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Abstract

The general misconception that γ-lactones are not thermodynamically polymerizable has

limited the development of all γ-lactone-based copolymers. A few studies have reported

copolymerization of these five-membered cyclic esters with more reactive monomers, yet a

systematic investigation of kinetics and thermodynamics is still lacking. To explore the feasi-

bility of the reaction, we combined equilibrium and non-isothermal syntheses for the copoly-

merization of γ-valerolactone with �-caprolactone, initiated with methoxy polyethyleneglycol

and catalyzed by Tin(II) 2-ethylhexanoate. Here, we present the polymerization kinetic and

thermodynamic parameters for different monomer ratios in the reaction feed. We observed

the dependency of enthalpy and entropy of polymerization upon monomer ratio changes,

and estimated a linear increase in the activation energy by increasing the γ-valerolactone

fraction in the starting monomer mixture. Our data demonstrate that γ-valerolactone can

copolymerize with �-caprolactone, but only under specific conditions. The reaction parame-

ters determined in this study will enable preparation of additional γ-valerolactone-based

copolymers and development of a family of degradable materials with improved properties

in respect to commonly used polyesters.

Introduction

Degradable polymers are attracting increasing attention for their application in the fields of

green chemistry, food packaging, agriculture and nanomedicine [1]. Hydrolyzable materials

are particularly interesting for their short half-life, complete degradation and favorable clear-

ance of degradation products. Aliphatic polyesters are the most widespread hydrolizable poly-

mers due to their favorable characteristics [2], and cyclic esters lactones are starting reactants

for their synthesis.

The majority of short-chain (four-, six- and seven-membered) cyclic esters are useful

monomers that easily polymerize via Ring-Opening Polymerization (ROP). The ability of lac-

tones to react via ROP is determined by the ring stability and their aptitude to shift the mono-

mer/polymer equilibrium to the product side.
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Ring strain energy is directly related to the thermodynamic stability of cyclic monomers.

Ring strain energy derives from several contributions, including angular strain, bond stretch-

ing, compression or torsion, conformational strain due to repulsion between eclipsed hydro-

gen atoms, and transannular strain generated by interactions between side substituents.

Previous studies evaluated the ring strain energy by varying the number of ring members [3],

and associated lower energy values to five-membered lactones, with small differences for

substituted (e.g. γ-valerolactone (GVL)) or unsaturated (e.g. α-angelica lactone) rings. Some

rings show similar strain energy values, like γ-valerolactone and glycolide [4], but their reactiv-

ity in ROPs is completely different. Thus, in the analysis of lactone ROP also the thermody-

namic aspect has to be considered.

Similarly to all chemical reactions, lactone polymerization proceeds until the equilibrium

concentration of unreacted monomers is reached. According to thermodynamics, monomer

polymerizability is related to the free Gibbs energy of polymerization (ΔGp) that depends on

the polymerization enthalpy (ΔHp) and entropy (ΔSp). Lactone thermodynamic parameters

highlight a dependency on member number, in particular for five-membered γ-lactones [5].

In lactones, ΔHp is the main contribution to ΔGp in small rings (3- or 4-membered) while ΔSp
does not significantly vary up to 6-membered molecules. In larger rings, enthalpy and entropy

contribute equally to the free Gibbs energy of polymerization. Values of ΔHp and ΔSp lead to

negative ΔGp for all lactones in except of 5-membered rings [4].

γ-butyrolactone (GBL), the simplest five-membered cycle, presents three methylenes

between O and C = O. GBL has been long thought to be non-polymerizable [6], if not under

drastic conditions [7], with dangerous catalysts [8], or after molecular modifications [9].

Although a certain number of homo- or copolymers of the GBL were reported in the litera-

ture [6, 10–13], this misconception has probably delayed the polymerization of γ-lactone

family (Fig 1). Only recent studies reported the use of substituted γ-lactones, like α-methy-

lene-γ-butyrolactone and its derivatives, in radical copolymerization with methyl methacry-

late and styrene [14], for which reaction rates and yields are comparable to those of acrylic

monomers.

γ-lactones were already used as co-monomers in the synthesis of copolymers containing

�-caprolactone [8, 15]. The α-hydroxy-γ-butyrolactone monomer was recently used as co-

monomer in polyester synthesis, to provide additional -OH substituents for branching chain

growth. Another interesting GBL derivative is γ-valerolactone, which brings an exocyclic

methyl group. Recently, the authors reported the GVL copolymerization with �-caprolactone

(ECL, Fig 1) to give polyesters with improved hydrophilicity and hydrolytic degradation kinet-

ics [16]. Improved functional properties derived from the presence of the substituent methyl

group that significantly modified molecule arrangement. Major effects of the 4-hydroxyvale-

rate (4HV) repeating unit are: regulation of cristallinity [17], change of mechanical properties,

inducing a decrease of material stiffness [18], and reduction of enzymatic degradation [19].

GVL units also promotes a safe degradation, enabling the preparation on highly cytocompati-

ble nanoparticles for intracellular drug delivery [20].

Thermodynamics and kinetics for lactone ROP are only limited to the most common

monomers, like lactide [21, 22]. Available thermodynamic and kinetic data on lactone

ROPs were thoroughly reviewed by Duda and co-workers [5, 23]. They collected values of

polymerization entropy and enthalpy for different-membered lactones, and indicated values

of equilibrium monomer concentration. Quantum mechanics calculations showed that the

thermodynamic polymerizability of six- and seven-membered lactones is similar, and con-

firmed unfavorable endergonic polymerizability of the GBL monomer [24], which is attributed

to the low ring strain [25]. Additional thermodynamic data, provided by Schneiderman and

Hillmyer, demonstrated the effect of side-groups on six-membered lactones [26].

γ-valerolactone copolymerization
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To contribute in this field, we evaluated thermodynamics and kinetics for the copolymeri-

zation of GVL with ECL, initiated with methoxy polyethyleneglycol (mPEG) and catalyzed by

Tin(II) 2-ethylhexanoate (Sn(Oct)2). To estimate thermodynamic parameters, we performed

the equilibrium synthesis of three different copolymer compositions at six different tempera-

tures. Experimental data provided values of ΔHp and ΔSp. Kinetic parameters were computed

by experimental data from non-isothermal polymerization at five different heating rates, while

major details on copolymerization kinetics were obtained following ROP in a low-monomer-

conversion range. Results demonstrated that the presence of GVL influenced the polymeriza-

tion, and copolymerization can occur only within a specific range of feed compositions and

working temperature.

Materials and methods

Materials

�-caprolactone (ECL), γ-valerolactone (GVL), methoxy polyethyleneglycol (mPEG, Mn: 550 Da,

initiator) and Tin(II) 2-ethylhexanoate (Sn(Oct)2, catalyst) were purchased from Sigma Aldrich.

ECL and mPEG were dried at 60˚C for 6 h and stored over molecular sieves before use, GVL

and Sn(Oct)2 were used as received. The molar ratio between mPEG and monomer units was

adjusted to obtain a theoretical molecular weight of 10 kDa. The amount of catalyst was in ratio

1/1 with mPEG. Molar monomer ratio ECL/GVL of the starting monomer mixture was varied

(90/10, 80/20 and 70/30) to obtain three copolymer compositions. Homopolymer 100/0 was syn-

thesized as reference. Monomer mixtures with lower ECL/GVL ratios and the reference 0/100

gave after ROP only oligomers (Mn lower than 1000 Da), and were not considered for this study.

Analytic methods

The GPC apparatus was composed of a Shimadzu Prominence UFLC chromatograph, two

ResiPore/PLGel GPC column (Agilent Technology, Italy), a tetra-detector equipped by UV

Fig 1. Molecular structures of cited lactones.

https://doi.org/10.1371/journal.pone.0199231.g001
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diode array, refractive index, dual-angle light scattering (15˚ and 90˚) and viscometer. Col-

umns and detectors were thermostatted at 40˚C. THF (Sigma Aldrich, Chromasolv1, 1 mL

min-1) was used as eluent. Samples for GPC analysis were dissolved in THF (concentration:

0.1–0.2 mg mL-1, injection volume: 50 μL). Data analysis was based on a calibration curve

obtained with narrow polystyrene standards.

NMR spectra were acquired on polymer solutions in CDCl3 (Aldrich) with a Bruker 400

MHz spectrometer (Bruker, Italy) at fixed temperature (300 K). Polymers for 1H-NMR analy-

sis were dried under vacuum, for at least 24 h, before their solubilization in CDCl3 (0.2 mg

mL-1).

FTIR analysis was conducted on polymer powders with a Shimadzu IRAffinity-1

spectrometer.

Non-isothermal polymerization was performed in a DSC1 apparatus (Mettler Toledo,

Italy). The instrument was calibrated before each analysis session [27]. Polymerization was

obtained under dry N2 flow (80 mL min-1) at different heating rates (5, 10, 15, 20 and 30 K

min-1) in the temperature range from 300 to 525 K.

Ring-opening polymerization procedures

Equilibrium and low-conversion polymerizations were performed in 10 mL one-neck round-

bottom glass reactors. mPEG (1.5�10−4 mol) and liquid monomers (Table 1) were transferred

in the reactor, flushed with dry N2 for 15 min, then stirred and heated at fixed temperature.

The catalyst Sn(Oct)2 (1.5�10−4 mol, dissolved in 50 μL of toluene) was added upon heating.

The reactor was connected to a CaCl2 column and maintained under N2 flux. Small amounts

of crude products were withdrawn and immediately dissolved in cold acetone to stop the

reaction. Crude samples were maintained at −20˚C before the GPC analysis, then evaporated,

weighted and dissolved in THF. Eventually, the reactor was quenched in cold water, products

were dissolved in acetone, precipitated in methanol three times and finally dried under vented

oven overnight at room temperature.

For equilibrium polymerizations, we performed six experiments, at 80, 90, 100, 110, 120

and 130˚C. Reaction times were 36, 30, 24, 18, 12 and 6 h respectively [28]. For low-conversion

reactions, ROPs were obtained at a fixed temperature (120˚C). Samples were withdrawn after

15, 30, 45, 75, 120, 180, 240 and 300 min. For non-isothermal DSC polymerization, liquid

monomer blends were freshly prepared before the analysis; 10 ± 2 mg of blend were weighted

and added to sealed Al capsules.

Molecular weights for equilibrium, low-conversion and non-isothermal ROPs are summa-

rized in Tables A, B and C in S1 File, respectively.

Table 1. Amounts of monomer used for reactions and molar composition of final products.

Monomer mixture

(ECL/GVL)

ECL

(mol)

GVL

(mol)

Final productsa

(ECL/GVL) (mol mol−1)

100/0 1.24 �10−2 0.00 100/0

90/10 1.12 �10−2 1.29 �10−3 90/10

80/20 9.95 �10−3 2.58 �10−3 82/18

70/30 8.70 �10−3 3.87 �10−3 73/27

a From 1H-NMR analysis; ratios between the linear counterparts of ECL and GVL in the final copolymers were

determined on peak integrals of signals at 4.06 ppm and 2.37 ppm.

https://doi.org/10.1371/journal.pone.0199231.t001
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1H-NMR (Fig A in S1 File, 400 MHz, CDCl3): δ / ppm: 4.06 (-CH2COO-, dd, J = 8.6, 4.8

Hz, 2H), 3.64 (-OCH2CH2O-, s, 2H), 3.38 (CH3O- s, 3H), 2.30 (-OCOCH2CH2-, t, J = 7.5 Hz,

2H), copolymers showed an additional signal due to GVL at 2.37 ppm (-CH2CH(CH3)O-, t,

J = 6.1 Hz, 3H). 13C-NMR (Fig B in S1 File, 400 MHz, CDCl3): δ / ppm: 173.60 (-O-CO-CH2-),

64.24 (-(CH2)2-O-, -CH2-(CH2)3-CH2-O-), 34.32 (-CH2-(CH2)3-CH2-O-), 28.56 (-CH2-CH2-

CH2-CH2-CH2-), 25.74 (-CH2-CH2-CH2-CH2-CH2-), 24.77 (-CH2-CH2-CH2-CH2-CH2-),

21.40 (-CH2-CH2-C(CH3)-)).

FTIR / cm-1: 3600-3400 (O-H stretching), 3040-2730 (-CH- stretching), 1820-1600 (C = O

ester bond stretching), 1420 (-CH3 bending, due to GVL), 1392 (C-O-H bending), 1210-1118

(CO-O ester bond stretching), 1070-1015 (C-O-C due to mPEG stretching), 720-675 (aliphatic

-CH2- bending).

ROP thermodynamics

Values of [M]eq were quantified from GPC chromatograms of crude samples from equilibrium

polymerization. Due to their similar molecular weight, ECL and GVL monomers were eluted

together, allowing only the quantification of the overall concentration. The quantification was

based on the coefficient of RI response βi,j (i: ECL molar fraction, j: GVL molar fraction) of

monomer mixtures in respect to obtained polymers for each polymer. GPC chromatograms of

five monomers/polymer mixtures with known composition gave desired values (Fig C in S1

File). [M]eq were calculated as [28]:

½M�eq ¼ ½M�0
bi;jAm

Ap þ bi;jAm
: ð1Þ

In this equation, [M]0 is the starting overall concentration, while Am and Ap are areas under

peaks of UV traces, for monomer and polymer respectively (Fig D in S1 File).

[M]eq were validated by comparing values of predicted and experimental Mn values. Pre-

dicted Mn values were calculated with the following equation:

Mn ¼
�Mm

½M�
0
� ½M�eq
½I�

0

þMI ; ð2Þ

where �Mm is the average molecular weight of monomers, [I]0 is the molar concentration of

mPEG (0.1 mol L−1) and MI is the molecular weight of mPEG (550 g mol−1).

Starting from the fundamental definition of the free Gibbs energy of polymerization

ΔGp = ΔHp − TΔSp, the Dainton-Ivin’s equation [29] assumes [M]eq = exp[−ΔG/RT] [30] thus

relating [M]eq with temperature:

ln½M�eq ¼
DHp

RT
�

DSp
R
; ð3Þ

where ΔHp is the enthalpy of polymerization, ΔSp is the entropy of polymerization, R is the

ideal gas constant (8.314 J mol−1 K−1). In our experiments, the degree of polymerization

was comprised between 52 and 83, then Eq (3) did not need corrections. Ceiling temperatures

Tc derived from Eq (3) assuming [M]eq = [M]0. The linear fitting of ln[M]eq vs 1/T gave the

desired values of ΔHp and ΔSp.
Macromolecular composition, calculated from 1H-NMR spectra, did not vary with

reaction temperature, confirming that the thermodynamic equilibrium was reached after

selected times.

γ-valerolactone copolymerization
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[ECL]eq and [GVL]eq were estimated from experimental Mn and macromolecular composi-

tion, resulting:

½ECL�eq ¼
NECL;0 � NECL;p

Vtot
; ð4Þ

½GVL�eq ¼
NGVL;0 � NGVL;p

Vtot
; ð5Þ

where NECL,0 and NGVL,0 are ECL and GVL moles in the starting reaction mixtures and NECL,p

and NGVL,p are ECL and GVL moles polymerized. Estimated values were validated by compar-

ing predicted and experimental ΔHp and ΔSp. Predicted thermodynamic parameters were cal-

culated as:

DHp ¼
X

i

xiDHp;i; ð6Þ

DSp ¼
X

i

xiDSp;i: ð7Þ

ROP kinetics

Kinetic rates and monomer reactivity ratios were calculated from data obtained from low-con-

version ROPs. Kinetic rates derived from fitting of experimental values of Mn vs. time. Reactiv-

ity ratios were calculated from the copolymerization kinetic equation (more details in SI):

d½ECL�
d½GVL�

¼
r1½ECL� þ ½GVL�
½ECL� þ r2½GVL�

� �
½ECL�
½GVL�

: ð8Þ

Solving Eq (8) we can calculate reactivity ratios and gather information about monomer distri-

bution along the polymer chain.

Non-isothermal ROP

DSC analysis provided information on kinetic rate parameters [31, 32]. We assumed the fol-

lowing reaction rate model:

da

dt
¼ kðTÞ � ð1 � aÞ

n
¼ A exp �

Ea

RT

� �

� ð1 � aÞ
n
: ð9Þ

In this equation, k(T) is the temperature-dependent kinetic constant, A is the pre-exponential

factor, Ea is the apparent activation energy (J mol−1), T is the absolute temperature (K), and n
is the reaction order. The reaction order n is an estimation of reactant concentration effect on

the reaction rate. Eq (9) is called nth order model and it is often used for the empirical descrip-

tion of heterogeneous processes affected by diffusion processes; it is derived from the Šesták–

Berggren equation [33] dα/dt = k(T)αm(1 − α)n(−ln(1−α))p setting m = p = 0. This generic

model was selected to compute the unknown nth reaction order. Eq (9) contains three

unknown parameters (A, Ea and n) while the triplet T, α and dα/dt was recorded by DSC.

Unknown variables of Eq (9) were calculated with a multi-linear regression. Preliminary

values of n, obtained from peak shapes with a geometric method, were used as first-attempt

inputs. Assuming n constant over time, the shape index S was calculated from the degree of

γ-valerolactone copolymerization

PLOS ONE | https://doi.org/10.1371/journal.pone.0199231 June 21, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0199231


asymmetry of the peak as (Fig 2):

S ¼
c � b0

b0 � a
; ð10Þ

and n was then obtained as:

n ¼ 1:26
ffiffiffi
S
p

ð11Þ

Values of α were normalized on the actual conversion calculated from GPC data. Tests were

performed in triplicate.

Results and discussion

ROP thermodynamic

Theoretical values of [M]eq were considerably higher in copolymers than in material 100/0

(Table 2). This was due to the inhibition exerted by GVL monomer on the reaction. The value

of [M]eq for homopolymer 100/0 was closely in agreement with that reported in the literature

for poly(�-caprolactone) [5], while comparative data for copolymers were not available. [M]eq

Fig 2. Characteristic temperatures: a onset temperature, b peak temperature, c offset temperature, and b’

projection of b; values were used to calculate S.

https://doi.org/10.1371/journal.pone.0199231.g002

Table 2. [M]eq (Eq (1)), calculated [ECL]eq and [GVL]eq (Eqs (4) and (5)), experimental (GPC) and calculated (Eq (2)) Mn; values of Mn are referred to the polyester

block, polydispersity index PDI calculated as the ratio Mw/Mn from GPC data; reported GPC data are the mean of a triplicate synthesis.

Feed mixture

(ECL/GVL)

[M]eq
(mol L −1)

Calc. [ECL]eq
(mol L −1)

Calc. [GVL]eq
(mol L −1)

Ave. Mn
(g mol −1)

Calc. Mn
(g mol −1)

Calc. PDI

100/0 0.08 0.08 - 9900 ± 50 10200 1.25

90/10 1.85 1.67 0.19 7900 ± 450 8200 1.28

80/20 2.34 1.92 0.42 7300 ± 470 7700 1.26

70/30 2.90 2.11 0.78 6700 ± 510 7100 1.23

https://doi.org/10.1371/journal.pone.0199231.t002
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increased with the increase of the starting GVL concentration in the monomer feed, indicating

that ROP inhibition can be attributed to this monomer. The linear correlation between [M]eq

and [M]0 in copolymers (Fig 3a) confirmed that GVL affected the ROP mechanism. Reaction

temperature influenced monomer equilibrium only in copolymer synthesis, while its effect

was negligible in homopolymer reaction (Fig 3b). We combined GPC and 1H-NMR data to

obtain a theoretical evaluation of single-monomer equilibrium concentration, [ECL]eq and

[GVL]eq (Table 2). Single-monomer equilibrium concentration increased with decreasing

ECL/GVL ratio. [ECL]eq values in copolymerization were significantly higher than that calcu-

lated in material 100/0 (Fig 3c). This observation confirmed that GVL hindered the reaction,

decreasing the ability of ECL to react via a ROP scheme. [ECL]eq values were 25-30% the ECL

concentration in reaction feeds ([ECL]0 = 7.7, 6.9 and 6.0 mol L−1 in copolymers 90/10, 80/20

and 70/30 respectively). Also [GVL]eq depended on the starting molar composition of the reac-

tion feed (Fig 3d). Its values linearly increased as the GVL concentration in reaction feeds

increased. Equilibrium values were close to the starting concentrations (0.9, 1.8 and 2.7 mol

L−1), indicating low reactivity of this monomer.

Calculated and experimental Mn values were in reasonable agreement (Table 2). While Mn

value for material 100/0 was similar to the theoretical value (10 kDa) fixed in reaction setup,

Mn values calculated for copolymers showed strong differences. This can be explained consid-

ering that GVL reactivity lowered the overall reaction yield while the theoretical starting

value of the desired molecular weight was calculated hypothesizing the complete monomers

conversion. The data can be used as reference to correct the reaction recipe if higher molecular

weights are requested.

Trends of [M]eq by varying T enabled the calculation of thermodynamic parameters (Fig 4

and Table 3), which were used to evaluate ceiling temperatures via the Dainton-Ivin equation

Fig 3. Thermodynamic equilibrium concentration [M]eq vs. starting monomer concentration [M]0 at different

temperatures (experimental data, from Eq 4); b) [M]eq vs. reaction temperature for different ECL/GVL ratios in

the starting monomer mixture; c) calculated [ECL]eq vs. reaction temperature for different ECL/GVL ratios in the

starting monomer mixture; d) calculated [GVL]eq vs. reaction temperature for different ECL/GVL ratios in the

starting monomer mixture; monomer ratios are indicated in figure legend.

https://doi.org/10.1371/journal.pone.0199231.g003
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(Eq (3)). While ΔSp were not affected by the composition of the reaction feed, ΔHp linearly

increased with the GVL concentration. Calculated values indicated that major effects on ROP

thermodynamics were given by the contribution of the reaction enthalpy. Higher ΔHp values

entailed higher ΔGp and thus a lower aptitude to induce ROP. The results obtained for homo-

polymer 100/0 were close to those reported in the literature [34], while comparative data for

copolymers were not available. Calculated values of Tc for the homopolymer was in agreement

with the literature [35]. Values of Tc linearly decreased as the ECL/GVL ratio decreased, reduc-

ing the upper limit of the temperature range in which this ROP can occur.

ROP kinetics

Reaction rates indicate the speed at which monomers are consumed by the polymerization

process. In addition to thermodynamic effects of the GVL monomer on this ROP, the kinetic

analysis of copolymerization highlighted additional effects on ROP feasibility. Kinetic rates

evaluated from residual monomer concentrations in low-conversion reactions (Table 4) con-

firmed that GVL affects ROP kinetics, slowing down the reaction. Calculated ECL consump-

tion rate was significantly lower in copolymerization than that calculated in material 100/0.

Fig 4. Linear fitting of ln([M]eq) vs. 1/T, material: a) 100/0, b) 90/10, c) 80/20 and d) 70/30; fitting equations are

indicated for each material.

https://doi.org/10.1371/journal.pone.0199231.g004

Table 3. Molar enthalpy ΔHp and entropy ΔSp of polymerization, R2 of linear fitting of experimental data, Tc from Eq (3), calculated ΔHp and ΔSp from GPC and
1H-NMR data.

Feed mixture

(ECL/GVL)

ΔHp
(kJ mol−1)

ΔSp
(J mol−1 K−1)

R2 Tc
(K)

Calc. ΔHp
(kJ mol−1)

Calc. ΔSp
(J mol−1 K−1)

100/0 -27.9 -51.8 0.96 822 -27.9 -51.8

90/10 -10.2 -32.0 0.95 723 -10.4 -29.9

80/20 -9.7 -32.8 0.98 653 -9.8 -29.0

70/30 -8.8 -32.1 0.95 624 -8.9 -27.4

https://doi.org/10.1371/journal.pone.0199231.t003
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Decreasing trends for both ECL and GVL kinetic rates were registered as the ratio ECL/GVL

decreased.

The order of reaction n indicates how fast the concentration of reactants falls while the

reaction proceeds. For this ROP, calculated values were close to unity in all cases and did not

depend on monomer feed compositions. This indicates that reactions proceeded with a step-

wise mechanism.

Reactivity ratios, calculated as reported in SI, were r1 = 0.65 ± 0.06 and r2 = 0.44 ± 0.02.

These values indicated a slightly greater tendency of [−ECL•] to add the ECL monomer instead

of the GVL, but similar reactivity ratios, both lower than 1, ensured the occurrence of the copo-

lymerization, excluding a strong tendency of activated monomers to form homopolymers.

Reactivity ratios product corroborate this conclusion. Their product was close to 0.3, indicat-

ing the aptitude of both monomers to form alternating or random copolymers [36]. However,

lower amounts of GVL in the reaction feed did not allow formation of a perfectly alternating

copolymer, as a random configuration is more probable under these conditions.

Non-isothermal ROP

Non-isothermal DSC by varying heating rate provided data on kinetic rate parameters and

defined lower values of temperature ranges to obtain significant polymerization rates. The

unimodal distribution of DSC thermograms (Fig Ea in S1 File) revealed that the reaction kinet-

ics was not affected by the molecular weight of growing polymer chains. Polymerization pro-

ceeded with equivalent chain-growth events, excluding the occurrence of side-reactions (e.g.

trans-esterifications or inter- and intra- molecular reactions). The absence of significant side-

reactions ensured that final products were linear macromolecules. The observation of equiva-

lent chain-growth events confirmed our previous hypothesis, based on reactivity ratios calcula-

tions, which indicated a non-preferential tendency of activated monomers to add ECL or

GVL. Monomer conversion α (Fig Eb in S1 File) and reaction rate dα/dt (Fig Ec in S1 File)

traces shifted towards higher temperatures as the ECL/GVL ratio decreased. Final monomer

conversion lowered in copolymers containing higher amounts of GVL. dα/dt curves were fit-

ted, providing Ea, n and A. Peak height increased as the heating rate increased, indicating faster

polymerization rates.

Characteristic temperatures were calculated from DSC traces. Onset (Fig 5a) and peak (Fig

5b) temperatures were affected by heating rate and ECL/GVL ratio. Usually, onset temperatures

should be not dependent on the heating rate. As for the ROP of ECL [37], we hypothesized that

Sn(Oct)2 catalyst provided a coordination-insertion mechanism, which is governed by kinetics

and thus by the temperature. Onset temperatures identified the lowest value to obtain signifi-

cant reaction rates. At onset temperature, copolymerization was thermodynamically possible,

Table 4. Kinetic constant k, reaction order n and R2 from residual monomer analysis in low-conversion reactions.

Feed mixture

(ECL/GVL)

Monomer k(min−1) n R2

100/0 6.44�10−3 1.17 0.95

90/10 ECL 3.89�10−3 1.12 0.93

GVL 4.65�10−3 0.94

80/20 ECL 3.05�10−3 1.14 0.96

GVL 2.88�10−3 0.96

70/30 ECL 2.85�10−3 1.15 0.98

GVL 2.53�10−3 0.98

https://doi.org/10.1371/journal.pone.0199231.t004
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but kinetics was too slow to be estimated. Peak temperatures identified the conditions to obtain

the higher reaction rates. Values increased in copolymers with higher GVL amounts.

From non-isothermal ROP we obtained reaction orders and activation energies. Com-

monly, Ea is calculated with semi-empirical methods, based on maximum reaction rate or iso-

conversional maps. Although these methods have been used to study ROP of ECL [38–41],

they present some restrictions that may limit their reliability. For the reported case, we per-

formed a mathematical modeling of experimental data, avoiding approximations or model

restrictions. Results of multi-linear regression are compared with those obtained with semi-

empirical models in SI.

Orders of reaction n were preliminary evaluated from curves dα/dt vs T with a geometric

model. Values of n were close to 1.2 and not affected by feed mixture composition. Data

obtained in non-isothermal analysis were in close agreement with those calculated in low-con-

version reactions. Data were used as first tentative input of the multi-linear regression of dα/dt
vs T. Multi-linear regression provided values of the triplet Ea, n and ln(A). Values of n from

multi-linear regression analysis confirmed those obtained with the geometric method (Fig 6a).

Ea and ln(A) (Fig 6b and 6c) depended on the monomer feed composition, the first parameter

increased while the second decreased as the ECL/GVL ratio decreased. Reported trends of Ea
and ln(A) indicated that ROP kinetics was unfavorable in the presence of GVL.

Conclusion

We demonstrated that ring-opening copolymerization of γ-valerolactone and �-caprolactone

is feasible under specific conditions of temperature and composition of the starting feed. By

using different techniques, we identified limit conditions, in terms of temperature and mono-

mer molar ratios, for such reaction. The combination of results from equilibrium, low-conver-

sion and non-isothermal polymerizations enabled analyses of all major aspects related to

kinetics and thermodynamics of this specific copolymerization process by varying the starting

Fig 5. a) Onset and b) peak temperatures in non-isothermal polymerizations at different heating rates, as a

function of the ECL/GVL ratio in the reaction feed.

https://doi.org/10.1371/journal.pone.0199231.g005

Fig 6. n from geometric method and multi-linear regression, Ea and ln(A) for analyzed ROPs.

https://doi.org/10.1371/journal.pone.0199231.g006
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monomer feeds. We found that both kinetics and thermodynamics govern copolymerization

and related parameters are affected by the amount of GVL used for the reaction. Equilibrium

monomer concentrations and enthalpy of polymerization increased as the GVL concentration

increased in the reaction feed. This indicates the existence of a thermodynamic upper limit in

the concentration of this monomer. The upper monomer concentration limit explains why it

was not possible to obtain homopolymers from GVL with high molecular weights with the

proposed approach. The increase of reaction temperature caused the same effect on equilib-

rium monomer concentration, leading to a linear decrease of the ceiling temperature with the

ECL/GVL ratio. Ceiling temperatures represent the upper temperature limit for this ROP,

indicating the existence of a temperature range for copolymerization. Non-isothermal analysis

identified the onset temperature providing significant copolymerization ratios. These results

fix a lower temperature limit for the proposed ROP. Also, onset temperatures increased as the

ECL/GVL ratio decreased, restricting the optimal range of temperatures for copolymerization.

Overall monomer conversion was limited by the increasing GVL fraction, thus confirming

that copolymerization was hampered in the presence of this monomer. While the reaction

order n was not affected by monomer concentrations, trends of apparent activation energy

and pre-exponential factor of kinetic constants confirmed the effect of GVL, which limited the

reaction rate. Reactivity ratios were both smaller than 1 and their product suggested the forma-

tion of random copolymers.

Very few studies reported the synthesis of γ-lactone-based polyesters, probably due to the

difficult ROP of five-membered rings, but their properties seem to be promising in several

aspects, like degradation kinetics, mechanical properties and biocompatibility, even thought

some preliminary studies on reaction conditions are needed to perform a controlled polymeri-

zation of γ-lactones. This paper clarifies the effects of reaction parameters on this specific

copolymerization, and provides a guideline for the optimization of different ROPs in the pres-

ence of poorly reactive lactones.
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used for the calculation of βi,j coefficients; a) 100/0, b) 90/10, c) 80/20 and d) 70/30. Fig D,

GPC traces of crude samples withdrawn at the end of equilibrium reactions performed at dif-

ferent temperatures; a) 100/0, b) 90/10, c) 80/20 and d) 70/30. Fig E, DSC analysis: a) thermo-

grams of normalized heat flow (W g-1), b) α and c) dα/dt against T at different heating rates.

Fig F, Friedman plots (monomer conversion range: 0.2–0.9); a) 100/0, b) 90/10, c) 80/20 and

d) 70/30. Fig G, KAS plots (monomer conversion range: 0.2–0.9); a) 100/0, b) 90/10, c) 80/20

and d) 70/30. Fig H, OFW plots (monomer conversion range: 0.2–0.9); a) 100/0, b) 90/10, c)
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c) 80/20 and d) 70/30. Fig J, Ea evaluated by a) maximum reaction rate temperatures, b) iso-

conversional methods and c) numerical methods. Table A, Mn (Da) and α obtained from equi-

librium polymerizations at different temperatures; values of Mn are referred to the polyester

block. Table B, Calculated thermodynamic parameters for each monomer. Table C, Mn (Da)

and [M]res (mol L−1) from low-conversion polymerization at different times; values of Mn are
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