in intensity of the
band at 1646 cm−1 due to the formation of carbonate species.



Catalysts 2019, 9, 30 17 of 34

Catalysts 2018, 8, x FOR PEER REVIEW  17 of 36 

 

െ dଵଷେ୓d𝑡 ൌ ෍ 𝑘௜ ൉ ଵଷେ୓,୧௡
௜  (3) 

 614 
where ki is the rate constant for CO desorption from site i expressed in s–1. The sum of all coverages 615 
θ13CO,I = 1 at the exchange onset. The desorption rates for >95% of 13CO molecules from the surfaces of 616 
the Pt nanoparticles were accurately delineated by a model that describes a uniform surface for 617 
which n = 1. This was not true in the case of AgPtHe and AgPtCO octahedral, because two distinct sites 618 
have to be considered to explain the desorption kinetics and the significant 13CO amount that remain 619 
adsorbed during the experiment. H2O2 and H2O form on distinct active sites and the ratio between 620 
those on which H2O2 is formed and those on which H2O formation occurs increased upon Ag 621 
addition.  622 

3.3. Reactivity of the Exposed Metal Sites 623 
Only few studies proposed in situ approaches to investigate by FTIR spectroscopy of adsorbed 624 

probes the reactivity of the metallic active sites upon interactions with the reagents, i.e., molecular 625 
hydrogen and oxygen or mixtures of the two. It is worth noting that the reagents involved in the 626 
H2O2 direct synthesis are IR inactive, because there is no change in the dipole moment of the 627 
molecules upon interaction with the IR radiation.  628 

One very recent example on this approach is reported in the study by Han et al. [58], which has 629 
been already discussed in Section 3.1 as for the nature of the Pd sites on Pd/TiO2 catalysts. In 630 
addition to the common investigation carried out by adsorbing the CO probe, the authors 631 
characterized the catalysts submitted to subsequent adsorption of molecular oxygen and hydrogen, 632 
before the inlet of the CO probe. Indeed, the surface of the freshly reduced catalyst dramatically 633 
changed upon O2 preadsorption: the narrow peak at 2094 cm–1 due to the linear carbonyls (see Figure 634 
7b) was transformed into two weak peaks at 2090 and 2064 cm–1 (Figure 15). Moreover, bridged and 635 
multibonded CO species on Pd ensembles red-shifted to 1986, 1914, and 1874 cm–1, and also the 636 
relative intensities were modified, due to the geometric and electronic modification of Pd atoms 637 
induced by oxygen adsorption. Such changes were accompanied by an increase in intensity of the 638 
band at 1646 cm–1 due to the formation of carbonate species.  639 

 640 

 641 
Figure 15. In situ DRIFTS of CO adsorption over the reduced 1.0% Pd catalyst: A: pretreatment with 642 
O2, adsorption of CO and purged with Ar; B: H2 treatment of A, readsorption of CO and purged with 643 
Ar; C: O2 retreatment of B, readsorption of CO and purged with Ar. All the experiments were carried 644 
out at 283 K. Reprinted from J. Catal., 321, L. Ouyang, P. Tian, G. Da, X. Xu, C. Ao, T. Chen, R. Si, J. 645 

Formatted: Not Highlight

Figure 15. In situ DRIFTS of CO adsorption over the reduced 1.0% Pd catalyst: A: pretreatment with
O2, adsorption of CO and purged with Ar; B: H2 treatment of A, readsorption of CO and purged with
Ar; C: O2 retreatment of B, readsorption of CO and purged with Ar. All the experiments were carried
out at 283 K. Reprinted from J. Catal., 321, L. Ouyang, P. Tian, G. Da, X. Xu, C. Ao, T. Chen, R. Si, J. Xu,
Y. Han, The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts: Interfaces of Pd
and PdO domains, 70–80, Copyright (2018), with permission from Elsevier.

At the same time a new band at 2126 cm−1, probably due to CO on positively-charged Pd formed
after oxygen pre-adsorption and the broad and complex absorption at 1800–2000 cm−1 remained
unchanged. Upon H2 contact for 5 min the band at 1646 cm−1 decreased in intensity and the peak
at 2126 cm−1 was totally depleted, pointing out the reduction of the positively-charged Pd sites.
The intensity of these absorptions was completely recovered after further O2 inlet for 5 min and
re-adsorption of CO, which is an indication of partial oxidation of the surface Pd atoms. This behaviour
suggested that the electronic structure of the surface Pd atoms undergoes to dynamical changes during
the reaction as a consequence of the interaction and adsorption of molecular oxygen and hydrogen
reactants. Moreover, the comparison with the CO bands observed in the presence or in the absence of
oxygen (Figure 7a), allowed understanding that oxygen is preferentially adsorbed on the Pd corners or
edges sites, according to the marked decrease in intensity of the bands related to linearly adsorbed CO.
At the same time, oxygen is also adsorbed on the flat sites of the Pd particles, as revealed by the change
occurred on the bands assigned to CO adsorbed on Pd continuous ensembles. Therefore, the Pd corner
or edge sites, which are highly reactive towards oxygen dissociation are modified by adsorbed oxygen
species or are partially oxidized to PdO, which weakens the O2–Pd interaction. Such modification
positively influenced the molecular O2 activation and the further H2O2 synthesis, which is assumed to
occur at the interface of the Pd and PdO domains.

The characterization results showed that a fraction of the surface Pd atoms can be easily oxidized
at 283 K (47.6% for the 1.0 wt% Pd catalyst and 35.2% for the 5.0 wt% Pd one), and form Pd–PdO
ensembles. The electronic structure of the surface Pd atoms has proved to change dynamically in
different atmospheres. The experimental results presented in the paper clearly demonstrated that the
structure of supported Pd active sites can be tuned by choosing opportunely the metal loading while
the size of the metal particles is unchanged. Therefore, the variation of the metal loading does not
correspond to a simple increase in the number of active sites, but it is an effective approach to tune
the structure of the active sites. These insights into the Pd–PdO–TiO2 interface greatly contributed
to understand the active phase geometric and electronic structure and the mechanism for direct
H2O2 synthesis.

Strukul et al. previously observed that surface oxidized monometallic Pd and bimetallic Pd-Au
catalysts pretreated with H2 and O2 displayed higher activity and selectivity than the untreated
samples [97]. Moreover, even though gold itself is not active, both productivity and selectivity were
improved by Au addition. The catalysts with different supports have been tested the H2O2 direct
synthesis under very mild and non-explosive conditions (1 bar, 20 ◦C). The catalysts supported on
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sulphated zirconia (ZS) gave the best performance (1270 mmol H2O2/gPd h after three hours of
reaction, with 61% selectivity) in the presence of H2/O2 mixtures with a large excess of oxygen (4/96).

HRTEM measurements indicated that gold and palladium were in close contact and FTIR
spectroscopy was employed to (i) monitor the nature and the electronic properties of the Pd sites
upon Au addition, and (ii) the reactivity of these sites after pretreatment in O2 and/or H2 atmosphere.
CO was adsorbed at room temperature on the ZS-Pd and ZS-PdAu catalysts and the results are
compared in Figure 16a,b, respectively. The FTIR spectra were collected on the untreated catalysts
(bold curves), on those submitted to H2 pre-treatment at room temperature (fine curves), and on the
catalysts pre-treated with H2 and O2 (dashed curves).
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Figure 16. FTIR spectra of ZS–Pd (a) and ZS–PdAu (b) after CO adsorption at r.t on the as received
samples (bold curves), on the samples pretreated at room temperature with hydrogen (fine curves)
and pretreated with hydrogen and oxygen (dashed curves). The spectra have been normalized to the
same Pd content. Reprinted from J. Catal., 257, F. Menegazzo, P. Burti, M. Signoretto, M. Manzoli, S.
Vankova, F. Boccuzzi, F. Pinna, G. Strukul, Effect of the addition of Au in zirconia and ceria supported
Pd catalysts for the direct synthesis of hydrogen peroxide, 369–381, Copyright (2008), with permission
from Elsevier.

Different bands in the range of linear (2200–2000 cm−1) and bridged (2000–1700 cm−1) CO
carbonyl species were observed upon CO adsorption have been detected [98]. The ZS-Pd and ZS-PdAu
catalysts possess very similar spectroscopic features: all the produced bands were related to Pd
carbonyl species, no bands due to CO on Au sites were observed for the bimetallic catalysts, and the
intensity of the CO bands produced on the ZS-PdAu sample was much higher than that related to the
bands observed for the monometallic catalyst, independently from their pretreatments.

FTIR spectroscopy pointed out that in the bimetallic catalysts the Pd dispersion was higher,
in agreement with HRTEM results. In addition to the increased number of active sites, a high metal
dispersion can modify the interaction with oxygen, strongly affecting the selectivity. It was reported
that oxygen cannot dissociate on the very small metallic clusters, due to the repulsive effects between
the two negatively-charged O atoms [99]. Upon H2 pre-treatment, the band at 1946 cm−1 observed for
both mono- and bimetallic catalysts (fine curves), and assigned to CO adsorbed on bridge-bonded
CO on Pd terrace sites of (111) facets [100], increased in intensity. Conversely, this band was almost
completely depleted after interaction with the H2–O2 mixture on ZS–Pd (Figure 16a, dashed curve),
and slightly decreased in intensity on ZS–PdAu (Figure 16b, dashed curve). This behaviour indicates
that on ZS–PdAu a large fraction of the terrace sites was preserved after oxidation, resulting in a less
defective and less energetic surface. Moreover, in the case of the ZS–PdAu catalyst, the intensity of
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the absorption at 1770 cm−1 was maximum, due to a larger back-donation from the metal to the CO
probes, as a result of an electronic effect of gold on palladium.

The presence of gold in close proximity of palladium was therefore proposed based on the
changes in the electron density induced on Pd sites evidenced by FTIR and in the morphology
observed by HRTEM.

The authors investigated the effect of the H2–O2 pre-treatment at room temperature on the surface
oxidation state of the bimetallic catalysts by FTIR of CO absorption (Figure 17). Firstly, the intensity
of the CO bands observed for the AuPd catalyst supported on ceria (CeS–PdAu, orange curve) was
quite weak, analogously to what observed on the same sample simply outgassed at room temperature
(data not shown). However, in this case the on top CO linear species/bridged CO species intensity
ratio obtained without pre-treatment and after H2–O2 interaction was quite similar, which indicates a
contained decrease of the exposed sites and no changes in their nature and relative abundance.
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Figure 17. FTIR spectra of CO adsorbed at r.t. on the ZS–PdAu (blue curve) and CeS–PdAu (orange
curve) samples previously contacted with a H2–O2 mixture at room temperature. The spectra have
been normalized to the same Pd content. Reprinted from J. Catal., 257, F. Menegazzo, P. Burti, M.
Signoretto, M. Manzoli, S. Vankova, F. Boccuzzi, F. Pinna, G. Strukul, Effect of the addition of Au
in zirconia and ceria supported Pd catalysts for the direct synthesis of hydrogen peroxide, 369–381,
Copyright (2008), with permission from Elsevier.

Conversely, the overall intensity of the bands observed for the ZS–PdAu catalyst (blue curve) was
much stronger. In addition, the linear/bridged intensity ratio was much higher for ZS–PdAu with
respect to CeS-PdAu. This spectroscopic feature is due to the different nature of the two supports.
Ceria can be quite easily reduced at the interface with the metallic particles under mild conditions,
which results in the production of oxygen vacancies, and migration of oxygen on the small metallic
particles [84]. Moreover, on this catalyst a large fraction of the Pd sites was present as PdO, on which
CO does not adsorb, upon H2–O2 treatment [101]. PdO species formation takes place preferably
at the particle/support interface, whereas the Pd atoms located on top of the particle, far from the
interface between the metal and the oxide keep on being metallic when the particle size is >3 nm [102].
In this frame, the nature of the support strongly affected both the formation and stabilization of
oxidized particles.

Such process was promoted on the ceria support because of its oxygen storage-release properties
along with the smaller size of the metallic particles detected on both the Pd and PdAu catalysts
supported on CeS catalysts, according to the HRTEM observations.

Based on the characterization results, a reaction mechanism for the Pd and Pd-Au bimetallic
catalysts was proposed depending on the nature of the active metallic sites, i.e., less energetic and
more energetic sites [103]. As illustrated in Figure 18, in the former case, H2O2 direct synthesis occurs
by: (i) oxygen activation without dissociation on non-defective (less energetic) Pd sites, followed by
(ii) protonation external H+, and (iii) reaction with molecular H2 to form H2O2 with H+ restoration.
On the contrary, O2 is chemisorbed by dissociative way on defect, edge, and corner sites (more energetic
sites), which are able to re-adsorb H2O2. Thus, due to the presence of chemisorbed H2, water can be
formed by reaction with oxygen atoms or with the OH fragments coming from H2O2.
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Therefore, upon gold addition of gold, the amount of terrace sites (less energetic sites) increased
along with the selectivity to H2O2. However, as pointed out by FTIR measurements, the amount of
more energetic active sites did not rise, as expected. The active phase of Pd–Au bimetallic catalysts was
confirmed to be made up by a core-shell morphology with an Au-rich core/Pd-rich shell morphology
and a Pd-rich surface according to the studies by Hutchings et al. [26,27,41,104–106]. The occurrence
of an electron donation from the Au core to the Pd shell, which results in less reactive sites toward
O2 dissociation, was demonstrated by the presence of the band at 1770 cm−1. Gold was proven to
have a complex role, since it improves the Pd catalytic activity by decreasing the size, morphology and
electron density of the Pd particles.

In a following paper by the same authors, the effect of the morphological and composition
properties of differently prepared Pd–Au catalysts supported ZrO2 on the direct synthesis of
hydrogen peroxide was investigated [39]. It was shown that the consecutive deposition of gold by
deposition-precipitation and then of palladium by incipient-wetness impregnation allowed to prepare
catalysts (1Au2Pd) with a H2O2 productivity at pressure corresponding to 18,000 mmolH2O2 /gPdh
with 59% selectivity, unusually higher than that observed at atmospheric pressure. Moreover, large
roundish bimetallic particles with an Au/Pd ratio ranging from 0.3 up to 1.5, as determined by EDS
analysis, were mainly observed on the 1Au2Pd catalyst. To obtain more insight on the surface sites,
CO adsorption was performed at 180 K in order to observe also the Pdδ+ carbonyl species, which
do not chemisorb the probe at room temperature. Indeed, CO bands at 2160 cm−1 and 2135 cm−1

signalled the presence of Pd2+ ions stabilized by chloride ions coming from the metal precursor [107]
and of Pdδ+ at the surface of oxidized Pd0 particles [108] on the catalysts simply outgassed for 1 h at
room temperature (data not shown). The FTIR spectra of CO adsorbed on Pd (Figure 19a), 1Au2Pd
(Figure 19b), 1Pd2Au (Figure 19c), and PdAu (Figure 19d) submitted to H2 pre-treatment at room
temperature (fine curves) and to subsequent interaction with H2, then O2 atmosphere at the same
temperature (bold curves) are compared in Figure 19.

Generally, the spectra display similar band positions, which are in the range of on top, two-fold
bridged or three-fold bridged Pd0 carbonyls. A band at 2169 cm−1, related to CO adsorbed on
Zr4+ sites of the support, was detected for the 1Pd2Au catalyst (Figure 19c). Moreover, the spectra
differed as for the overall intensity, and those related to the 1Au2Pd catalyst had the lowest intensity,
which suggests the presence of large particles, in agreement with the results of the HRTEM analysis.
The pre-treatment in H2 and O2 atmosphere (bold curves) induced a marked decrease in intensity of
the spectra for all samples, pointing out that a surface oxide layer, exposing sites unable to adsorb
the probe, was formed [108,109]. In particular, a 95% intensity band decrease of all carbonyls was
observed on the 1Au2Pd sample (Figure 19b), and ascribed to electronic and chemical effects induced
by Au on the Pd sites. A curve fitting procedure of the experimental spectra collected after H2 and
O2 pre-treatment was carried out and the obtained deconvolutions are shown in Figure 20. Linear
CO species adsorbed on Pd0 sites of (1 1 1) facets (band at 2108 cm−1), bridged CO on Pd0 edge sites
(1999 cm−1), bridged CO species on Pd0 sites of (1 0 0) or (1 1 1) facets (band observed at 1941 cm−1),
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and CO species on different threefold hollow Pd sites (bands at 1880 and 1809 cm−1) were observed
for the Pd monometallic catalyst [110].
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Figure 19. FTIR spectra of CO adsorbed at 180 K on Pd (a), 1Au2Pd (b), 1Pd2Au (c), and PdAu (d)
after pre-treatment in H2 at room temperature (fine curves) and after pre-treatment in H2 and O2 at
r.t. (bold curves). Reprinted from J. Catal., 268, F. Menegazzo, M. Signoretto, M. Manzoli, F. Boccuzzi,
G. Cruciani, F. Pinna, G. Strukul, Influence of the preparation method on the morphological and
composition properties of Pd–Au/ZrO2 catalysts and their effect on the direct synthesis of hydrogen
peroxide from hydrogen and oxygen, 122–130, Copyright (2009), with permission from Elsevier.

Upon the same hydrogen–oxygen pre-treatment, carbonyls on Pd2+ and Pdδ+ (2160 and
2134 cm−1) and CO adsorbed on different Pd sites (weak components at 2104, 1985, 1941, and
1879 cm−1) were detected for the most performing 1Au2Pd catalyst (Figure 20b). The low intensity of
such absorption pointed out that the O2 reactant molecule can easily oxidize the Pd sites present in this
catalyst due to the electronic effect induced by gold on the Pd atoms, due to the higher electronegativity
of gold (2.54) with respect to that of palladium (2.2) [111]. Moreover, the red-shift observed for the
bands at 2104 (small shift) and 1985 cm−1 (large shift) with respect to the same carbonyls of the Pd
catalyst was ascribed to lateral interaction effects, suggesting the presence of more isolated sites on the
1Au2Pd catalyst. This was a consequence of the alloying of the two metals and not of the smaller size
of the particles. Thus, the band at 1985 cm−1 was assigned to bridge bonded carbonyl species on Pd
couples on the edges of the metal particles, changed by the interaction with neighbouring Au atoms.
These couples were oxidised in a lower extent (25% decrease) by the subsequent interactions with H2

and O2 and were involved in hydrogen dissociation during the reaction.
Quite different spectra were collected in the case of the catalyst in which firstly Pd and then

gold were deposited (1Pd2Au, Figure 20c). No carbonyls on Pd2+ sites (band at 2160 cm−1) were
detected, because the chlorine atoms were removed during Au deposition in basic conditions. Au0

sites (CO band at 2101 cm−1) decorating the Pd edge couples (the band related to these CO bridge
bonded species is totally missing) were observed. Conversely, the spectra collected on the PdAu
catalyst (in which Pd and Au were simultaneously deposited) were quite similar to those obtained for
1Au2Pd sample (Figure 20d,b, respectively), with the exception of the carbonyls on Pd0 edges (band at
2003 cm−1), whose band was not affected by lateral interaction phenomena, indicating site isolation
and the presence of small particles, according to HRTEM analysis.
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Figure 20. FTIR spectra of CO adsorbed at 180 K on Pd (a), 1Au2Pd (b), 1Pd2Au (c), and PdAu (d) after
pre-treatment in H2 and O2 at r.t. (bold curves) and relative deconvolutions (fine curves). Reprinted
from J. Catal., 268, F. Menegazzo, M. Signoretto, M. Manzoli, F. Boccuzzi, G. Cruciani, F. Pinna, G.
Strukul, Influence of the preparation method on the morphological and composition properties of
Pd–Au/ZrO2 catalysts and their effect on the direct synthesis of hydrogen peroxide from hydrogen
and oxygen, 122–130, Copyright (2009), with permission from Elsevier.

The authors suggested that the co-presence of the oxide layer activates molecular O2 without
dissociation, whereas the Pd0 couples located on the edges dissociate hydrogen, explaining the
improved productivity and selectivity towards H2O2.

3.4. Insights on the Exposed Sites and on the Properties of the Support

Very recently, Chung et al. developed the selective adsorption deposition method to prepare Pd/C
catalysts with improved catalytic performance in the H2O2 direct synthesis [112]. The method consisted
of (i) the selective adsorption of a cationic Pd precursor, [Pd(NH3)4]2+, on a negatively-charged
activated carbon surface, and (ii) conversion to Pd hydroxide in homogeneous phase in which the
hydroxide ions were gradually produced upon urea decomposition. Following such procedure, it was
possible to obtain ultra-small, monodispersed Pd nanoparticles with unprecedented and excellent
catalytic activity. Indeed, the Pd/C#C1 catalyst gave a high initial H2O2 productivity of 8606 mmol
H2O2/(gPd·h) and H2 selectivity of 95.1% after 30 min reaction under safe and non-corrosive conditions.
These results were 12 and 7.1 times higher, respectively, than those obtained for the catalyst prepared
by conventional deposition-precipitation (Pd/C#A1).

DRIFT characterization, showed in Figure 21a, was carried out on the activated carbon treated
with 1 wt% HNO3 (green curve), 10 wt% HNO3 (blue curve), and 10 wt% HNO3/10 wt% H2O2

(red curve). The results firstly pointed out that the distribution of the oxygen groups on the activated
carbon surface depends on the acid treatment conditions, and that large amounts of carboxyl groups
were inserted on the surface of the activated carbon, according to titration, XPS, and TPD-mass
experiments. More in detail, the C=O stretching band at 1780 cm−1 was assigned to carboxylic acid
or to its anhydride form. Moreover, the peak around 1600 cm−1 was ascribed to the overlap of
the polyaromatic C=C stretching bands of the highly conjugated carbonyl and/or quinone groups.
Conversely, the broad band in the 1100–1450 cm−1 range was possibly due to the C=O stretching mode
of carboxylic acid and of the lactone groups and/or to the O–H bending of phenol groups [113,114].
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Figure 21. (a) DRIFTS-IR spectra or the surface-modified activated carbon. (b) Illustration of the
unfavourable effect of carboxyl groups in accelerating H2O2 hydrolysis as well as hindering or
poisoning the active metal sites. Reprinted from J. Catal., 365, S. Lee, H. Jeong, Y.-M. Chung, Direct
synthesis of hydrogen peroxide over Pd/C catalyst prepared by selective adsorption deposition method,
125–137, Copyright (2018), with permission from Elsevier.

However, it was found that the carboxyl groups can negatively influence the catalytic activity,
regardless of the preparation method. Indeed, the increase of the amount of carboxyl groups promoted
H2O2 decomposition by hindering or poisoning the active sites. The authors suggested that despite
H2O2 decomposition can be overcome in the presence of a strong electrolyte as H2SO4, carboxylic
acid is a weak electrolyte, thus it does not efficiently suppress H–OOH dissociation, but preferentially
foster H2O2 hydrolysis by forming hydrogen bonds, as described in Figure 21b.

A series of palladium catalysts supported on HZSM-5 with different Si/Al molar ratio (X = 15, 30,
75, 100, and 150) were prepared and tested in the hydrogen peroxide direct synthesis [67].

It was found that the electivity to H2O2 displayed a volcano-shaped curve with respect to the
Si/Al molar ratio, whilst the hydrogen conversion showed no great difference. Thus, also the H2O2

yield showed a volcano-shaped curve and strictly depended on the Brønsted acidity/Lewis acidity
(B/L) ratio of the Pd/HZSM-5-X catalysts.

In order to investigate the nature of the acid sites, in situ FT-IR spectroscopy of adsorbed pyridine
was carried out, and the spectra collected on the Pd/HZSM-5-X catalysts are shown in Figure 22.
The broad band at 1640 cm−1, observed in all spectra was due to the bending vibration of O-H groups
of H2O adsorbed on the windows of the cell [115]. Upon pyridine adsorption, bands at 1440 and
1595 cm−1, related to the presence of hydrogen bonded pyridine, at 1450, 1490, and 1580 cm−1 due to
Lewis acid bound pyridine, and at 1490 and 1545 cm−1, assigned to Brønsted acid bound pyridinium
ion were observed on the Pd/HZSM-5- X catalysts [115–117].

Both Brønsted and Lewis acidity were quantified according to the procedure reported in the
literature [118] by using the integrated molar extinction coefficients of 1.67 and 2.22 cm/µmol for
Brønsted and Lewis acid sites, respectively. In particular, the quantities of Brønsted and Lewis acid
sites were obtained from the integrated areas of the bands at 1545 and at 1450 cm−1, according to
Equations (4) and (5):

Bronsted acid site amount =
IA(B)× π × R2

1.67 ×W
(4)

Lewis acid site amount =
IA(L)× π × R2

2.22 ×W
(5)

where IA(B) represents the integrated absorbance of Brønsted acid site (expressed in cm−1), IA(L) is
the integrated absorbance of Lewis acid site (expressed in cm−1), R is the inner radius of the sample
cup (cm) and W is the weight of the catalyst (mg). The obtained B/L ratio displayed a volcano-shaped
trend with respect to the Si/Al molar ratio, and the Pd/HZSM-5-30 catalyst had the highest B/L ratio.
In particular, Brønsted acid sites in HZSM-5 are due to the presence of bridging hydroxyl group in
Si–OH–Al moieties [119,120]. Conversely, the Lewis acid sites are the Al in the hydroxoaluminum
complex [119]. Hence, the authors come to the conclusion that the B/L ratio was decreased by
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increasing the totality of Lewis acid sites, in consequence of the increase of the population of the
hydroxoaluminum complex upon incorporation of a large Al amount into the HZSM-5 framework.
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Figure 22. FT-IR spectra of pyridine adsorbed on Pd/HZSM-5-X (X = 15, 30, 75, 100, and 150) catalysts.
H: hydrogen bonded pyridine; L: Lewis acid bound pyridine; B: Brønsted acid bound pyridinium
ion. Reprinted from J. Molecul. Catal. A: Chemical, 363, S. Park, J. Lee, J. H. Song, T. J. Kim, Y.-M.
Chung, S.-H. Oh, I. K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen
over Pd/HZSM-5 catalysts: Effect of Brønsted acidity, 230–236, Copyright (2012), with permission
from Elsevier.

Interestingly, it was found that the H2O2 yield increased by augmenting the B/L ratio, which
points out the key role played by Brønsted acid sites of the Pd/HZSM-5-X catalysts. Indeed, the catalyst
with the highest Brønsted acidity (Pd/HZSM-5-30) gave the largest yield. A correlation between
the H2O2 yield and the B/L ratio of the Pd/HZSM-5-X catalysts was shown (see Figure 23a),
unambiguously showing that the yield was intimately linked to the B/L ratio. Moreover, the yield
increased with the Brønsted acidity measured by ammonia temperature-programmed desorption
(TPD) measurements (Figure 23b). These results were consistent with the increase in H2O2 selectivity
observed by the addition of acid additives [1,61].
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Au-Pd bimetallic catalysts are very efficient in the H2O2 direct synthesis process, in particular
when supported on acidic supports. Indeed, the use of acidic supports promotes the hydrogen
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peroxide stabilization and can also inhibit the hydrogenation and decomposition reactions.
The preparation and testing of Au-Pd catalysts supported on insoluble heteropolyacids were reported
by Hutchings et al. [65]. Ions such as Cs+, Rb+, K+, and Ag+ counterbalance the charge of the
heteropolyacids supports, and the catalyst were prepared by ion exchange and impregnation methods.
The FTIR spectra collected on the bare heteropolyacids containing different counter ions are reported
in Figure 24a. The typical features of the Keggin structure of Cs substituted phosphotungstic acid were
observed in all spectra [121].
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Figure 24. (a) FT-IR spectra of heteropolyacid support materials made by incorporating various
metal ions. (b) FT-IR spectra of heteropolyacid support materials made by incorporating various
about of Cs ions. Reprinted from Catal. Today, 248, S. J. Freakley, R. J. Lewis, D. J. Morgan, J.
K. Edwards, G. J. Hutchings, Direct synthesis of hydrogen peroxide using Au–Pd supported and
ion-exchanged heteropolyacids precipitated with various metal ions, 10–17, Copyright (2015), with
permission from Elsevier.

More in detail, the vibrational bands for the Keggin structure were detected at 1090 cm−1 that
is due to νas(P-O) vibration, at 1016 cm−1, assigned to terminal νas(W = O vibration, and 912 and
863 cm−1, due to νas(W-O-W) vibrations. In some cases, bands at 1710 cm−1 distinctive of protonated
H5O2

+ clusters were observed, but the spectra were collected in air and therefore these (O-H) vibrations
cannot be solely ascribed to the heteropolyacid structure and the intensity of this absorption band
cannot be taken as a measure of the acidity of the catalysts. Moreover, the P-O stretching mode was
observed in all samples upon Cs+ substitution, pointing out that the substitution of Cs+ for H+ did
not induce strain on the P-O4 tetrahedra within the structure. The incorporation of Au and Pd by
impregnation or by ion exchange did not originate any change or new band in the spectra, possibly
because of the very small amounts of Au and Pd that were introduced gave rise to signals under the
detection limit. The Keggin structure was maintained after calcination of the catalysts and also after
the incorporation of different amounts of Cs+ (Figure 24b), according to the XRD results.

The H2O2 productivity reached by Pd0.075Au0.05Cs2.5H0.5W12O40 was much higher than that
obtained by the most active conventional catalyst 2.5% Au/2.5% Pd/C (2% HNO3), but the H2O2

degradation rate was comparable. Despite the notably high degradation rates, the catalysts containing
Cs+ and Rb+ (Au/2.5% Pd/Rb2.5H0.5PW12O40 and 2.5% Au/2.5% Pd/Cs2.5H0.5PW12O40) and prepared
by ion exchange were remarkably more active (an order of magnitude higher) than the conventional
catalyst under reaction conditions prescribed by potential applications (water as a solvent and ambient
temperature). Based on environmental and economic considerations, the authors suggested that
these catalysts could be the starting point for the design of more efficient catalysts for the H2O2

direct synthesis.
Monometallic Pd and bimetallic PdAu catalysts supported on SBA15 and SiO2 were synthesized

and tested in the H2O2 direct synthesis by using a batch autoclave (at 10 ◦C and 17.5 bar) without the
addition of halides and acids [122]. SBA15-supported catalysts displayed better performance with
respect to those supported on SiO2 (Si), due to the possibility to regulate the dispersion in the 5–7 nm
range, as well as the stability of the nanoparticles. Interestingly, despite bromine is a well-known a
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promoter of the H2O2 direct synthesis, a decrease in both productivity and selectivity was observed
upon bromopropylsilane addition during the grafting process, as a consequence of larger size poor
stability of the metal nanoparticles, as revealed by TEM images. However, a synergistic effect between
Pd and Au was highlighted either in the presence or in the absence of bromopropylsilane grafting on
the catalyst surface. Moreover, SBA15 was modified by the addition of Al, CeO2, and Ti to investigate
the effect of the surface properties of the support on the dispersion of the metal phase and on the
catalytic activity. According to Table 2, the catalyst in which Al was incorporated (PdAu/Al-SBA15)
displayed higher productivity and selectivity. On the contrary, no improvement of the H2O2 yields
was observed by adding Ti or CeO2.

Table 2. H2O2 synthesis with SBA15 supported catalysts: acidity, H2 conversion after 15 min of reaction,
productivity and selectivity (after 15 min of reaction and at complete H2 conversion). Reprinted by
permission from Springer Nature: Springer Nature, Topics in Catalysis, 56, 540–549, Reactivity Aspects
of SBA15-Based Doped Supported Catalysts: H2O2 Direct Synthesis and Disproportionation Reactions,
N. Gemo, P. Biasi, P. Canu, F. Menegazzo, F. Pinna, A. Samikannu, K. Kordás, T. O. Salmi, J.-P. Mikkola,
Copyright (2013).

Catalyst

Productivity H2O2
(mol H2O2/molmetal h) Selectivity (%)

H2
Conversion

@ 15 min

Complete
H2

Conversion
Acidity (µmol/g)

@ 15 min
@ Complete

H2
Conversion

@ 15 min

@
Complete

H2
Conversion

(%) (min) Lewis Brønsted

Pd/SBA15 359 311 20 20 99 20 - -
PdAu/SBA15 634 326 28 24 65 41 - -
Br-Pd/SBA15 39 - - - - - - -

Br-PdAu/SBA15 192 - 24 - 13 - - -
PdAu-Br/SBA15 0 0 0 0 - - - -

Pd/Si 850 234 17 15 51 85 - -
PdAu/Si 183 77 8 8 77 57 - -

PdAu/CeO2-SBA15 399 314 16 14 48 34 39 0
PdAu/Ti-SBA15 538 463 13 12 77 18 16 0
PdAu/Al-SBA15 870 422 30 24 67 37 22 8

Br-PdAu/Al-SBA15 76 - 20 - 11 - 9 0

Conditions: T = 10 ◦C, P = 17.5 bar.

The improved performance of PdAu/Al–SBA15 was ascribed to an increased amount of Brønsted
acid sites as reveled by FT-IR spectroscopy of adsorbed pyridine. In addition, the presence of Brønsted
and/or Lewis acid sites was revealed in the modified SBA15 supports. The spectroscopic experiments
were carried out according to the reported procedure [118]. The spectra were collected at different
temperatures (250, 350, and 450 ◦C) and the bands related to adsorbed pyridine were detected only
at 250 ◦C. Measured acid sites concentrations are reported in Table 1 (entries 8–11). The amounts of
Lewis and Brønsted acid sites were estimated on areas of the bands observed at 1450 and 1545 cm−1,
by assuming 1.67 cm/µmol (Brønsted sites) and 2.22 cm/µmol (Lewis sites) integrated molar extinction
coefficients. In addition, these analyses pointed out the presence of Brønsted and/or Lewis acid sites
in the modified SBA15 supports. The authors showed that the H2O2 hydrogenation was overcome
when the peroxide is surrounded by protons, i.e., the Brønsted acid sites [61,68]. Therefore, the H2O2

productivity can be enhanced by increasing the Brønsted acidity by Al insertion.

4. Final Remarks and Open Issues

FTIR spectroscopy, either in transmission or in DRIFT mode, was shown to be a flexible technique
which can be easily adapted to investigate the large variety of catalytic systems described here in order
to establish catalyst structure-activity relationships in direct H2O2 synthesis.

Despite being one of the first spectroscopic techniques employed for catalyst characterization,
it can be considered as one of the most effective to obtain detailed chemical information on systems
with continuously increasing complexity. Indeed, FTIR spectroscopy allowed, with no particular
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effort (and with acceptable instrumentation costs), to shed light on the nature and on the properties
of the active sites exposed at the surface of the Pd nanoparticles, which are the most active, as well
as the most commonly investigated, catalyst for hydrogen peroxide direct synthesis. The selectivity
of such systems is improved by the addition of a second metal in order to inhibit the sites that are
active for dissociative oxygen activation. Studies dealing with the addition of several heteroatoms
to the active palladium phase have demonstrated that accurate analysis of the spectra of adsorbed
probes (mainly CO) collected in well-controlled experimental conditions, allows for obtaining deep
and precious insights on Pd site isolation and electronic effects.

Many papers investigated, in detail, the nature of exposed active metal sites, however, only
a minority tried to monitor by IR spectroscopy the reactivity of the exposed metal sites towards
the molecular hydrogen and oxygen reactants, and to obtain information regarding the relative
coverages of the reactive species present on the metal nanoparticles during catalysis. Additionally,
FTIR characterization provided insights on the exposed sites of the employed supports and on their
properties. Opportune probe molecules were used to measure the acidity and to quantify the Brønsted
and the Lewis sites.

Nevertheless, FTIR absorption spectroscopy needs to be combined with many other techniques,
such as XAS, especially with in situ or operando studies during direct H2O2 synthesis, to correlate the
electronic and structural states of Pd with the catalytic performance, as exemplified in Figure 25.
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Therefore, FTIR characterization contributed significantly to the development of a rational design
for new catalysts and of the optimization of process parameters for H2O2 direct synthesis. However,
there are many paths to be covered in the use of FTIR absorption spectroscopy for future studies in
H2O2 direct synthesis. Some possible directions can be tentatively proposed here.

In situ studies performed at low temperature could potentially be useful to investigate the
saturation of the metal active sites with O2* and OOH* species during the reaction in alcohol
solvents [3,90]. In this frame, IR spectroscopy can detect peroxides or superoxides that would support
the effective presence of these intermediates.

The addition halides to prevent O2 dissociation can result in the presence of dense adlayers [62],
the effects of the presence of halides on the metal sites have not been investigated yet by IR spectroscopy.

Restructuring (and degradation [13]) phenomena occurring on the metal nanoparticles under
reaction conditions could be monitored using a combined XAFS/DRIFTS or FTIR transmission
approach, as proposed by Gibson et al. for AuPd bimetallic catalysts during CO oxidation [123].

At present, isotopic studies are underestimated despite their ability to identify distinct active sites
and to probe the kinetics and reversibility of specific steps [45].
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