
Neural Surface Realization for Italian

Valerio Basile
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10153 Torino
basile@di.unito.it.com

Alessandro Mazzei
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10153 Torino

mazzei@di.unito.it

Abstract

We present an architecture based on neural
networks to generate natural language
from unordered dependency trees. The
task is split into the two subproblems of
word order prediction and morphology
inflection. We test our model gold corpus
(the Italian portion of the Universal De-
pendency treebanks) and an automatically
parsed corpus from the Web.
(Italian) Questo lavoro introduce
un’architettura basata su reti neurali
per generare frasi in linguaggio natu-
rale a partire da alberi a dipendenze.
Il processo è diviso nei due sotto-
problemi dell’ordinamento di parole e
dell’inflessione morfologica, per i quali
la nostra architettura prevede due modelli
indipendenti, il cui risultato è combinato
nella fase finale. Abbiamo testato il
modello usando un gold corpus e un silver
corpus ottenuto dal Web.

1 Introduction

Natural Language Generation is the process of
producing natural language utterances from an ab-
stract representation of knowledge. As opposed to
Natural Language Understanding, where the input
is well-defined (typically a text or speech segment)
and the output may vary in terms of complexity
and scope of the analysis, in the generation process
the input can take different forms and levels of ab-
straction, depending on the specific goals and ap-
plicative scenarios. However, the input structures
for generation should be at least formally defined.

In this work we focus on the final part of the
standard NLG pipeline defined by Reiter and Dale
(2000), that is, surface realization, the task of pro-
ducing natural language from formal abstract rep-
resentations of sentences’ meaning and syntax.

We consider the surface realization of un-
ordered Universal Dependency (UD) trees, i.e.,
syntactic structures where the words of a sentence
are connected by labeled directed arcs in a tree-
like fashion. The labels on the arcs indicate the
syntactic relation holding between each word and
its dependent words (Figure 1a). We approach
the surface realization task in a supervised statis-
tical setting. In particular, we draw inspiration
from Basile (2015) by dividing the task into the
two independent subtasks of word order predic-
tion and morphology inflection prediction. Two
neural network-based models run in parallel on the
same input structure, and their output is later com-
bined to produce the final surface form.

A first version of the system implementing our
proposed architecture (called the DipInfo-UniTo
realizer) was submitted to the shallow track of the
Surface Realization Shared Task 2018 (Mille et al.,
2018). The main research goal of this paper is to
provide a critical analysis for tuning the training
data and learning parameters of the DipInfo-UniTo
realizer.

2 Neural network-based Surface
Realization

In the following sections, we detail the two neural
networks employed to solve the subtasks of word
order prediction (2.1) and morphology inflection
(2.2) respectively.

2.1 Word Ordering

We reformulate the problem of sentence-wise
word ordering in terms of reordering the subtrees
of its syntactical structure. The algorithm is com-
posed of three steps: i) splitting the unordered tree
into single-level unordered subtrees; ii) predicting
the local word order for each subtree; iii) recom-
posing the single-level ordered subtrees into a sin-
gle multi-level ordered tree to obtain the global
word order.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302288207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the first step, we split the original unordered
universal dependency multilevel tree into a num-
ber of single-level unordered trees, where each
subtree is composed by a head (the root) and all
its dependents (the children), similarly to Bohnet
et al. (2012). An example is shown in Figure 1:

suo

opera

contenere

prodotto

ROOT

chimico tossico

.

numeroso

(a) Tree corresponding to the Italian sentence “Numerose
sue opere contengono prodotti chimici tossici.” (“Many
of his works contain toxic chemicals.”)

prodotto

contenere

. opera chimico

prodotto

tossicosuo

opera

numeroso

(b) Three subtrees extracted from the main tree.

Figure 1: Splitting the input tree into subtrees to
extract lists of items for learning to rank.

from the (unordered) tree representing the sen-
tence “Numerose sue opere contengono prodotti
chimici tossici.” (1a), each of its component sub-
trees (limited to one-level dependency) is consid-
ered separarately (1b). The head and the depen-
dents of each subtree form an unordered list of lex-
ical items. Crucially, we leverage the flat structure
of the subtrees in order to extract structures that
are suitable as input to the learning to rank algo-
rithm in the next step of the process.

In the second step of the algorithm, we predict
the relative order of the head and the dependents
of each subtree with a learning to rank approach.
We employ the list-wise learning to rank algorithm
ListNet, proposed by Cao et al. (2007). The rela-
tively small size of the lists of items to rank al-
lows us to use a list-wise approach, as opposed to
pair-wise or poin-twise approaches, while keeping
the computation times manageable. ListNet uses a
list-wise loss function based on top one probabil-
ity, i.e., the probability of an element of being the
first one in the ranking. The top one probability
model approximates the permutation probability
model that assigns a probability to each possible

permutation of an ordered list. This approxima-
tion is necessary to keep the problem tractable by
avoiding the exponential explosion of the number
of permutations. Formally, the top one probability
of an object j is defined as

Ps(j) =
∑

π(1)=j,π∈Ωn

Ps(π)

that is, the sum of the probabilities of all the pos-
sible permutations of n objects (denoted as Ωn)
where j is the first element. s = (s1, ..., sn) is a
given list of scores, i.e., the position of elements in
the list. Considering two permutations of the same
list y and z (for instance, the predicted order and
the reference order) their distance is computed us-
ing cross entropy. The distance measure and the
top one probabilities of the list elements are used
in the loss function:

L(y, z) = −
n∑
j=1

Py(j)log(Pz(j))

The list-wise loss function is plugged into a lin-
ear neural network model to provide a learning
environment. ListNet takes as input a sequence
of ordered lists of feature vectors (the features are
encoded as numeric vectors). The weights of the
network are iteratively adjusted by computing a
list-wise cost function that measure the distance
between the reference ranking and the prediction
of the model and passing its value to the gradient
descent algorithm for optimization of the parame-
ters.

The choice of features for the supervised learn-
ing to rank component is a critical point of our
solution. We use several word-level features en-
coded as one-hot vectors, namely: the universal
POS-tag, the treebank specific POS tag, the mor-
phology features and the head-status of the word
(head of the single-level tree vs. leaf). Further-
more, we included word representations, differen-
tiating between content words and function words:
for open-class word lemmas (content words) we
added the corresponding language-specific word
embedding to the feature vector, from the pre-
trained multilingual model Polyglot (Al-Rfou’ et
al., 2013). Closed-class word lemmas (function
words) are encoded as one-hot bags of words vec-
tors. An implementation of the feature encoding
for the word ordering module of our architecture
is available online1.

1https://github.com/alexmazzei/ud2ln

In the third step of the word ordering algorithm,
we reconstruct the global (i.e. sentence-level) or-
der from the local order of the one-level trees un-
der the hypothesis of projectivity2 — see Basile
and Mazzei (2018) for details on this step.

2.2 Morphology Inflection
The second component of our architecture is re-
sponsible for the morphology inflection. The task
is formulated as an alignment problem between
characters that can be modeled with the sequence
to sequence paradigm. We use a deep neural net-
work architecture based on a hard attention mech-
anism. The model has been recently introduced by
Aharoni and Goldberg (2017). The model consists
of a neural network in an encoder-decoder setting.
However, at each step of the training, the model
can either write a symbol to the output sequence,
or move the attention pointer to the next state of
the sequence. This mechanism is meant to model
the natural monotonic alignment between the in-
put and output sequences, while allowing the free-
dom to condition the output on the entire input se-
quence.

We employ all the morphological features pro-
vided by the UD annotation and the dependency
relation binding the word to its head, that is, we
transform the training files into a set of struc-
tures ((lemma, features), form) in order to
learn the neural inflectional model associating a
(lemma, features) to the corresponding form.
An example of training instance for our morphol-
ogy inflection module is the following:

lemma: artificiale
features:

uPoS=ADJ
xPoS=A
rel=amod
Number=Plur

form: artificiali

Corresponding to the word form artificiali, an in-
flected form (plural) of the lemma artificiale (arti-
ficial).

3 Evaluation

In this section, we present an evaluation of the
models presented in Section 2, with particular
consideration for two crucial points influencing

2As a consequence of the design of our approach, the
DipInfo-UniTo realizer cannot predict the correct word order
for non-projective sentences.

the performances of the DipInfo-UniTo realizer,
namely training data and learning parameters set-
tings. In Basile and Mazzei (2018), the hard-
ware limitations did not allow for an extensive
experimentation dedicated to the optimization of
the realizer performances. In this paper, we aim
to bridge this gap by experimenting with higher
computing capabilities, specifically a virtualized
GNU/Linux box with 16-core and 64GB of RAM.

3.1 Training Data
For our experiments, we used the four Italian
corpora annotated with Universal Dependencies
available on the Universal Dependency reposito-
ries3. In total, they comprise 270,703 tokens and
12,838 sentences. We have previously used this
corpus for the training of the DipInfo-UniTo real-
izer that participated to the SRST18 competition
(Basile and Mazzei, 2018). We refer to this corpus
as Gold-SRST18 henceforth.

Moreover, we used a larger corpus extracted
from ItWaC, a large unannotated corpus of Ital-
ian (Baroni et al., 2009). We parsed ItWaC with
UDpipe (Straka and Straková, 2017), and selected
a random sample of 9,427 sentence (274,115 to-
kens). We refer to this corpus as Silver-WaC
henceforth.

3.2 Word Ordering Performances
We trained the word order prediction module of
our system4 on the Gold-SRST18 corpus as well
as on the larger corpus created by concatenating
Gold-SRST18 and Silver-WaC.

The performance of the ListNet algorithm for
word ordering is given in terms of average
Kendall’s Tau (Kendall, 1938, τ), a measure of
rank correlation used to give a score to each of the
rankings predicted by our model for every subtree
(Figure 2). τ measures the similarity between two
rankings by counting how many pairs of elements
are swapped with respect to the original ordering
out of all possible pairs of n elements:

τ =
#concordant pairs− #discordant tpairs

1
2n(n− 1)

Therefore, τ ranges from -1 to 1.
In Figure 2 we reported the τ values obtained

at various epochs of learning for both the Gold-
3http://universaldependencies.org/
4Our implementation of ListNet featuring a regularization

parameter to prevent overfitting is available at https://
github.com/valeriobasile/listnet

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

K
e
n
d
a
ll-

T
a
u

Epochs

Gold-SRST18 training set,LR=0.00005
Gold-SRST18 training set,LR=0.000005

Gold-SRST18 training set,LR=0.0000005
Gold-SRST18+Silver-WaC training set,LR=0.000005

Figure 2: The trend of the τ value with respect to
the ListNet iteration.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Epochs

Gold-SRST18 training set
Gold-SRST18+Silver-WaC trainining set

Figure 3: The trend of the Morphology Accuracy
on the SRST18 development set with respect to the
DNN training epochs.

SRST18 and Gold-SRST18+Silver-WaC corpora.
In particular, in order to investigate the influence
of the learning rate parameter (LR) in the learning
of the ListNet model, we reported the τ trends for
LR = 5 · 10−5 (the value originally used for the
official SRST18 submission), LR = 5 · 10−6 and
LR = 5 · 10−7. It is quite clear that the value of
LR has a great impact on the performance of the
word ordering, and that LR = 5 · 10−5 is not ap-
propriate to reach the best performance. This ex-
plains the poor performance of the DipInfo-UniTo
realizer in the SRST18 competition (Table 1). In-
deed, the typical zigzag shape of the curve sug-
gests a sort of loop in the gradient learning algo-
rithm. In contrast, the LR = 5 · 10−6 seems to
reach a plateau value after the 100th epoch with
both corpora used in the experiments. We used the
system tuned with this value of the learning rate to
evaluate the global performance of the realizer.

3.3 Morphology Inflection Performances

In order to understand the impact of the Silver-
WaC corpus on the global performance of the sys-
tem, we trained the DNN system for morphology
inflection5 both on the Gold-SRST18 corpus and
on the larger corpus composed by Gold-SRST18+
Silver-WaC. In Figure 3 we reported the accuracy
on the SRST18 development set for both the cor-
pora. A first analysis of the trend shows little im-
provement to the global performance of the real-
ization from the inclusion of additional data (see
the discussion in the next section).

3.4 Global Surface Realization Performances

Finally, we evaluate the end-to-end performance
of our systems by combining the output of the two
modules and submitting it to the evaluation scorer
of the Surface Realization Shared Task. In Ta-
ble 1 we report the performance of various tests
systems with respect to the BLUE-4, DIST, NIST
measures, as defined by Mille et al. (2018). The
first line reports the official performance of the
DipInfo-Unito realizer in the SRST18 for Ital-
ian. The last line reports the best performances
achieved on Italian by the participants to SRST18
(Mille et al., 2018). The other lines report the per-
formance of the DipInfo-UniTo realizer by consid-
ering various combination of the gold and silver
corpora. The results show a clear improvement

ListNet Morpho BLEU-4 DIST NIST
Gsrst Gsrst 24.61 36.11 8.25

G G 36.40 32.80 9.27
G G+S 36.60 32.70 9.30

G+S G 36.40 32.80 9.27
G+S G+S 36.60 32.70 9.30

- - 44.16 58.61 9.11

Table 1: The performances of the systems with
respect to the BLUE-4, DIST, NIST measures.

for the word order module (note that the DIST
metric is character-based, therefore it is more sen-
sitive to the morphological variation than NIST
and BLEU-4). In contrast, the morphology sub-
module performance seems to be unaffected by
the use of a larger training corpus. This effect
could be due different causes. Errors are present in
the silver standard training set, and it is not clear
to what extent the morphology analysis is correct

5An implementation of the model by (Aharoni and Gold-
berg, 2017) is freely available as https://github.com/
roeeaharoni/morphological-reinflection

with respect to the syntactic analysis. The other
possible cause is the neural model itself. Indeed,
Aharoni and Goldberg (2017) report a plateau in
performance after feeding it with relatively small
datasets. The DipInfo-UniTo realizer performs
better than the best systems of the SRST18 chal-
lenge for one out of three metrics (NIST).

4 Conclusion and Future Work

In this paper, we considered the problem of
analysing the impact of the training data and pa-
rameters tuning on the (modular and global) per-
formance of the DipInfo-UniTo realizer. We com-
putationally proved that the DipInfo-UniTo real-
izer can gives competitive results (i) by augment-
ing the training data set with automatically anno-
tated sentences, and (ii) by tuning the learning pa-
rameters of the neural models.

In future work, we intend to resolve the main
lack of our approach, that is the impossibility to re-
alize non-projective sentences. Moreover, further
optimization of both neural models will be carried
out on a new high-performance architecture (Ald-
inucci et al., 2018), by executing a systematic grid-
search over the hyperparameter space, namely the
regularization factor and weight initialization for
ListNet, and the specific DNN hyperparameters
for the morphology module.

Aknowledgment

We thank the GARR consortium which kindly al-
lowed to use to the GARR Cloud Platform6 to run
some of the experiments described in this paper.
Valerio Basile was partially funded by Progetto di
Ateneo/CSP 2016 (Immigrants, Hate and Preju-
dice in Social Media, S1618 L2 BOSC 01).
Alessandro Mazzei was partially supported by the
HPC4AI project, funded by the Region Piedmont
POR-FESR 2014-20 programme (INFRA-P call).

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, pages 2004–2015.

Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual nlp. In CoNLL, pages 183–192.
ACL.
6https://cloud.garr.it

Marco Aldinucci, Sergio Rabellino, Marco Pironti, Fil-
ippo Spiga, Paolo Viviani, Maurizio Drocco, Marco
Guerzoni, Guido Boella, Marco Mellia, Paolo Mar-
gara, Idillio Drago, Roberto Marturano, Guido
Marchetto, Elio Piccolo, Stefano Bagnasco, Ste-
fano Lusso, Sara Vallero, Giuseppe Attardi, Alex
Barchiesi, Alberto Colla, and Fulvio Galeazzi.
2018. Hpc4ai, an ai-on-demand federated platform
endeavour. In ACM Computing Frontiers, Ischia,
Italy, May.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The wacky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language Resources and
Evaluation, 43(3):209–226, September.

Valerio Basile and Alessandro Mazzei. 2018. The
dipinfo-unito system for srst 2018. In Proceedings
of the First Workshop on Multilingual Surface Reali-
sation, pages 65–71. Association for Computational
Linguistics.

Valerio Basile. 2015. From Logic to Language :
Natural Language Generation from Logical Forms.
Ph.D. thesis, University of Groningen, Netherlands.

Bernd Bohnet, Anders Björkelund, Jonas Kuhn, Wolf-
gang Seeker, and Sina Zarrieß. 2012. Generating
non-projective word order in statistical linearization.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 928–939. Association for Computational Lin-
guistics.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: From pairwise ap-
proach to listwise approach. In Proceedings of the
24th International Conference on Machine Learn-
ing, ICML ’07, pages 129–136, New York, NY,
USA. ACM.

M. G. Kendall. 1938. A new measure of rank correla-
tion. Biometrika, 30(1/2):81–93.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (sr’18):
Overview and evaluation results. In Proceedings of
the First Workshop on Multilingual Surface Reali-
sation, pages 1–12. Association for Computational
Linguistics.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press, New York, NY, USA.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada,
August. Association for Computational Linguistics.

