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Abstract

Despite canine B-cell Lymphoma (BCL) representing the most common haematological

tumour, epigenetic events driving development and progression are scarcely known.

Recently, canine Diffuse Large BCL (DLBCL) DNA methylome by genome-wide CpG micro-

array has identified genes and pathways associated to pathogenesis. To validate data previ-

ously obtained by array analysis, the CLBL-1 cell line was used and the HOXD10, FGFR2,

ITIH5 and RASAL3 genes were selected. CLBL-1 cells were treated with two hypomethylat-

ing drugs (HDs; IC50, 50% inhibitory concentration), i.e. azacytidine and decitabine (DEC),

either alone or in combination with three histone deacetylase inhibitors (HDACis; IC20), i.e.

valproic acid, trichostatin and vorinostat. Following the incubation with both HDs, an overall

decrease of promoter methylation was highlighted, thus confirming target genes hyper-

methylation. The highest mRNA restoration was observed following the exposure to HDs

combined with HDACis, and mostly with valproic acid. Contrasting results were only

obtained for RASAL3. An in vivo confirmation was finally attempted treating Nod-Scid mice

engrafted with CLBL-1 cells with DEC. Although DEC did not arrest tumour growth, target

genes promoter methylation was significantly reduced in DEC-treated mice vs controls.

Overall, this work demonstrates that CLBL-1 cell line represents a reliable in vitro model to

validate the methylation-dependent silencing of key genes for BCL; moreover, it may be

useful for xenograft models in mice, despite its aggressive behaviour. In future, functional

studies will be performed to deepen the role of selected genes on BCL pathogenesis and

progression, and their methylation-dependent mechanism of regulation.

Introduction

DNA methylation and acetylation of nucleosomal histones are probably the most investigated

epigenetic modifications, potentially leading to gene expression alteration and chromatin

structure re-building in cancer [1–2]. Hypermethylation of CpG islands in promoter regions
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of tumour suppressor genes (TSGs) is known to cause inhibition of transcription factors bind-

ing [1, 3–5], whereas aberrant histone deacetylation can reduce gene expression through the

re-building of chromatin structure [2, 6]. In addition, these two epigenetic mechanisms are

likely to collaborate. Biologically, methyl CpG binding proteins (MBPs) bind to methylated

CpG sites in gene promoters; then co-repressors such as histone deacetylases, methyltrans-

ferases and chromatin remodelling factors are recruited. This mechanism results in a reduc-

tion of transcription factors recognition [3, 7–11].

The contribution of several epigenetic mechanisms in human B-cell lymphoma (BCL) has

been recently demonstrated [12]. Canine lymphoma shows clinical presentation, biology, and

treatment approaches overlapping with the human counterpart [13–19]. Considering these

similarities, previous studies investigated TSGs methylation in dog [20–23], increasing the

knowledge beyond canine BCL pathogenesis and progression, and opening the rationale to

transfer hypomethylating drugs (HDs) and histone deacetylases inhibitors (HDACis) into vet-

erinary oncology. While drugs targeting epigenetic regulators in human oncology are widely

used [2, 3, 6, 8–10], few data on the use of HDs and HDACis are actually available in dog [24,

25]. Conversely, their efficacy in canine in vitro models has already been shown [21–23, 26,

27].

In the present study, we used a validated canine BCL in vitro model, i.e. the CLBL-1 cell line

[28], to investigate the methylation-dependent regulation of four TSGs, namely the Homeobox

D10 (HOXD10), the Fibroblast Growth Factor Receptor 2 (FGFR2), the Inter-Alpha-Trypsin

Inhibitor Heavy Chain Family Member 5 (ITIH5) and the RAS Protein Activator Like 3

(RASAL3); these genes have been shown to be hypermethylated in canine diffuse large B-cell

lymphoma (DLBCL) [29]. First, we assessed the effects of HDs and HDACis on methylation

and transcription by an in vitro experiment; second, we evaluated the anti-tumour and

demethylating activity of DEC in NOD-Scid mice engrafted with CLBL-1 cells.

Materials and methods

Cell line

CLBL-1 cells, isolated from the peripheral lymph node of a dog with confirmed stage IV

DLBCL [28], were maintained in T25 or T75 flasks under humidified 5% CO2 atmosphere, at

37˚C. Cells were grown in RPMI 1640 medium (Gibco, Thermo Fisher Scientific Waltham,

Massachusetts, USA), supplemented with 10% foetal bovine serum (Gibco, Thermo Fisher Sci-

entific Waltham, Massachusetts, USA), 2 mM L-glutamine and 1% penicillin/streptomycin

solution (10,000 UI/mL, Thermo Fisher Scientific Waltham, Massachusetts, USA).

Products and solutions

Azacytidine (AZA), decitabine (DEC), valproic acid (VA), trichostatin A (TSA) and vorinostat

(SAHA) were purchased from Sigma-Aldrich (Milan, Italy). Stock solutions of DEC, TSA and

SAHA were prepared in DMSO and stored at -20˚C. AZA and VA were prepared in RPMI

medium immediately before use.

HDs and HDACis cytotoxicity assays

CLBL-1 cells were seeded in a 96-well flat bottom plate (Sarstedt Italia, Verona, Italy) at a con-

centration of 2×104 cells/well (180 μL). HDs and HDACis (20 μL) were added directly into

each well. The range of concentrations used for the cytotoxicity screening was 0.2–50 μM and

0.002 nM—40 μM for AZA and DEC, respectively. Concentrations between 0.10 nM—

0.165 μM, 0.0001–40 μM and 0.02–6 mM were chosen for TSA, SAHA and VA, respectively.

CLBL-1 and epigenetics

PLOS ONE | https://doi.org/10.1371/journal.pone.0208709 December 11, 2018 2 / 19

https://doi.org/10.1371/journal.pone.0208709


Additional wells were exposed either to the vehicle (dimethyl sulfoxide, DMSO, 0.1% final

concentration) for DEC, TSA and SAHA or to the cell culture medium (AZA and VA). Cells

were incubated for 72 h with HDs, while HDACis were added only in the last 24 h of the exper-

iment. The incubation time of 72 h was established based on the cell line doubling time (31

hours) [28], and guaranteed at least two replicative cycles, necessary for allowing the explica-

tion of HD effects. Conversely, for HDACis a shorter incubation time (24 h) was considered

sufficient for maximizing the effects on gene expression, based on preliminary investigations.

Due to its chemical instability, AZA dilutions were freshly daily prepared. At the end of the

experiment, 20 μL of CellTiter-Blue Reagent (Alamar Blue, Promega, Madison, USA) was

added to each well, and the fluorescence was measured at 560 nm as excitation wavelength and

590 nm as emission wavelength by using a VICTOR X4 Multilabel Plate Reader (Perkin

Elmer, Waltham, USA). Five separate experiments were executed and each concentration was

tested in sextuplicate. The mean value of the % of mortality obtained from each individual

cytotoxicity experiment was determined. The dose-response curve was obtained using Graph-

Pad Prism 5 for Windows (GraphPad Software, San Diego, USA) and the drug concentration

causing 50% reduction of cell viability (IC50 value) was calculated.

Cell treatment

Cells were seeded at a concentration of 3×105 cells/well in a 6-well flat bottom plate (Sarstedt

Italia, Verona, Italy), and incubated for 72 h. HDs (300 μL of a stock solution 10X) were added

directly onto each well after the cell suspension (2700 μL). HDACis (30 μL of a 100X stock

solution) were added either in wells containing cells exposed to HDs than in untreated cells in

the last 24 h of treatment. Likewise to cytotoxicity, AZA solution 100X were prepared every

24h. According to preliminary investigations, final concentrations corresponding to IC50 and

IC20 values were used for HDs and HDACis, respectively. The IC20 value was calculated as fol-

lows: IC20 = (F/100-F)1/H � IC50, where F is 20 and H is Hillslope.

Four independent experiments were performed. At the end of the treatment, cells were

washed with PBS. Then, gDNA and total RNA were extracted using the DNeasy Blood & Tis-

sue Kit and the RNeasy Mini Kit (Qiagen, Hilden, Germany), respectively, as per manufactur-

er’s instructions. Concentrations were measured with NanoDrop 1000 Spectrophotometer

(Thermo Scientific, Waltham, Massachusetts, USA).

Bisulfite conversion and Methyl Specific PCR (MSP)

Five hundred ng of gDNA were bisulfite converted following the protocol of MethylCodeBi-

sulfite Conversion Kit (Invitrogen, Carlsbad, California, United States). The thermocycler Pro-

flex PCR System (Life Technologies, Carlsbad, California, United States) was used for DNA

denaturation at 95˚C and bisulfite conversion at 64˚C.

Four TSGs (HOXD10, FGFR2, ITIH5 and RASAL3), characterized by an abnormal hyper-

methylation status [29] as well as a significant lower mRNA expression in DLBCLs compared

to controls (S1 Fig), were selected as target genes. RPL8 was included as negative control gene.

Methylation (Meth) and No Methylation (No Meth) primers for HOXD10, FGFR2, ITIH5
and RASAL3 are reported in [29]; for RPL8 the following oligonucleotides have been used: for-

ward (F) Meth: 5’- GTATCGGGTTTGCGGTC -3’; reverse (R) Meth: 5’- TACCTACTACC
GAACGCGAC -3’; F No Meth: 5’- GTGTATTGGGTTTGTGGTT -3’; R No Meth: 5’- C
CTACCTACTACCAAACACAAC -3’. Primers were designed on the CpG islands identified in

the promoter region using Methyl Primer Express software v1.0 (Applied Biosystems, Foster

City, CA) as previously described [30, 31]. In details, the DNA regions considered for the

primer design were those recognized by probes of the previously used canine Agilent CpG
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microarray platform (GEO accession: GPL23069) [29]. Oligonucleotides were synthesized by

Eurofins MWG Synthesis GmbH (Ebersberg, Germany). The quantitative Real-Time PCR

(qPCR) amplification was carried out using the Power SYBR Green PCR Master Mix (Applied

Biosystems, Foster City, CA) and Stratagene Mx3000P (Agilent Technologies Santa Clara, Cal-

ifornia, United States). Standard qPCR conditions were used except for ITIH5, for which Ct

values were acquired at 74˚C to eliminate primer dimers contribution to the fluorescence sig-

nal acquisition. Different concentrations of F and R primers of both Meth and No Meth were

tested: 50/50, 300/300, 300/600, 600/300 and 600/600 nM. The specific amplification was

checked loading MSP products in a 2% agarose gel. For each gene, the level of methylation was

estimated by calculating the ratio of unmethylated to methylated assays as ΔCt (= Ct No

Meth–Ct Meth), as previously described [32]. In case of absence of No Meth assay amplifica-

tion, a Ct value of 40 was arbitrarily assigned to permit the ΔCt calculation. The appropriate

concentrations of Meth and No Meth primer pairs were initially set up (S1 Table). The speci-

ficity of each primer pair was validated performing qPCR both with bisulfite converted and

non-bisulfite converted gDNA, analysing the melting curves and loading the amplification

products on a 2% agarose gel.

Reverse transcription (RT) and qPCR

The RT (1 μg of total RNA) was performed by using the High Capacity cDNA Reverse Tran-

scription kit (Life Technologies, Carlsbad, California, United States), according to the manu-

facturer’s instructions. For each target transcript and the negative control RPL8, gene-specific

primers encompassing one intron were designed by using the Universal Probe Library (UPL)

Assay Design Centre web service (Roche Diagnostics, Mannheim, Germany). Two previously

published internal control genes (ICGs), i.e. GOLGA1 and CCZ1 [33, 34], were selected for

this study, for the absence of a statistically significant modulation in treated vs untreated cells.

Oligonucleotides were synthesized by Eurofins MWG Synthesis GmbH (Ebersberg, Germany)

and are reported in S2 Table. The qPCR reaction was performed in a final volume of 10 μL,

using 12.5 ng of cDNA, the Power SYBR Green PCR Master Mix (Life Technologies, Carlsbad,

California, United States) and a Stratagene Mx3000P thermal cycler (Agilent Technologies,

Santa Clara, California, United States). Samples were analysed in duplicate. Standard qPCR

conditions were used, except for the analysis of ITIH5, for which Ct values were acquired at

78˚C to eliminate primer dimers contribution to the fluorescence signal acquisition. Different

concentrations of F and R primers were tested: 50/50, 50/300, 300/50 and 300/300 nM. The

presence of specific amplification products was confirmed by dissociation curve analysis. For

each qPCR assay, negative controls (with either total RNA or water as template) were run.

Standard curves were obtained using the best performing primer combination and serial dilu-

tions of cDNA from CLBL-1 cells or control lymph node. Each dilution was amplified in dupli-

cate. The ΔΔCt method [35] was used to analyze gene expression results. All assays showed an

acceptable efficiency (range 90%� 110%), and a slope comprised between -3.6 and -3.1 (S3

Table).

Xenograft experiment

NOD-Scid (NOD.CB17-Prkdcscid/NCrHsd) mice (five-six weeks of age, approximately 20 g

body weight) were purchased from Harlan Laboratory. Mice maintenance and animal experi-

ments were performed under institutional guidelines established for the Animal Facility of the

Institute of Research in Biomedicine (IRB; Bellinzona, Switzerland) and with study protocols

approved by the local Cantonal Veterinary Authority. Mice were subcutaneously engrafted

with 15 x106 CLBL-1 cells and divided into two experimental groups (n = 4). Starting with an

CLBL-1 and epigenetics
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average tumour volume of 800 mm3, mice underwent treatment either with the single agent

DEC (diluted in water) or vehicle only. DEC was administered four times at the dose of 2 mg/

kg (Day 1) and 4 mg/kg (Days 2, 3, 4) through i.p. injections. Engrafted mice were monitored

daily, and treatments were performed without anaesthesia. Mice were sacrificed by inhalation

of CO2 and with tumours smaller than 2000 mm3, according to guidelines reported by the

Cantonal Veterinary Authority. At the sacrifice, tumours transplanted were collected and mea-

sured in size. Small fragments of about 100 mg each were stored at -80˚C for subsequent

gDNA and total RNA isolation. These samples were subjected to qPCR and MSP analysis of

the four target genes and the negative control RPL8.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 5.00 for Windows (Graph-

Pad Software, San Diego, USA). Data referring to the drug-dependent variation in target gene

expression were expressed as 2-ΔΔCt, and statistically analysed using unpaired T test or one-

way analysis of variance (ANOVA) followed by the Tukey’s Multiple Comparison Test. A P
value < 0.05 was considered as statistically significant.

Results

HDs and HDACis cytotoxicity

All the HDs and HDACis were cytotoxic after 72h and 24h of incubation, respectively. Sigmoi-

dal dose-response curves, relative IC50 values and corresponding linear regression coefficients

(R2) for each drug are shown in Fig 1.

Fig 1. Dose-response curves (Alamar blue test). Relative IC50 and R2 values were obtained after incubation (72 or 24 h) of CLBL-1 cells with AZA (A), DEC (B),

VA (C), TSA (D), SAHA (E).

https://doi.org/10.1371/journal.pone.0208709.g001
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Concerning HDs (Fig 1A and 1B), the CLBL-1 cell line was more sensitive to DEC than

AZA, with IC50 values equal to 0.13 and 3.42 μM, respectively. As to HDACis, TSA and SAHA

(Fig 1D and 1E) were cytotoxic at lower concentrations (with IC50 values corresponding to

0.02 and 0.89 μM, respectively) if compared to VA (Fig 1C), for which the IC50 value was 2.44

mM. According to these cytotoxicity assays and further preliminary investigations (data not

shown), the IC50 values for AZA and DEC, and the IC20 values for VA, TSA and SAHA, were

selected for the subsequent experiments.

MSP assays validation

The validation of MSP assays (agarose gel electrophoresis and melting curve analysis) for

HOXD10 and FGFR2 is exemplified in S2–S4 Figs. PCR products obtained from the amplifica-

tion of bisulfite-converted gDNA, non bisulfite-converted gDNA and blank with both Meth

and No Meth assays were loaded on a 2% agarose gel (S2 Fig). HOXD10 and FGFR2 amplifica-

tion was specific with both set of primers pairs, as only one amplicon of the expected size was

detected (S2 Fig, lanes 1 and 4). Primer dimers, if present, were noticed only in non bisulfite-

converted gDNA (lanes 2 and 5) and in the blank samples (lanes 3 and 6), where there was no

possibility for their annealing with gDNA. However, the presence of dimers in negative con-

trols is attributable to their relatively high or low GC% content. This result was confirmed by

melting curve analysis, in which the negative controls (blank) and not bisulfite-treated gDNA

were mainly characterized by primer dimers (grey and green lines), having a low melting tem-

perature (72–74˚C, S3 and S4 Figs). Conversely, the peaks on the right, characterized by a

higher melting temperature (>78–80˚C), were referable to the amplification of specific PCR

products. Numerous peaks were caused by the presence of multiple amplicons of the same

length, but characterized by a different C and T composition, for the coexistence of hemi-

methylated DNA molecules.

MSP analysis in CLBL-1 cells

To semi-quantify the differential DNA methylation status between control and treated cells,

the ΔCt value was calculated. Figs 2–6 show results obtained for HOXD10, FGFR2, ITIH5,

RASAL3, and the negative control RPL8, respectively. Both AZA and DEC dramatically

decreased HOXD10, FGFR2, ITIH5 and RASAL3 promoter methylation (P< 0.001). As

expected, HDACis alone or in combination with HDs did not affect the promoter methylation

of the four genes. No effects on the methylation status were observed for RPL8 (negative con-

trol gene) in all treatment conditions (Fig 6).

Gene expression in CLBL-1 cells

The effects of HDs and HDACis on mRNA expression of target genes HOXD10, FGFR2, and

ITIH5 as well as of RPL8 (negative control) are summarized in Figs 7–10.

Basically, HOXD10 mRNA was never detectable (n.d.) in untreated cells (Fig 7). Conversely,

the treatment with HDs showed an increase of HOXD10 mRNA levels, thereby allowing detec-

tion and quantification. A significant increase of HOXD10 mRNA was noticed after AZA

treatment (P< 0.05) when compared to CLBL-1 cells alone (unpaired t-test). Furthermore,

AZA showed a higher effect than DEC on HOXD10 re-expression. HDACis alone were not

effective, while the combination HDs + HDACis caused a higher restoration (P< 0.01) when

compared with HDs alone. Interestingly, the combination of DEC with HDACis resulted in a

higher mRNA re-expression if compared to AZA + HDACis combination. A similar behaviour

was observed with the association DEC + TSA and DEC + SAHA, whereas VA combined with

both HDs elicited the highest reverting effect.

CLBL-1 and epigenetics
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Scarce FGFR2 mRNA levels were detected in control cells (Fig 8). AZA and DEC alone

showed only a mild effect in re-expressing FGFR2. However, the reverting effect of HDACis

alone (TSA and VA) was higher compared with AZA or DEC. The combination for both HDs

Fig 2. HOXD10 Methyl Sensitive PCR after exposure to HDs (72 h) and HDACis (in the last 24 h of treatment), incubated alone or in combination.

The effects of AZA or DEC, alone or in combination with HDACis are reported in panels A and B, respectively. Data are expressed as ΔCt (= Ct No Meth–

Ct Meth), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. ���: P< 0.001.

https://doi.org/10.1371/journal.pone.0208709.g002

Fig 3. FGFR2 Methyl Sensitive PCR after exposure to HDs (72h) and HDACis (in the last 24 h of treatment), incubated alone or in combination. The

effects of AZA or DEC, alone or in combination with HDACis are reported in panels A and B, respectively. Data are expressed as ΔCt (= Ct No Meth–Ct

Meth), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. ���: P< 0.001.

https://doi.org/10.1371/journal.pone.0208709.g003
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and HDACis elicited a higher effect than the use of the single drug. This was evident for TSA

and even more with VA (P< 0.01). SAHA alone or in association with HDs never showed sta-

tistically significant effects.

Fig 4. ITIH5 Methyl Sensitive PCR after exposure to HDs (72 h) and HDACis (in the last 24 h of treatment), incubated alone or in combination. The

effects of AZA or DEC, alone or in combination with HDACis are reported in panels A and B, respectively. Data are expressed as ΔCt (= Ct No Meth–Ct

Meth), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. ���: P< 0.001.

https://doi.org/10.1371/journal.pone.0208709.g004

Fig 5. RASAL3 Methyl Sensitive PCR after exposure to HDs (72 h) and HDACis (in the last 24 h of treatment), incubated alone or in combination. The

effects of AZA or DEC, alone or in combination with HDACis are reported in panels A and B, respectively. Data are expressed as ΔCt (= Ct No Meth–Ct

Meth), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. ���: P< 0.001.

https://doi.org/10.1371/journal.pone.0208709.g005
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ITIH5 is a rare transcript, showing a scarce and variable constitutive expression in CLBL-1

cells (Fig 9). Only the combination HDs + VA showed a significant restoration of gene

Fig 6. RPL8 Methyl Sensitive PCR after exposure to HDs (72 h) and HDACis (in the last 24 h of treatment), incubated alone or in combination. The

effects of AZA or DEC, alone or in combination with HDACis are reported in panels A and B, respectively. Data are expressed as ΔCt (= Ct No Meth–Ct

Meth), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test.

https://doi.org/10.1371/journal.pone.0208709.g006

Fig 7. HOXD10 mRNA re-expression following the exposure to HDs (72 h) and HDACis (in the last 24 h of treatment), alone or in combination. The

effects of AZA or DEC, alone or in combination with HDACis, are reported in panel A and B, respectively. Data are expressed as Relative Quantification

values (RQ), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. ��: P< 0.01; ���: P< 0.001.—not detectable (n.d.).

https://doi.org/10.1371/journal.pone.0208709.g007
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expression. For RASAL3 mRNA, unexpected results were obtained: specifically the treatment

with both HDs and HDACis leaded to a significant inhibition of gene expression (S5 Fig).

The basal mRNA expression of the negative control RPL8 recorded in control CLBL-1 cells

was never affected by HDs and HDACis treatment, alone or in combination. A slight higher

expression (about 1.2-fold vs DMSO) was observed only after TSA incubation (Fig 10).

Fig 8. FGFR2 mRNA re-expression following the exposure to HDs (72 h) and HDACis (in the last 24 h of treatment), alone or in combination. The

effects of AZA or DEC, alone or in combination with HDACis, are reported in panel A and B, respectively. Data are expressed as Relative Quantification

values (RQ), as means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. �: P< 0.05; ��: P< 0.01; ���: P< 0.001.

https://doi.org/10.1371/journal.pone.0208709.g008

Fig 9. ITIH5 mRNA expression after the treatment with HDs (72 h) and HDACis (in the last 24 h of incubation) alone or in combination. The effects of

AZA or DEC, alone or in combination with HDACis, are reported in panel A and B, respectively. Data are expressed as Relative Quantification values (RQ), as

means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. �: P< 0.05.

https://doi.org/10.1371/journal.pone.0208709.g009
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Effects of DEC on mice engrafted with CLBL-1 cells

Eight NOD-Scid mice were engrafted with CLBL-1 cells and treated with DEC when tumours

volume was 800 mm3 in average. Overall, no observable adverse effects were ever noticed dur-

ing the treatment. DEC alone failed to arrest the tumour growth; in particular, xeno-tumours

were not affected by the treatment even when the dose of DEC was doubled (4 mg/Kg, i.p.

administered on days 2, 3, 4). No statistically significant differences were achieved in tumour

size between DEC treated mice and control mice receiving vehicle only. However, a slighter

reduction of growth was observed in treated mice (S6 Fig). Furthermore, spleen infiltration

was not observed in mice receiving vehicle.

When MSP was applied to tumour samples, a significant reduction of HOXD10, FGFR2
(P< 0.05), ITIH5 and RASAL3 (P< 0.001) promoter methylation was observed in DEC-

treated mice (Fig 11). The gene expression was not affected by the treatment. As shown in S7

Fig, only a slight re-expression of HOXD10 mRNA was observed in DEC-treated mice, while

RPL8 was not modulated by the treatment, as expected. The other target genes considered in

the present study were not quantifiable in both control and treated tumours.

Discussion

Based on previous observations of methylation changes in canine DLBCL [29], the present

study aimed to corroborate, using in vitro and in vivo approaches, the promoter methylation

of four TSGs (HOXD10, FGFR2, ITIH5 and RASAL3), whose mRNA expression was con-

firmed to be significantly reduced in DLBCL samples vs controls (S1 Fig). To this purpose we

evaluated the effects of two classes of epigenetic drugs, HDs and HDACis using CLBL-1 cells,

representing the unique canine BCL cell line available in veterinary medicine. A similar in
vitro approach was previously considered in dogs, but a preliminary cytotoxicity screening,

Fig 10. RPL8 mRNA expression after the treatment with HDs (72 h) and HDACis (in the last 24 h of incubation) alone or in combination. The effects of

AZA or DEC, alone or in combination with HDACis, are reported in panel A and B, respectively. Data are expressed as Relative Quantification values (RQ), as

means ± SEM. Statistical analysis: ANOVA + Tukey’s post-test. �: P< 0.05; ��: P< 0.01.

https://doi.org/10.1371/journal.pone.0208709.g010
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supporting the chosen HD concentrations, was not executed [21–23]. Herein, we determined

the HDs cytotoxicity before conducting further experiments.

Besides methylation, other epigenetic mechanisms are likely to contribute to gene silencing,

such as histone deacetylation. To comprehend the role of deacetylation/acetylation balance in

reverting gene expression in our cellular model, HDACis alone or in combination with HDs

were considered; this represents an innovative element of this work. HDACis were selected

according to available dog pharmacokinetics and pharmacodynamics data [23, 27, 36–41].

After IC50 values determination, supplementary experiments were performed to obtain the

best drug concentration taking into consideration toxicity and biological effects (data not

shown). Finally, IC50 values for AZA and DEC and IC20 values for TSA, SAHA and VA were

considered for the subsequent experiments.

Afterwards, we assessed the ability of HDs and HDACis to reactivate the expression of our

four candidate genes, known to be methylated at the promoter region [29] and inhibited (S1

Fig) in canine DLBCL. These targets play a putative role as TSG in humans and possess an epi-

genetic mechanism of regulation in human cancer [42–51]. AZA and DEC dramatically

Fig 11. Methyl Sensitive PCR in Nod-Scid mice engrafted with CLBL-1 cells and treated with DEC or vehicle. Effects of DEC treatment in xeno-tumours

for HOXD10 (A), FGFR2 (B), ITIH5 (C), RASAL3 (D) and RPL8 (E). Data are expressed as ΔCt (= Ct No Meth–Ct Meth), as means ± SEM. Statistical

analysis: unpaired T test. �: P< 0.05, ���: P< 0.001.

https://doi.org/10.1371/journal.pone.0208709.g011
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decreased the promoter methylation of HOXD10, FGFR2, ITIH5 and RASAL3, although show-

ing a gene-specific effect, as previously reported [52]. Conversely, HDACis alone did not affect

the methylation status of target genes in control cells; moreover, their combination with HDs

did not show additive effects. These results indirectly support the evidence that all the genes

were hypermethylated at basal conditions in CLBL-1 cells, and treatment conditions with HDs

were able to revert their initial methylation status. Furthermore, the absence of HDs and

HDACis effects on RPL8 methylation demonstrates that these effects were specific for BCL

associated hypermethylated TSGs and were not widespread to other targets.

To demonstrate the epigenetic-dependent silencing of these genes, mRNA expression was

evaluated, too. HOXD10 was not expressed in untreated CLBL-1 cells. In our experimental

conditions, AZA and DEC, when used alone, were able to restore HOXD10 expression,

completely silenced in control CLBL-1 cells before treatment. Conversely, HDACis modulated

mRNA expression only when used in combination. This evidence indirectly supports the

hypothesis that histone deacetylation might play an important role in regulating gene expres-

sion. On top, the highest mRNA re-expression of HOXD10 was observed with the combination

DEC + HDACis, confirming previous published data [43].

FGFR2 was expressed at very low levels in untreated cells. Both AZA and DEC used alone

showed a mild effect in re-expressing FGFR2, whereas the combination of HDs and HDACis a

higher effect. These data might suggest the potential contribution of histone modifications on

FGFR2 silencing, as already described in a previous work in which TSA reverted FGFR2
expression in mouse AtT20 (pituitary corticotropic tumour) cells and acetylation/deacetyla-

tion balance was identified as the driver mechanism in the epigenetic regulation of this TSG

[48]. Nevertheless, being out of the scope of the present paper, the acetylation state of FGFR2
and the other selected target loci was not measured in CLBL-1 cells before and after the treat-

ment with HDACis. Thus, the contribution of acetylation/deacetylation balance in the control

of gene expression was not specifically assessed. Worth mentioning, since HDACIs here used

are both histone and nonhistone substrates, they could regulate gene expression through the

acetylation of other proteins, including transcription factors [53]; consequently, the observed

effects on the gene expression could be attributable to further molecular mechanisms than his-

tone acetylation/deacetylation.

Similarly to FGFR2, ITIH5 was also very poorly expressed in untreated cells. Only the com-

bination of HDs and VA showed a significant restoration of gene expression, in accordance

with former published data [46, 47]. Higher fold-changes have been reported, but using higher

concentrations of DEC and TSA [54]; however, in our experimental conditions higher concen-

trations caused cell death and subsequently the modulation of gene expression could not be

measured (data not shown). Once more, our results highlight gene- and also cell-specific

effects of both HDs and HDACis [52].

Despite the RASAL3 inhibition in DLBCLs compared to controls, the exposure to HDs and

HDACis, either as single agent than in combination, did not increase RASAL3 gene expression

in CLBL-1 cells. Both AZA and DEC reduced the promoter methylation but did not induce

mRNA expression. Despite the observed incongruence between MSP and gene expression

data, this result is worth of mention considering the scarce information available for this gene.

Hence, further studies are needed to better understand the effect of methylation on gene tran-

scription and, consequently, the role of RASAL3 in the proliferation, development and biologi-

cal activity of B-cells [51, 55].

As a whole, our results support the hypothesis that CLBL-1 cells represent a reliable in vitro
model for studying epigenetic modifications in canine BCL. However, the methodological

approach here used showed some limitations, as the measurement of the methylation status of

only one regulatory element for each gene (although corresponding to DNA regions
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recognized by the probes of the canine Agilent CpG microarray platform used in our previous

study); the lack of histone acetylation measurement; lastly, the absence of functional studies

useful to define the role of target genes on cellular homeostasis, survival or proliferation in

canine BCL.

Nevertheless, we decided to further confirm results in vivo, using a murine model. In this

respect, NOD-Scid mice were engrafted with CLBL-1 cells and treated with DEC. The choice

of DEC as single agent was based on a previous experience, in which in a model of human

Splenic Marginal Zone lymphoma, established by engrafting SSK41 cells in Nod-Scid mice,

DEC was used at the dose of 2 mg/Kg, given twice starting when tumours were 100 mm3 (Day

1 and Day 3). Using this treatment schedule, DEC was able to eradicate tumours in three

weeks (data not shown). In our study, DEC treatment started late because we were interested

to obtain tumour samples for molecular and histological analysis. Unfortunately, DEC treat-

ment was unsuccessful in these experimental conditions. However, it significantly decreased

the methylation of HOXD10, FGFR2, ITIH5 and RASAL3 promoters. A hypothesis beyond

this clinical failure might be the extreme biological aggressiveness of CLBL-1 cell line, as dem-

onstrated by the short doubling time [28]. Due to toxicity and ethical issues, it was not possible

to use higher DEC concentrations or further prolong treatments. This experiment highlights

the inefficiency of DEC used as a single agent and confirms the use of a combined treatment

with HDACis or CHOP regimen for maximizing the therapeutic effect, as reported by other

authors [52, 56–59].

Conclusions

In summary, the findings of this paper demonstrate that the four genes here assayed are bio-

markers of hypermethylation in canine DLBCL. Specifically, the treatment of CLBL-1 cell line

with HDs reduces methylation levels, and their combination with HDACis significantly

increase the mRNA expression of three silenced genes. In perspectives, specific mechanistic

and functional studies will be performed to deepen the methylation-dependent mechanisms of

gene silencing and comprehend the pathogenic role of these same genes, evaluating their

potential contribution to cell survival and proliferation following re-expression. Furthermore,

the CLBL-1 cell line, a reliable in vitro model for studying epigenetics in canine BCL, has been

proved useful also for the obtainment of xenograft DLBCL tumours in mice, even though the

tumour volume at time of treatment and treatment regimen need further optimization.
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