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Neuroimaging data can be represented as networks of nodes and edges that capture the

topological organization of the brain connectivity. Graph theory provides a general and

powerful framework to study these networks and their structure at various scales. By

way of example, community detection methods have been widely applied to investigate

the modular structure of many natural networks, including brain functional connectivity

networks. Sparsification procedures are often applied to remove the weakest edges,

which are the most affected by experimental noise, and to reduce the density of the

graph, thus making it theoretically and computationally more tractable. However, weak

links may also contain significant structural information, and procedures to identify

the optimal tradeoff are the subject of active research. Here, we explore the use of

percolation analysis, a method grounded in statistical physics, to identify the optimal

sparsification threshold for community detection in brain connectivity networks. By

using synthetic networks endowed with a ground-truth modular structure and realistic

topological features typical of human brain functional connectivity networks, we show

that percolation analysis can be applied to identify the optimal sparsification threshold that

maximizes information on the networks’ community structure. We validate this approach

using three different community detection methods widely applied to the analysis of

brain connectivity networks: Newman’s modularity, InfoMap and Asymptotical Surprise.

Importantly, we test the effects of noise and data variability, which are critical factors to

determine the optimal threshold. This data-drivenmethod should prove particularly useful

in the analysis of the community structure of brain networks in populations characterized

by different connectivity strengths, such as patients and controls.

Keywords: threshold, percolation, sparsification, brain networks, functional connectivity

INTRODUCTION

In recent years, considerable efforts have been made to study the complex structure of brain
connectivity, marking the inception of the “connectomic era” in brain neuroscience. Functional
Magnetic Resonance Imaging (fMRI) and other neuroimaging methods have shown that
spontaneous fluctuation in brain activity, as measured with a subject lying in the scanner without
being engaged in any specific task, are organized in coherent patterns, thus suggesting that resting
state functional connectivity reflects the functional architecture of the brain (Damoiseaux et al.,
2006).
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Several methods have been developed and applied to study
these patterns of synchronization, including multivariate
approaches (e.g., Principal Component or Independent
Component Analysis) (Beckmann et al., 2005; Damoiseaux et al.,
2006) and graph theoretical methods (Bullmore and Sporns,
2009).

Graph theory provides a general and powerful framework to
investigate the topological organization of the brain connectivity.
A number of graph theoretical studies have revealed a small-
world, rich-club structure (van den Heuvel and Sporns, 2011)
of functional connectivity networks, and the presence of hub
regions defined by high connectivity and network centrality.
Moreover, community detection methods have been widely
applied to investigate the modular structure of many natural
networks, including brain functional connectivity networks. The
presence modules, i.e., clusters of nodes that are more densely
connected among them than with the rest of the network,
reflects functional segregation within the integrated network,
and is thought to confer robustness and adaptability to brain
connectivity networks (Bullmore and Sporns, 2009).

For these analyses, the brain is represented as a network of
nodes interconnected by links. Commonly, the nodes correspond
to anatomically defined brain areas and links to a measure of
inter-regional interaction or similarity between the nodes. For
resting state functional connectivity networks, edge weights are
typically computed as temporal correlations in the fluctuations
of the BOLD signals in different areas, resulting in a correlation
adjacency matrix (Eguiluz et al., 2005).

Sparsification procedures are normally applied to remove
weaker links, which are most affected by experimental noise (van
den Heuvel and Fornito, 2014), and to reduce the density of
the graph, thus making it computationally more tractable. In the
literature, it is common practice to fix the density of the adjacency
matrix a priori, and to identify the threshold that preserves
the target density of edges (Bassett et al., 2008; Lynall et al.,
2010). Stability analyses exploring a range of densities are often
performed to assess how critically topological parameters derived
from the sparsified adjacency matrix depend on the choice of
threshold. Sparsification schemes based on the computation of
graph Minimum Spanning Trees prior to thresholding have also
been proposed to prevent disruption of local connectivity by
global removal of weak links (Alexander-Bloch et al., 2010).

Here, we address the problem of computing the optimal
threshold for community detection in brain connectivity
networks. Specifically, we propose the use of percolation analysis,
a method rooted in statistical physics, to identify a sparsification
threshold that maximizes information on the network modular
structure. This data driven procedure, first introduced by
Gallos et al. (2012), iteratively removes the weakest edges and
computes the largest connected component. The percolation
threshold corresponds to the point where the largest component
starts breaking apart. We entertain the hypothesis that the
percolation threshold strikes the optimal balance between
information gained by cutting off noise, and lost by removing
potentially genuine weak connections. To test this hypothesis, we
apply three different community detection methods (Newman’s
modularity Newman, 2006), InfoMap Rosvall and Bergstrom,

2008; Kawamoto and Rosvall, 2015, and Asymptotical Surprise
Nicolini and Bifone, 2016; Nicolini et al., 2017) to synthetic
networks endowed with a ground truth modular structure,
and with topological features, levels of noise and variability
similar to those observed in functional connectivity experimental
data. We compare the retrieved and planted modular structures
by using Normalized Mutual Information, an information
theoretic measure of similarity, as a function of sparsification
threshold. We find that this information can be maximized
by an appropriate choice of threshold, and we assess the use
of percolation analysis as a data-driven method for optimal
sparsification. Finally, we discuss the application of this approach
to compare networks characterized by different noise levels and
connectivity strengths, such as those observed in cross-sectional
studies assessing brain connectivity in different populations, e.g.,
patients and healthy controls.

MATERIALS AND METHODS

Synthetic networks are a useful tool to test the effect of threshold
on community detections, and the ability to retrieve a pre-
determined ground-truth modular structure. We ran two types
of simulations: simulation of Lancichinetti-Fortunato-Radicchi
(LFR) networks (Lancichinetti et al., 2008) and simulation of
complex LFR including intersubject variability and different level
of noise. The latter made it possible to assess the influence of
noise or data variability, thus mimicking realistic experimental
dataset.

The main goal of these simulations is the validation of a
method that can be used in the analysis of functional connectivity
networks asmeasured by resting state fMRI. As shown inNicolini
and Bifone (2016), brain functional connectivity networks are
composed of modules with heterogeneous size distributions. This
structure can be mimicked using the LFR approach, which can
generate synthetic networks with power law degree distributions
and community sizes akin to those observed in natural networks,
such as functional connectivity networks (Lancichinetti et al.,
2008).

Simulation 1
The Lancichinetti-Fortunato-Radicchi (LFR) benchmark
algorithm generates networks with a priori known communities
and node degree distributions. Community size and node degree
follow power law distributions (for example see Figure 1).

The mixing of the communities is controlled by the
topological mixing parameter µt. Each node shares a fraction
1–µt of edges with nodes in its same community and a fractionµt

with nodes in other communities: 0≤ µt ≤ 1. Similarly, a weight
mixing coefficient µw controls, on average for each node, the
balance between the incident edge weights coming from internal
and external communities.

The LFR synthetic networks were built for N = 600 nodes,
sampling nodes degree from a power-law with exponent τd = 2,
average degree 〈k〉 = 12 and maximum degree maxk = 50. We
set the topological and weight mixing coefficient, i.e., the average
fraction of intra-cluster and intercluster degree and strengths,
to µt = µw = 0.2. Planted community sizes ranged from 5 to
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FIGURE 1 | Example of benchmark LFR network with parameters N = 300,

〈k〉 = 12, maxk = 50, µt = µw = 0.2, minc = 5, maxc = 50.

50 nodes and were sampled from a power law with exponent
τ c = 1. This simulation was run 9 times for each value of
µt = µw. The Matlab code to generate LFR synthetic network
is available at github.com/carlonicolini/lfrwmx. The function
takes the parameters described above as inputs, and returns the
equivalent to a weighted connectivity matrix that can be directly
analyzed by community detection approaches.

Simulation 2
This simulation makes use of the output matrix from the LFR
function described above to generate artificial resting state fMRI
datasets. The general idea is that, starting from an adjacency
matrix with a given modular structure, we can generate time-
courses for each of the nodes whose pairwise correlations
reproduce the edge structure of the original matrix. Schematic
of this procedure is shown in Figure 2.

To this end, we first calculate the closest positive-definite
matrix C ∈ Rn×n from the adjacency matrix of the original
LFR network (Higham, 1988). We then exploit the properties
of the Cholesky decomposition and the techniques described in
Nicolini et al. (2017) to calculate time-courses for the individual
nodes. This approach makes it possible to generate correlated
random variables, i.e., following the weights of our original
connectivity matrix, by decomposing the closest positive definite
matrix C ∈ Rn×n into the product of a lower triangular matrix
L ∈ Rn×n and its transpose such that C = LLT . By multiplication
of L with random standardized time series X ∈ Rn×m (our
synthetic BOLD signals), we obtain new time series Y = LX
whose covariance matrix is exactly C as one can verify that C =

E
(

YYT
)

= E
[

(LX) (LX)T
]

= E
[

(LX)XT LT
]

= L E[XXT]LT =

LTIL = C. The random time series were generated with 150

points and a base-line value set to 100. Both the random resting
state time series X and the added noise were generated using the
R package NeuRosim (Welvaert et al., 2011).

The generation of multiple sample of random time series
simulates the effects of intersubject variability, and Rician-noise
(Welvaert and Rosseel, 2013) is added to mimic fMRI resting
state data. The definition of Signal-to-Noise (SNR) used in
the rest of this paper is: SNR= S̄/σN where S̄ is the average
magnitude of the signal generated by NeuroSim and σN is the
standard deviation of the noise (Krüger and Glover, 2001). An
example of synthetic time-course is shown in the Supplementary
Information section, Figure S1.

The last step results in 600 times series of 150 points with
different levels of noise for each of the simulated subjects.
Datasets were generated for populations of 20, 40, and 60 subjects
and for a SNR equal to 35 and 70. The procedure has been run 5
times for each different parameter to produce different networks
and datasets.

Connectivity Matrix
The connectivity matrix is the weighted matrix representing
the links between two nodes. In Simulation 1, the matrix was
generated directly by the LFR model. In Simulation 2, using the
same approach as in fMRI experiment, we computed pairwise
Pearson correlations between time-series from pairs of nodes in
each dataset (subject), resulting in a matrix M of size N× N with
N the number of nodes and with M(i,j) the correlation coefficient
between the time series of the node i and the node j. Average
group matrices were calculated by Fisher transformation and
subsequent averaging of individual matrices.

Sparsification and Percolation Threshold
Sparsification procedures are normally applied to remove weaker
links, which are most affected by experimental noise (van den
Heuvel and Fornito, 2014), and to reduce the density of the graph,
thus making it computationally more tractable.

The method of our choice for the sparsification was motivated
by a model to describe phase transitions of connected subgraphs
in random networks called percolation analysis (Callaway et al.,
2000; Goerdt, 2001). We applied thresholds on the original
network at different levels of edge weights, and identified the
largest connected components of the thresholded graphs via
breadth-first search (Leiserson et al., 2009). The critical point
where the largest component starts breaking apart is identified
as the percolation threshold at which the network’s structure, is
preserved while discarding potential effects of noise. Figure 3
represents an example of the size of the largest component with
respect to the threshold in a benchmark LFR network.

Community Detection
To assess whether the efficacy of the sparsification procedure
depends on the community detection approach, we applied three
different methods, based on conceptually different principles that
have been extensively applied to the analysis of resting state fMRI
data. The first one, probably the most widely used, is Newman’s
modularity (Newman, 2006). We also tested InfoMap (Rosvall
and Bergstrom, 2008) and Asymptotical Surprise (Nicolini and
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FIGURE 2 | Flowchart of the generation and analysis of the synthetic datasets. In (A) a network with a pre-defined community structure is generated. The adjacency

matrix is then processed in block (B) to obtain the nearest positive definite matrix for the Cholesky decomposition. This enables the generation of node-wise

time-courses into which different levels of noise can be injected. The procedure is repeated multiple times to generate different instances (mimicking different subjects

in the sample). Finally, correlation matrices are calculated for each instance (block C), and Fisher transformed to calculate the average adjacency matrix for analysis by

community detection algorithms (block D). The resulting partitions are then compared with the original, planted one in terms of NMI.

FIGURE 3 | Percolation analysis for a LFR networks. The number of nodes in

the giant component has a step-wise behavior with respect to the threshold.

The percolation threshold value is t*.

Bifone, 2016; Nicolini et al., 2017), as they have been shown
to resolve community structures at a finer level than Newman’s
modularity, which is affected by a resolution limit that prevents
detection of modules that are smaller than a scale determined by
the size of the entire network.

Briefly, Newman’s modularity seeks optimal partition by
maximizing intra-cluster edge-density against that of a null
model based on random edge rewiring. Optimization of this
fitness function is typically performed using the Louvain
method (Blondel et al., 2008), a greedy agglomerative clustering
algorithm that works on hierarchical refinements of the network’s
partitions. Here we used the Louvain implementation available in
the Brain Connectivity toolbox (Rubinov and Sporns, 2010).

The idea behind Infomap is the minimization, through a
set of heuristics, of the description length (Rissanen, 1978) of

a random walker defined on the network. For this study we
used the Infomap implementation available in the igraph-0.7.1
package (Csárdi and Nepusz, 2006).

Finally, Asymptotical Surprise is a recently developed
approach rooted in information theory that aims at maximizing
the relative entropy between the observed intracluster density
and the expected intracluster density, on the basis of the Erdos-
Renyi null model (Traag et al., 2015). Surprise was recently shown
to be quasi-resolution-limit free, and to provide improved means
to resolve the modular structure of complex networks of brain
functional connectivity (Nicolini and Bifone, 2016; Nicolini et al.,
2017). Optimization of Asymptotical Surprise was carried out by
means of PACO (PArtitioning Cost Optimization), an iterative
agglomerative algorithm built on a variation of the Kruskal
algorithm for minimum spanning trees (Nicolini and Bifone,
2016; Nicolini et al., 2017). We have shown that maximization
of Asymptotical Surprise enables detection of communities
of widely different sizes, thus making it possible to resolve
differences in the modular organization of different networks
representing functional connectivity in different subjects or
experimental groups (Nicolini and Bifone, 2016). A Matlab
toolbox including binary and weighted versions of Surprise
optimization is available upon request at http://forms.iit.it/view.
php?id=68447. An example of adjacency matrix for an LFR
network with the node indexes reordered by membership and
the modular partition demarcated by a red line is shown in the
Supplementary Information section, Figure S2.

Evaluation of Retrieved Partition
The advantage to know in advance the ground truth community
is that we can quantify differences between the planted
community and the extracted ones. Three coefficients were used
to evaluate the results of the community detection methods at
different levels of threshold of our synthetic networks. First,

Frontiers in Neuroscience | www.frontiersin.org 4 August 2017 | Volume 11 | Article 441

http://forms.iit.it/view.php?id=68447
http://forms.iit.it/view.php?id=68447
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Bordier et al. Optimal Threshold in Brain Networks

the Normalized Mutual Information (NMI) (Danon et al., 2005;
Meilǎ, 2007), a measure of the similarity between structures is
defined as:

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log

(

NijN

Ni.N.j

)

∑CA
i=1 Ni. log

(

Ni.
N

)

+
∑CB

j=1 N.j log
(

N.j

N

) (1)

where A and B are the community structures of two networks,
CA and CB are the number of community in partition A and
B respectively, N the total number of nodes in the networks
(which is the same in A and B) and Nij is the overlap between
A’s community i and B’s community j; i.e., the number of
common nodes. Finally, Ni. and N.j are the total number of
nodes in community i of A and j of B respectively. The
NMI ranges from 0 to 1, where 0 indicates that the retrieved
community structure does not convey information about the
planted partition, and 1 when the two partitions correspond
perfectly. Indeed, NMI= 0 corresponds to the situation ofNij=0,
i.e., to a void intersection group between A’s and B’s communities,
and NMI= 1 to complete identity.

In order to gain information about the origin of mismatches
between planted and retrieved partitions, we also computed
Sensitivity and Specificity, assessing the levels of false positives
and false negatives incurred by the community detection
algorithms. For each community we identified the biggest overlap
between the ground truth and the retrieved modules to establish
a correspondence between the partitions. Subsequently, we
identified the nodes that were correctly assigned (true positives
= TP) and wrongly assigned (false positives = FP) to a selected
community.We also identified nodes that were correctly assigned
(true negatives = TN) or erroneously assigned (false negative =
FN) to a different community. These values were used to calculate
Sensitivity and Specificity for each community:

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

and subsequently averaged over the partition. The values for
Sensitivity and Specificity range from 0 to 1, with 1 denoting the
perfect match.

Benchmark Resting State Functional
Connectivity Network
To illustrate the effects of threshold choice on the partition of
resting state fMRI functional connectivity networks, we used a
benchmark dataset described by Crossley et al. (2013). Detailed
experimental and image processing procedures are described in
the original paper, alongside with the ethical statements. In short,
fMRI data were acquired from 27 healthy volunteers at 3 T.
Gradient echo-planar imaging data were acquired for 5 min (TR
= 2 s, TE = 13). Time series were extracted from 638 brain
regions defined by a template also described in Crossley et al.
(2013), and band-passed (0.01–0.1 Hz). Functional connectivity
was defined as pairwise Pearson correlation at a subject’s level,
and group-level functional connectivity matrix was calculated by
averaging individuals’ matrices after Fisher- transform, We used
BrainNetViewer as a tool for the visualization of the communities
on brain templates.

RESULTS

Simulation 1
The benchmark created for this first test did not involve
any variation coming from noise or subject variability. The
community detections methods were applied directly to the
matrix generated by the LFR function. Figure 4 shows the
NMI calculated between the structure extracted by Newman
modularity, InfoMap and Asymptotical Surprise, and the ground
truth for µt = µw = 0.2, as a function of threshold.

The gray zone on the graphics indicates the range of
sparsification thresholds obtained by percolation analysis
calculated in different runs. These graphics demonstrate the
deleterious effects of excessive removal of weak edges. In
the case of noiseless networks, percolation analysis identifies
the threshold corresponding to the departure from optimal
performance of the community detection algorithm. This is
in keeping with the fact that the percolation threshold is the
minimum threshold value that preserves connectedness of
the giant component. However, it should be noticed in this
noiseless scenario all links correspond to true correlations, and
no spurious edges are contemplated.

Simulation 2
In the second simulation we assessed the effects of noise and
variability in the correlation structure of the networks. We

FIGURE 4 | NMI between ground truth community structure and the results of the 3 community detection algorithms applied to an LFR networks (µt = µw = 0.2).
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FIGURE 5 | NMI (in black), Sensitivity (in blue), and Specificity (in green) of the Newman community detection algorithm applied to LFR networks (µt = µw = 0.2). Two

different signal to noise ratio (SNR) are represented on the lines (top line SNR = 70, lower line SNR = 35), Number of subjects varies depending of the column

(respectively from left to right 20, 40, and 60 subjects).

FIGURE 6 | NMI (in black), Sensitivity (in blue), and Specificity (in green) of the InfoMap community detection algorithm applied to LFR networks (µt = µw = 0.2). Two

different signal to noise ratio (SNR) are represented on the lines (top line SNR = 70, lower line SNR = 35), Number of subjects varies depending of the column

(respectively from left to right 20, 40, and 60 subjects).

computed NMI, the Sensitivity and Specificity for the partitions
obtained by the 3 methods (Newman, InfoMap and Asymptotical
Surprise) with the different SNRs and numbers of subjects (see
Figures 5–7).

In the presence of variability, we observe a first increase
in NMI for increasing threshold, followed by a subsequent
drop. We interpret the first rise as a regime in which
weak links are mostly determined by spurious correlations,
and carry little information about the structure of the
network. As threshold increases, removal of additional edges
decreases the ability to retrieve the planted modular structure

by removing structurally relevant correlations. This picture
is confirmed by the observation that maxima in NMI
correspond to simultaneously large values of Sensitivity and
Specificity.

The percolation threshold values appear to consistently fall in
the vicinity of maximum NMI for all three community detection
methods. The general conclusion from these simulations is
that percolation analysis detects a quasi-optimal value of
sparsification threshold, thus enabling optimal detection of
community structure in the presence of experimental noise and
data variability.
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FIGURE 7 | NMI (in black), Sensitivity (in blue), and Specificity (in green) of the Asymptotical Surprise community detection algorithm applied to LFR networks

(µt = µw = 0.2). Two different signal to noise ratio (SNR) are represented on the lines (top line SNR = 70, lower line SNR = 35), Number of subjects varies depending

of the column (respectively from left to right 20, 40, and 60 subjects).

Effects of Threshold in Resting State Brain
Networks
A ground-truth community structure for functional connectivity
networks from the human brain remains to be established,
as different community detection approaches retrieve different
partitions depending on the characteristics of the fitness function
and optimization algorithm. A discussion of the ultimately valid
partition for functional connectivity networks and of the best
algorithm for its retrieval is beyond the scope of this paper,
which focuses on the information theoretical foundations of the
choice of the optimal sparsification threshold. We have recently
compared various community detection methods as applied to
the study of human brain functional connectivity in Nicolini
et al. (2017). Here, to illustrate the effects of the choice of
threshold on community detection, we have applied Newman’s
modularity, probably the most established community detection
algorithm in network neuroscience, to a benchmark resting
state functional connectivity network for different threshold
values. Figure 8 shows the largest module identified byNewman’s
modularity at a threshold below percolation (left panel), and its
partitions for increasing thresholds. Below percolation threshold,
a widely distributed subnetwork comprising sensorimotor,
auditory and visual cortices is detected as a single community.
At percolation threshold, this broad community breaks up
into a sensorimotor module, which also includes the superior
temporal gyrus, and an occipital module, including visual
cortices as well as the ventral and dorsal visual streams. As
the threshold is further increased, the algorithm retrieves a
different modular organization, with a dorsal sensorimotor
module separated from the supramarginal and temporal nodes,
which merge with other temporal nodes to form an independent
community. Hence, the effects of the choice of threshold
are not limited to fragmentation of modules for increasing

thresholds, but can also result in the mixing and merging
of nodes from different communities into potentially spurious
modules. This example further emphasizes the importance of
a judicious choice of sparsification threshold. Our results in
synthetic networks suggest that percolation analysis enables
the identification of threshold that maximizes information on
the network modular structure. A detailed description of the
community structure of resting state functional connectivity
brain networks at the percolation threshold is reported in
Nicolini et al. (2017).

DISCUSSION

An open problem in the analysis of brain connectivity is the
optimal choice of threshold when comparing different groups,
e.g., patients and healthy controls in cross-sectional studies
assessing the effects of disease on functional connectivity.
Typically, identical sets of nodes are defined for the two
groups, and the comparison is based on edge distribution and
strength. Many studies tend to fix the same edge density in
the connectivity graphs of the groups to be compared. Indeed,
certain global topological parameters (e.g., global efficiency,
Rubinov and Sporns, 2010) depend on edge density, and
comparisons at constant density make it possible to assess
differences related to the topological reorganization of links,
rather than to their number and strength. On the other
hand, constant edge density may bias group comparisons when
graphs exhibit intrinsic differences in connectivity strength. By
way of example, neuropsychiatric diseases like Schizophrenia
and Autism have been associated with disruption and overall
reduction of functional and structural connectivity. Imposing
equal densities for graphs describing connectivity in patients and
controls may lead to the inclusion of a greater number of weak,
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FIGURE 8 | Analysis of the largest modules detected by Newman’s

community detection algorithm in a resting state functional connectivity

network from the human brain for different thresholds. At percolation threshold

(central panel) the sensorimotor and the visual modules are identified as

separate communities, while they are merged into a widespread subnetwork

for a threshold below percolation. For a higher threshold (right panel)

fragmentation and reorganization of modules is apparent, with the emergence

of a separate temporal module, and a break-up of dorsal sensorimotor and

supramarginal and temporal cortices.

potentially spurious links in the group with weaker connectivity,
and to the exclusion of important links in the group with stronger
connectivity. A higher proportion of spurious connection results
in a more random network topology, and intergroup differences
may just reflect different levels of noise, rather than genuine
topological differences (van den Heuvel and Fornito, 2014).

The present study may provide a strategy to overcome
this problem. Indeed, community detection determines the
membership of each node to a certain module. This is not
dependent on overall edge density, but on the local balance
between edges linking the node to other members of the same
module, or to other nodes in different modules. The optimal
sparsification threshold is the one that maximizes information
about community structure, and is network-specific, as it
depends on the structure and noisiness of each network. Hence,
independent thresholding of the networks to be compared

based on percolation analysis maximizes information about
memberships in the two groups.

CONCLUSION

In conclusion, we have explored the use of percolation analysis,
a method based on statistical physics, to determine the
sparsification threshold in synthetic networks endowed with
a ground-truth modular structure, and topological features
akin to those of real world networks like brain connectivity
graphs. We find that the percolation threshold, i.e., the
highest threshold that preserves connectedness of the giant
component, corresponds to the maximum information that can
be retrieved by various community detection algorithms on
the planted modular structure in the presence of noise and
intersubject variability. Intuitively, this threshold corresponds
to the optimal balance between information lost by removing
genuine edges and spurious correlations introduced by noise.
These findings provide evidence of the existence of an optimal
sparsification threshold, and a solid theoretical basis for its
identification by means of a data driven method like percolation
analysis.
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