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ABSTRACT 

In the North-East Greenland Caledonides, P–T conditions and textures are consistent with 

partial melting of UHP eclogite during exhumation. The eclogite contains a peak assemblage 

of garnet, omphacite, kyanite, coesite, rutile and clinozoisite; in addition, phengite is inferred 

to have been present at peak conditions. An isochemical phase equilibrium diagram, along 

with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940 ˚C. 

Zr-in-rutile thermometry on inclusions in garnet yields values around 820 ˚C at 3.4 GPa. In 

the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has 

low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are 

consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic 

intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts 

of garnet against plagioclase are interpreted as formed from a peritectic reaction during 

partial melting. Polymineralic inclusions of albite+K-feldspar and 

clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps 

pointing into the host, which are interpreted as crystallized melt pockets. These textures, 

along with the mineral composition, suggest partial melting of the eclogite by reactions 

involving phengite and, to a large extent, an epidote-group mineral. Calculated and 

experimentally determined phase relations from the literature reveal that partial melting 

occurred on the exhumation path, at pressures below the coesite to quartz transition. A 

calculated P–T phase diagram for a former melt-bearing domain shows that the formation of 

the peritectic garnet rim occurred at 1.4 GPa and 900 ˚C, with an assemblage of 

clinopyroxene, amphibole and plagioclase equilibrated at 1.3 GPa and 720 ˚C. Isochemical 

phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase and amphibole 
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after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 

680–1000 ˚C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium 

at 717–732 ˚C, calculated by amphibole-plagioclase thermometry for the former melt-bearing 

domain and symplectite, respectively. The results of this study demonstrate that partial melt 

formed in the UHP eclogite through breakdown of an epidote-group mineral with minor 

involvement of phengite during exhumation from peak pressure; melt was subsequently 

crystallized on the cooling path.  

 

KEYWORDS:  

Eclogite melting, melt-related textures, phase equilibria, North-East Greenland Caledonides, 

UHP metamorphism.  

 

 

1 | INTRODUCTION 

Partial melting of HP and UHP eclogite is a fundamental process leading to crustal 

differentiation, crust-mantle interaction and mantle metasomatism, and may have a 

considerable influence on large-scale tectonics (e.g. Hermann & Rubatto, 2014; Zheng, Xia, 

Chen, & Gao, 2011). The key factors controlling partial melting are fluid, pressure, 

temperature and bulk composition, influences which have been explored by numerous 

experimental studies (Massonne & Fockenberg, 2015; Schmidt & Poli, 2014 and references 

therein). Because free fluid is limited at deep crustal to upper mantle depth, melting due to 

breakdown of hydrous minerals (i.e. phengite and zoisite) is the most plausible way to 

partially melt eclogite (Hermann & Rubatto, 2014; Schmidt & Poli, 2014; Zheng et al., 2011). 

Experiments on basaltic rocks show that the composition of partial melt tends to be granitic, 

tonalitic, trondhjemitic or granodioritic, depending on physical conditions, source materials 

and degree of partial melting (e.g. Q. Liu, Jin, & Zhang, 2009; Rapp & Watson, 1995; Rapp, 

Watson, & Miller, 1991; Skjerlie & Patiño Douce, 2002). Discrepancies still exist for phase 

boundaries of hydrous minerals with respect to solidus conditions in P–T space (Q. Liu et al., 

2009; Rapp & Watson, 1995; Schmidt, Vielzeuf, & Auzanneau, 2004; Skjerlie & Patiño 

Douce, 2002; Vielzeuf & Schmidt, 2001). Petrological studies on partial melting of natural 

UHP eclogite are few (Y. X. Chen, Zheng, Gao, & Hu, 2014; Gao, Zheng, & Chen, 2012; 

Gao, Zheng, Chen, & Hu, 2014; Hacker et al., 2005; L. Wang et al., 2014), partly due to 

limited field occurrence of UHP eclogite with preserved evidence of melting in the textures, 

which are easily destroyed. Melt may connect and channelize, forming felsic veins or 

networks on the mesoscale, and segregate, leading to melt escape from the source area (e.g. 

Brown, 2007; Kriegsman, 2001; Rosenberg & Handy, 2005; Sawyer, 2001) contributing to 

relamination of subducted materials (Hacker, Kelemen, & Behn, 2011). 

 

Documenting partial melting textures of UHP eclogite on both meso- and micro-

scales is critical for understanding anatexis of metabasite. On the outcrop scale, felsic veins, 

irregular patches and lenses of granitic (Gilotti, McClelland, & Wooden, 2014; F. L. Liu, 

Robinson, & Liu, 2012; McClelland, Gilotti, Mazdab, & Wooden, 2009; S. J. Wang et al., 

2017; Zhao, Zheng, Wei, & Wu, 2007), dacitic (L. Wang et al., 2014), tonalitic (D. L. Chen, 

Liu, Sun, & Zhu, 2010) and trondhjemitic composition (Labrousse, Prouteau, & Ganzhorn, 

2011; Shatsky et al., 1999) have been interpreted as crystallized melt derived from eclogite. 

Geochemical characteristics of the melt composition may aid interpretation of the melting 

process; for example, the depletion of heavy rare earth elements (HREE) is a feature of 

trondhjemite veins in eclogite and is attributed to partial melting in the presence of garnet 

(Shatsky et al., 1999). On the micro-scale, UHP eclogite may contain features, such as cusps, 

graphic intergrowths, inclusions of melt and triple junctions among equant minerals (e.g. 
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Fenn, 1986; Holness, Cesare, & Sawyer, 2011; Holness & Sawyer, 2008; Sawyer, 2001), 

among which the inclusions of melt are most commonly used to decipher partial melting of 

metabasites. Inclusions of K-feldspar+quartz±plagioclase±albite± calcite±barite in garnet, 

omphacite and clinopyroxene in UHP eclogite from the Sulu-Dabie and Kokchetav areas are 

interpreted as crystallized melt (Y. X. Chen et al., 2014; Gao et al., 2014; Hwang et al., 2005; 

L. Wang et al., 2014). Partial melting of eclogite is inferred to be due to the breakdown of 

hydrous minerals, phengite (Gao et al., 2014; Q. Liu, Hermann, & Zhang, 2013; L. Wang et 

al., 2014; Zeng, Liang, Asimow, Chen, & Chen, 2009), or phengite, paragonite, and zoisite 

(Y. X. Chen et al., 2014) on the retrograde path.  

In this contribution, we report the results of a study on UHP kyanite eclogite from the 

North-East Greenland Caledonides. Partial melting textures are documented on the micro-

scale, and P–T conditions of peak metamorphism, partial melting and melt crystallization are 

estimated  utilizing petrographic observation, phase equilibrium modelling, empirical 

thermobarometry and Zr-in-rutile thermometry. Petrographic textures, such as inclusions of 

crystallized melt, cuspate boundaries, graphic intergrowths and euhedral crystals, are 

interpreted as inherited from melt crystallization. Mineralogy and composition of mm-sized 

crystallized melt pockets suggest that an epidote-group mineral is the major phase that 

contributed to partial melting. Experimental phase relations and phase equilibrium modelling 

show that melting and subsequent crystallization occurred on the exhumation path. 

 

2 | GEOLOGICAL SETTING 

The North-East Greenland Eclogite Province (NEGEP) is located on the northeast margin of 

Laurentia, which was the overriding plate during the Caledonian collision with Baltica 

(Gilotti & McClelland, 2007). The NEGEP (Figure 1) covers an area of ~ 50,000 km
2
 from 

latitude 76° to 80°30' N and constitutes the uppermost thrust sheet in the North-East 

Greenland Caledonides (Gilotti, Jones, & Elvevold, 2008). Vast areas of quartzofeldspathic 

gneiss with eclogitic blocks and rare metapelite (Gilotti, 1993) are exposed in the NEGEP. 

The eclogitic rocks include eclogites senso stricto, garnet clinopyroxenites, garnet websterites, 

websterites and coronitic metagabbros (Gilotti et al., 2008). Protoliths of the gneisses are 

Paleoproterozoic granodioritic rocks derived from 2.0–1.8 Ga calc-alkaline batholiths that 

were intruded by anorogenic granites at 1.75 Ga (Kalsbeek et al., 2008). Protoliths of the 

mafic and ultramafic rocks were inferred to be mafic xenoliths in the Paleoproterozoic 

batholiths, dykes and layered intrusions (Gilotti, 1993). Using the garnet-clinopyroxene Fe-

Mg exchange thermometer (Ellis & Green, 1979), two pyroxene thermometry (Brey & 

Köhler, 1990), garnet-orthopyroxene and Al-in-pyroxene barometry (Brey & Köhler, 1990; 

Harley & Green, 1982), peak P–T conditions for the HP mafic rocks were estimated to be 1.8 

to 2.35 GPa, 750–850 ºC (Brueckner, Gilotti, & Nutman, 1998; Elvevold & Gilotti, 2000). 

Widespread HP metamorphism occurred between 425 and 390 Ma based on Sm–Nd mineral 

isochrons and U–Pb dating of zircon (Gilotti, Nutman, & Brueckner, 2004; Hallett, 

McClelland, & Gilotti, 2014; McClelland, Gilotti, Ramarao, Stemmerik, & Dalhoff, 2016). 

The HP metamorphism is formed by overthickening crust in the upper plate due to the 

Caledonian collision between Laurentia and Baltica (Gilotti & McClelland, 2007).   

Local UHP metamorphism, indicated by coesite-bearing zircon in both gneiss and 

eclogite, has been identified in the easternmost NEGEP on a small island, informally called 

Rabbit Ears Island (Gilotti & Ravna, 2002; McClelland, Power, Gilotti, & Mazdab, 2006). 

The UHP terrane is composed of the same Paleoproterozoic quartzofeldspathic gneiss with 

enclaves of eclogite as seen in the larger NEGEP. Whole rock and trace element 

geochemistry and U–Pb ages of zircon rims demonstrate that the gneiss has the same 

Laurentian protolith as the HP terrane (Gilotti & McClelland, 2011). UHP kyanite eclogite 

consists of garnet+omphacite+ kyanite+coesite+phengite+rutile+zircon±amphibole with 
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symplectite after omphacite. Peak P–T conditions were estimated to be 3.6 GPa and 970 °C 

(Gilotti & Ravna, 2002) using empirical garnet-clinopyroxene-kyanite-phengite-coesite 

thermobarometry (Ravna & Terry, 2004). The age of the UHP metamorphism is 365–350 Ma 

based on U–Pb ion probe dating of coesite-bearing zircon domains (Gilotti et al., 2014; 

McClelland et al., 2006). The UHP terrane has been proposed to form through 

intracontinental subduction at the end of collision (Gilotti & McClelland, 2007; Gilotti & 

McClelland, 2011), and exhumed through vertical extrusion and lateral escape (Gilotti & 

McClelland, 2007; Hallett et al., 2014). 

Migmatitic gneiss with leucosome suggests that the UHP terrane was partially melted. 

Rare metapelite was partially melted via phengite breakdown on the exhumation path at HP 

conditions, indicated by phase equilibria (Lang & Gilotti, 2007, 2015). The metapelite 

displays extensive evidence of partial melting, such as leucosomes with kyanite and garnet, 

polymineralic inclusions (consisting of kyanite, rutile, K-feldspar, biotite and plagioclase), 

polycrystalline quartz in restitic garnet, equigranular quartz and euhedral garnet and kyanite 

crystals (Lang & Gilotti, 2007). The partial melting reaction is inferred to be 

clinopyroxene+phengite+quartz  garnet+kyanite+K-feldspar+melt (Lang & Gilotti, 2015). 

Phase equilibrium modelling predicts that the melt composition is granitic, with a modal 

percentage up to 13 vol%, and that the generated melt crystallized at ~ 1.2 GPa, 825 °C. On 

the mesoscale, pegmatites and granitoids cross-cutting eclogite pods are deduced to be 

generated through partial melting of eclogite or quartzofeldspathic gneiss at an early 

exhumation stage and by fluid-assisted melting at a later stage (Gilotti & McClelland, 2007; 

Gilotti et al., 2014; McClelland et al., 2009). Zircon from boudin-neck granitoid and cross-

cutting pegmatite in eclogite pods yields a range of ages for melting, which started from 347 

Ma and continued to 320 Ma (Figure 1c; Gilotti et al., 2014). 

 

 

3 | OUTCROP AND PETROGRAPHIC DESCRIPTION 

Mafic UHP rocks are distributed as lenses and blocks within quartzofeldspathic gneiss on 

Rabbit Ears Island (Figure 1b). The size of the eclogitic pods varies from metres to tens of 

metres long (Figure 1c). These pods show compositional variation among bimineralic 

eclogite, quartz eclogite, kyanite eclogite and garnet-rich layers (Figure 2). The 

compositional layers are centimetres to decimetres thick and may be isoclinally folded 

(Figure 2a). Deformed to undeformed pegmatite and granite, commonly 1–10 m thick, occur 

in outcrop (Figures 1c and 2a,b). The leucosomes are mainly composed of quartz and feldspar, 

with varying amounts of garnet, amphibole, biotite, epidote and accessory minerals (Gilotti et 

al., 2014). Pegmatites may contain coarse to very-coarse graphic intergrowths of quartz and 

feldspar (Gilotti et al., 2014).   

Representative kyanite eclogite 03-110 was selected to delineate P–T conditions and 

the melting history of the UHP terrane. The sample was collected from a 40 m wide by 140 m 

long boudin (Figure 1b,c). Pegmatite within eclogite boudins commonly crosscuts the 

compositional layers (Figure 2b). Leucosomes may contain dendritic branches parallel to 

layering that join the crosscutting dykes. Pegmatite located within the large eclogite boudin 

crosscuts mafic banding (Figure 2b) and displays modal variation of felsic and mafic 

minerals. The northernmost pegmatite in the large eclogite pod (Figure 1c) contains a 

melanocratic layer rich in biotite, with graphic intergrowths of quartz and feldspar in the 

leucocratic part. The pegmatite, where sample 03-111 (Gilotti & McClelland, 2007) was 

collected (Figure 1c), is characterized by large quartz bands with plagioclase rims showing 

cusps into the quartz, and displays quartz and K-feldspar intergrowths on the hand-specimen 

scale, which indicate that the pegmatite crystallized from melt, migrated from partially 
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melted eclogite. U–Pb ion probe dating of the core and outer mantle of zircon from the 

pegmatite yielded ages of 353 and 327 Ma, respectively (Gilotti & McClelland, 2007).   

Sample 03-110, a medium-grained kyanite eclogite, is from the same location as the 

previously studied sample 434446 (Gilotti & Ravna, 2002). Textural relationships suggest a 

peak mineral assemblage of garnet (Grt I), omphacite (Cpx I), kyanite (Ky I), coesite, rutile, 

clinozoisite and accessory zircon (Figures 3 and 4; Table 1). Garnet I porphyroblasts are 

anhedral, with grain sizes up to 4 mm in diameter. They comprise ~. 25 vol% of the sample 

and contain single-phase inclusions of omphacite, kyanite, quartz and rutile, and 

polymineralic inclusions. Matrix omphacite (Cpx I) is anhedral and replaced by diopsidic 

clinopyroxene (Cpx II) + plagioclase symplectite. Kyanite (Ky I) forms anhedral 

porphyroblasts up to 5 mm long, and typically contains quartz and omphacite inclusions. 

Relic clinozoisite–epidote (Figure 3a), anhedral in shape, is interpreted as part of the peak 

assemblage.  

Petrographic textures indicate that an assemblage of biotite, plagioclase, albite, K-

feldspar, amphibole, quartz, with a second generation of garnet (Grt II), clinopyroxene (Cpx 

II), and kyanite (Ky II), was developed during retrograde stage (Figure 3a–f). Small biotite 

and plagioclase intergrowths, interpreted as pseudomorphs after phengite, occur locally 

(Figures 3b and 4a). In the matrix, plagioclase embays omphacite (Figure 3b,c), coexists with 

amphibole in graphic texture (Figure 3d), is poikiloblastic (Figure 3f), and sends cusps into 

surrounding phases (Figure 3e,f). Plagioclase in a graphic intergrowth with amphibole shows 

simultaneous extinction (Figure 3d). Quartz, Ky I and Ky II are commonly rimmed by 

plagioclase (Figures 3c, e and 4 b–d). The second generation of garnet, showing straight 

boundaries against plagioclase, grew on partly resorbed Grt I and nucleated in the matrix 

(Figure 3e,f). Cuspate plagioclase shows low dihedral angles (20–40˚) in boundaries such as 

those of plagioclase–garnet–omphacite and plagioclase–garnet–garnet (Figure 3d–f). 

Plagioclase may form strings of beads or poikiloblasts (Figure 3f). Ky II also occurs as 

clusters in the matrix, enclosed by plagioclase. Cpx II is observed as lamellae, with 

plagioclase and amphibole, in symplectitic intergrowth replacing omphacite and displaying a 

decrease of lamellae size from core to rim.  Retrograde amphibole and plagioclase replace the 

peak clinozoisite–epidote (Figure 3a).  

The studied sample is characterized by abundant polymineralic inclusions within Grt I 

and Ky I (Figure 4), where the hosts display radial fractures. These inclusions, which should 

not be confused with crystallized melt inclusions (Cesare, Ferrero, Salviolo-Mariani, Pedron, 

& Cavallo, 2009) or multiphase solid inclusions without melt involved (Frezzotti & Ferrando, 

2015), are very large (up to 1 mm in diameter). They consist of an aggregate of minerals, 

with magmatic textures, and of metamorphic relics. Abundant polymineralic inclusions of 

quartz+ Cpx II±Ky II±plagioclase, without K-feldspar and/or other K-rich phases, are present 

within Grt I and Ky I (Figure 4b–d). In these inclusions, relicts of partly resorbed 

metamorphic quartz are located in the cores, while cuspate crystals of omphacite (Cpx II) and 

plagioclase (Figure 4b–d), with or without enclosed Ky II (Figure 4d), are present between 

quartz and host. Much more rare polymineralic inclusions of albite+K-feldspar also occur in 

Grt I (Figure 4a).   

The polymineralic inclusions are interpreted as crystallized former large pockets of 

melt (hereafter called melt pockets), which contain former melt and solid resultant (e.g. 

peritectic garnet), interacting with the eclogite. Similarly, the cuspate textures observed in 

matrix and in polymineralic inclusions are considered to represent the original interstitial 

geometry filled by melt. Other microstructures, such as graphic intergrowths present in the 

rock matrix suggest that amphibole + plagioclase was crystallized from former melt pockets.  
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4 | MINERAL CHEMISTRY 

4.1 | Analytical methods 

The chemical composition of selected minerals was determined using a Cameca SX100 

electron microprobe (EMP) equipped with five wavelength dispersive spectrometers at the 

Institut für Mineralogie und Kristallchemie at Universität Stuttgart, Germany. Natural albite, 

orthoclase, diopside and rhodonite, and synthetic hematite, periclase, BaSO4, TiO2, Cr2O3 and 

Al2O3 were used for standards. X-ray maps of garnet were obtained using 15 kV accelerating 

voltage, 70 nA beam current and 60 ms pixel time with step sizes from 5 to 20 μm depending 

on the size of garnet. Analytical conditions for point analysis were set at 15 kV and 15 nA for 

garnet and kyanite, whereas 15 kV and 10 nA were used for all other minerals except rutile. 

The counting time per element was 20 s both on the peak and the background. Rutile was 

analyzed with 15 kV accelerating voltage, 90 nA beam current and 300 s counting time on 

both peak and background of the Zr Lα radiation line. The counting time for analyzing Cr, Fe, 

Nb and Si in rutile was 100 s for both background and peak. Si was measured in order to 

monitor the possible influence from surrounding silicates. The J43_Zir, wollastonite, Cr2O3, 

Fe2O3 and Nb standards were used for analyzing rutile. A beam diameter of 1 μm was used 

for most analysis. The on-line PAP routine by Cameca was employed for correcting raw 

counts. Chemical composition was processed and structural formulae were calculated using 

Excel spreadsheet CALCMIN (Brandelik, 2009) for all analyzed minerals except amphibole. 

The amphibole analyses were processed with the Excel spreadsheet by Locock (2014) and 

classified according to the nomenclature of Hawthorne et al. (2012). Representative analyses 

of minerals in samples 03-110 are listed in Table 2.  

 

4.2 | Analytical results 

Garnet porphyroblasts in kyanite eclogite 03-110 exhibit compositionally homogeneous cores 

and slightly zoned rims (Figure 5a–d) with the spessartine (Sp) content < 0.02. The 

composition of Grt I cores is Gr36Alm28Py35, with Gr, Alm and Py referring to grossular, 

almandine and pyrope respectively (Figure 5). The grossular content of the garnet rim is 

lower (Gr27) than in the core. Almandine shows a gradual increase from Alm27 to Alm36 at the 

outermost rim. Pyrope increases slightly from Py34 to Py36 and decreases to Py35 at the 

outermost rim (Figure 5a). Omphacite (Cpx I) is zoned, with a high jadeite (Jd) core, XJd = 

0.38, and a low jadeite rim, XJd = 0.18. Normalized chemical composition of omphacite 

contains Fe
3+

 up to 0.06 p.f.u. (per formula unit), using a charge balance method for 

normalization. Kyanite (Ky I) has a composition of nearly pure aluminosilicate with a small 

amount of Fe, assumed to be Fe
3+

, up to 0.01 p.f.u. 

The retrograde Grt II is richer in pyrope and almandine and poorer in grossular 

(Py40Alm37Gr23) than Grt I (Figure 6). Compared with the core of matrix omphacite, Cpx II 

surrounding quartz in garnet is lower in jadeite (XJd up to 0.35). Cpx II in the melt domain 

(Figure 5e–h) is omphacite to diopside, with XJd varying from 0.11 to 0.29. Cpx II in 

symplectite is diopside, with a wide range of composition. Thicker lamellae commonly have 

a higher jadeite content, with XJd = 0.15–0.21, whereas in the thinner lamellae XJd ranges 

from 0.05–0.15. Ky II, smaller in size and occurring as clusters, is similar to Ky I in 

composition. Amphibole composition varies in different domains. The amphibole in the 

matrix and crystallized melt is pargasite with 0.45–0.60 p.f.u. for Na in the A-site and 6.2–6.5 

Si p.f.u. Calculated Fe
3+

 content in amphibole is up to 0.45 p.f.u.; in the graphic intergrowth 

with plagioclase, the calculated Fe
3+

 content is only 0.15 p.f.u. Amphibole in symplectite 

after omphacite is calcic, either pargasite or magnesio-hornblende, with 0.23–0.47 p.f.u Na in 

A-site, and 6.58–7.06 Si p.f.u. with up to 0.20 p.f.u. Fe
3+

. Plagioclase enclosed in garnet, in 

the matrix, in intergrowths with biotite and amphibole, and in symplectite with Cpx II 

contains a small amount of K-feldspar component, with XKfs value (=K/(Na + Ca + K)) about 
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0.02, and varies from oligoclase to andesine, with XAb value (=Na/(Na + Ca + K)) ranging 

from 0.64–0.77. Plagioclase in the crystallized melt domain (Figure 6) is oligoclase (XAb = 

0.72–0.76) with XKfs = 0.01. Plagioclase in symplectite with clinopyroxene (Cpx II) and 

amphibole has an oligoclase core (XAb = 0.70–0.74) and an andesine rim (XAb = 0.59–0.67). 

Rare K-feldspar in crystallized melt pockets in garnet and kyanite is a nearly pure phase 

(XKfs > 0.98). Biotite is characterized by a Ti content ranging from 0.10–0.13 p.f.u. and XMg 

(=Mg/(Mg+Fe)) from 0.79–0.82.   

Rutile appears as inclusions in garnet and as a matrix mineral; exsolved ilmenite is 

observed in some rutile grains. Detailed line scans of large rutile (100 µm) reveal no 

systematic zoning. Rutile in garnet contains 620–890 ppm Zr, whereas Zr in matrix rutile 

ranges from 570–760 ppm. 

 

5 | PHASE EQUILIBRIUM MODELLING 

5.1 | Modelling techniques 

An isochemical phase equilibrium diagram, which is also known as a pseudosection (Powell, 

Holland, & Worley, 1998), was constructed to estimate P–T conditions for the eclogite, 

assuming equilibrium at whole rock or domainal scale. Phase diagrams for particular bulk 

rock and domainal compositions were modelled based on the principle of Gibbs Free Energy 

minimization, using the software package PERPLE_X (version 6.7.7 from March 2017; 

Connolly, 2005) along with the internally consistent thermodynamic dataset of Holland and 

Powell (2011) for minerals and H2O (with the CORK equation).  

A phase diagram for the bulk rock was constructed within the 11-component system 

MnNCKFMASHTO (MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2). This 

system was chosen for its capacity to model geologically realistic phase diagrams (Massonne, 

2014, 2015). An amount of oxygen, equivalent to some Fe
3+

 in the rock, and a free fluid 

phase of pure H2O were considered. Prograde metamorphism may release oxygen and H2O, 

which may influence the stability of mineral assemblages. For example, breakdown of 

lawsonite and chlorite can release water and oxygen (e.g. Ferrando, Frezzotti, Petrelli, & 

Compagnoni, 2009; Groppo & Castelli, 2010), which tend to leave the system. The 

incorporation of Fe
3+

 will influence the P–T field of minerals such as clinopyroxene, 

amphibole and epidote (Diener & Powell, 2010; Petrie, Massonne, Gilotti, McClelland, & 

Van Staal, 2016; White, Powell, Holland, & Worley, 2000), thus a reasonable estimation of 

the true Fe
3+

 content in the bulk-rock is important. A small amount of K is mainly hosted by 

mica, and to a lesser extent by amphibole and feldspar; therefore, K2O is retained in the 

calculations. Titanium is mainly hosted in rutile and biotite, which are important minor 

phases in the studied rocks.   

A P–T phase diagram for a partially melted domain (Figure 6) was calculated in the 9-

component system MnNCFMASHO to understand conditions of melting and melt 

crystallization. Manganese is included in the system to monitor garnet-in boundaries. Minor 

elements, K and Ti, have been analyzed in minerals in the partially melted domain (e.g. K in 

plagioclase and amphibole, Ti in amphibole and garnet) (Table 2); however, these elements 

with low concentration in the domains were eliminated from the calculation because the 

activity-composition models utilized cannot accommodate them (e.g. Ti in garnet). An 

isochemical phase equilibrium diagram for the symplectite after omphacite was constructed 

in the 8-component NCKFMASH system to further constrain the conditions of its formation. 

Titanium, Mn and Fe
3+

 were excluded from the system because of their low abundance in 

omphacite. 
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Solid-solution models for clinopyroxene (including diopsidic clinopyroxene and 

omphacite) (Diener & Powell, 2012; Green, Holland, & Powell, 2007), amphibole (Green et 

al., 2016), garnet, white mica, biotite (White, Powell, Holland, Johnson, & Green, 2014), and 

feldspar (Fuhrman & Lindsley, 1988) are used. Garnet in the sample contains only small 

amounts of spessartine, thus this endmember was restricted to 10 mol% in the garnet solution 

model. Lawsonite, kyanite, coesite, quartz and rutile are treated as pure phases. Zoisite in the 

diagram for the symplectite after omphacite is also treated as a pure phase. Talc (Holland & 

Powell, 2011), chlorite, ilmenite (White et al., 2014), and spinel (White, Powell, & Clarke, 

2002) were considered but not observed in the models.   

 

As natural zoisite may incorporate some Fe
3+

 that may stabilize it to a higher pressure 

and temperature (Gottschalk, 2004; Mattinson, Zhang, Tsujimori, & Liou, 2004; Poli & 

Schmidt, 2004), we tried to consider this by creating a solid-solution model for Fe
3+

-bearing 

zoisite. The clinozoisite end-member (cz) was replaced by the zoisite end-member (zo) in the 

epidote solution model of Holland and Powell (2011). Therefore, the epidote model refers to 

the epidote-group minerals, including zoisite, epidote and Fe-epidote.   

 

A solution model for modelling melting of metabasite at pressures higher than 1.3 

GPa does not exist yet (Green et al., 2016; Palin, White, & Green, 2016). Phase equilibrium 

modelling was conducted using the recently published tonalitic to trondhjemitic melt solution 

model (Green et al., 2016), aimed at modelling melting of the eclogite. Extrapolation of the 

melt model to eclogite may yield uncertainties because it was originally calibrated for 

melting at < 1.3 GPa; however, the solution model has been extended to melting of 

metabasite at pressures up to 2.6 GPa (Wade, Dyck, Palin, Moore, & Smye, 2017), and has 

produced geologically realistic results. To minimize the number of pseudocompounds during 

calculation, the keyword values for initial_resolution and final_resolution in the 

perplex_option.dat file were modified from 0.067 to 0.100 and from 2.5e-4 to 5e-3, 

respectively. Iteration value 2 and refinement_points_II were decreased to 1. The 

compositional range of the amphibole and melt models in file solution_model.dat of 

PERPLE_X was limited iteratively.  

 

An effective bulk composition is critical for applying phase equilibrium modelling to 

natural mineral assemblages (Lanari & Engi, 2017 and references therein). P–X diagrams are 

used for understanding the influence of composition (X) on the topology of the phase 

diagrams. P–X(H2O) (Figure 7) and P–X(CaO) (Figure 8) diagrams are presented to illustrate 

influences of these two components and P–X(H2O) diagram also used to determine the 

amount of H2O for modelling P–T diagram. P–T diagrams (Figures 9–11) are used to 

estimate metamorphic conditions, along with detected mineral compositions and mineral 

isopleths.   

 

 

5.2 | Effective Bulk Composition 

The whole-rock bulk composition was obtained using a wavelength dispersive X-ray 

fluorescence (XRF) spectrometer at Washington State University. The sample composition 

(Table 3) was modified for the 11-component system. The CaO was reduced by the amount 

of P2O5 assuming that all P2O5 was bound to pure apatite (Massonne, 2014). P–X(O2) 

diagrams were modelled to determine the influence of oxygen on the boundaries of specific 

assemblage fields. For the O2 range corresponding to 0–20 % Fe
3+

, little influence on the 

phase boundaries was noted. A small amount of Fe
3+

 exists in omphacite and amphibole, thus 

oxygen was estimated to correspond to Fe
3+

 = 5% of the total iron. Crystallization of 
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porphyroblasts fractionates elements from the bulk rock (e.g. Marmo, Clarke, & Powell, 2002; 

Stüwe, 1997; Tinkham, Zuluaga, & Stowell, 2001; Zuluaga, Stowell, & Tinkham, 2005), 

although the high temperature experienced by the kyanite-eclogite probably induced strong 

diffusion.  

The crystallized melt pocket (Figure 6) and a symplectite after omphacite were 

selected for detailed petrological study. These micro-domains render the XRF-derived bulk 

composition inaccurate for modelling retrograde conditions. Partial melting and symplectite 

formation may occur in an open system (e.g. Martin & Duchene, 2015; Massonne, 2012; 

Palin, St-Onge, Waters, Searle, & Dyck, 2014; Weinberg & Hasalova, 2015) or a closed 

system (Bigge, Martin, & Harlow, 2016); therefore, care needs to be taken when applying 

isochemical phase equilibrium diagrams to a fixed bulk composition of a microdomain. 

Nonetheless, such an approach has been used to generate meaningful P–T conditions for a 

symplectite after omphacite in a partially open system (Tedeschi et al., 2017), and is 

employed to model two microdomains in this study. A crystallized melt pocket was selected 

for examining the melting and recrystallization conditions (Figure 10A). The effective bulk 

composition was obtained by incorporating the proportion and composition of minerals that 

appear to be equilibrated with each other. Equilibrium proportions of the amphibole, 

clinopyroxene, plagioclase and garnet are estimated to be 14.8, 25.5, 39.2 and 20.3 vol%, 

respectively. Phase densities chosen from minerals with similar composition are 3.21 g/cm
3
 

for amphibole (Oberti, Ungaretti, Cannillo, Hawthorne, & Memmi, 1995), 3.29 g/cm
3
 for 

clinopyroxene (Mottana, Rossi, Kracher, & Kurat, 1979), 2.64 g/cm
3
 for plagioclase 

(Phillipsi, Colville, & Ribbe, 1971) and 3.7 g/cm
3
 for garnet (Nestola et al., 2012). Local bulk 

composition of the examined symplectite after omphacite was obtained using EMP analyses 

on thin mineral lamellae with an enlarged beam size (20 μm). A total of 15 spots were 

analyzed and averaged to provide an effective bulk composition (Table 3). Water content for 

both the melt pocket and the symplectite was estimated from hydrous minerals in these 

domains.   

 

5.3 | Petrological Modelling Results   

5.3.1 | P–X(H2O) diagram 

Water plays a crucial role in metamorphism, inducing partial melting and developing 

retrograde textures (e.g. Guiraud, Powell, & Rebay, 2001; Martin & Duchene, 2015; 

Spruzeniece, Piazolo, Daczko, Kilburn, & Putnis, 2016; Weinberg & Hasalova, 2015); 

therefore, the amount of water is critical to determining the position of solidus curves and 

mineral phase relations (e.g. Lang & Gilotti, 2015). A P–X(H2O) diagram was calculated at 

900 °C for the studied sample, with H2O content varying from 0–1 wt% (Figure 7), 

normalized to a total of 100% for both ends of the horizontal axis. Phase relations of melt 

with respect to trace amounts of water and phengite do not show a large change at > 2.8 GPa. 

The H2O saturation curve (H2O-in curve) is located from 2.7 GPa at 1.00 wt% H2O to 2.8 

GPa at 0.05 wt% H2O (Figure 7a). A lower water content results in coexistence of phengite 

and sanidine, which has not been observed. The phengite-out curve is located at 2.2 GPa with 

H2O content ranging from 0 to ~ 0.15 wt%; this curve extends up to 2.8 GPa increasing H2O 

to 0.30 wt%, and remains constant at 2.8 GPa with increasing H2O to 1.0 wt%. The 

amphibole-in-curve is predicted at 1.8 GPa. With increasing water content, melt modes 

increase from 0 without water, to up to 15 vol% at 1 wt% H2O and amphibole modes increase 

to 32 vol% in melt-absent fields (Figure 7b). Since a small amount of crystallized melt (< 5 

vol%) is observed in the studied sample, an arbitrary value of 0.3 wt% of water is selected for 

further modelling. With this amount of water at 900 °C, melt is predicted to be present at 

pressures from 1.6 to 2.8 GPa. 
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5.3.2 | P–X(CaO) diagram  

A P–X(CaO) diagram, modelled at 900 °C, was used to evaluate the effect of the bulk CaO 

content on the phase boundaries. With CaO varying from 10–15 wt% and totals of both ends 

of the horizontal axis normalized to 100%, the constructed P–X(CaO) diagram for sample 03-

110 (Figure 8) shows that Ca strongly affects the phase boundaries and mineral compositions. 

The upper limit of epidote-group minerals is strongly influenced by the CaO content (Figure 

8a), where higher CaO extends the upper limit toward a higher pressure.. At 900 °C, an 

epidote-group mineral is present at UHP conditions with 12.5 wt% CaO and the upper limit 

can reach 3.8 GPa at 15 wt% CaO. The XRF-derived bulk CaO content of the sample is 11.3 

wt%, which agrees with the absence of epidote-group mineral at 900 °C. Grossular-in-garnet 

(XGr) increases with increasing X(CaO) in the epidote- and feldspar-absent fields; in the 

feldspar-present fields, it is mostly pressure dependent (Figure 8b). The upper limit of the 

melt-in curve is rather constant at 2.8 GPa, whereas the lower limit decreases from 1.65 to 1.3 

GPa and then increases to 1.5 GPa with increasing CaO.   

 

5.3.3 | P–T phase diagrams  

The P–T diagrams for sample 03-110 (Fig. 9a) were constructed with an adjusted bulk rock 

composition (see Table 3). Mineral compositions are given by isopleths, including XGr-, XPy- 

and XAlm-in-garnet, XJd-in-clinopyroxene, and modal epidote-group mineral, melt and garnet 

(Figure 9b,c). Garnet, clinopyroxene and rutile are everywhere present (Figure 9a). With the 

low water content, a small amount of free fluid is present at > 2.1 GPa. The melt-in curve at > 

2.1 GPa has a positive dP/dT slope. The position of the solidus curve is closely associated 

with the location of the hydrous phases (e.g. epidote-group minerals and phengite). Epidote-

group minerals are present at UHP from 660 to 670 °C, and the upper limit decreases to lower 

pressure with increasing temperature. The upper temperature limit of the epidote-group 

mineral is ~ 890 °C at 1.9 GPa. Amphibole is present at lower pressure and lower 

temperature with the amphibole-out curve having a negative slope; the upper-pressure limit 

of amphibole reaches ~ 2.4 GPa at 650 °C and decreases to 1.1 GPa at 1000 °C.   

The deduced peak mineral assemblage – phengite, garnet, omphacite, kyanite, coesite, 

epidote-group mineral and rutile – is located in the P–T region at 2.9 GPa, 660–670 ˚C. This 

field shows a garnet composition of XGr = 0.33, XAlm = 0.32, XPy = 0.34 and an omphacite 

composition of XJd = 0.14. The analyzed garnet does not match the modelled composition in 

the epidote-present field. The garnet core (XGr = 0.36, XAlm = 0.28, XPy = 0.35) plots at 3.4 

GPa, 940 ˚C with the coexisting mineral assemblage of phengite, garnet, omphacite, kyanite, 

coesite, rutile and a small amount of water in the phase diagram. Omphacite at this P–T 

condition has XJd = 0.37, which is close to the highest XJd value of analyzed omphacite (XJd = 

0.38). The mineral assemblage, without epidote, occupies the largest P–T area on the 

modelled phase diagrams at UHP. The garnet mode at 3.4 GPa and 940 ˚C is about 32 vol%, 

which is higher than the observed mode of 22%. Garnet is anhedral due to retrograde 

resorption, indicating that the volume percentage at peak conditions was higher than the 

observed mode. The peak P–T condition given by garnet isopleths, rather than the epidote-

bearing mineral assemblage, is taken as the best estimate.   

Phase equilibrium modelling of a crystallized melt pocket (Figure 6) was conducted to 

understand the melting and crystallization conditions (Figure 10; Table 3). Garnet and 

clinopyroxene are ubiquitous within the modelled P–T range. The modelled phase diagram 

displays a solidus curve with a positive dP/dT-slope at > 2.0 GPa, and a negative slope below 

this pressure (Figure 10a). With a higher amount of water, the solidus migrates toward lower 

temperature conditions. The observed mineral assemblage of amphibole, feldspar, garnet and 

clinopyroxene occupies a large area at 1.0–1.4 GPa across the calculated temperature range. 

Compositional isopleths for garnet, clinopyroxene and plagioclase are plotted (Figure 10b,c); 
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the rim of Grt II (XAlm = 0.38, XPy = 0.38, XGr = 0.23) yielded suprasolidus conditions of 1.4 

GPa, 900 ˚C. These estimates are right above the modelled solidus curve and close to the 

solidus of experimental (Q. Liu et al., 2009; Skjerlie & Patiño Douce, 2002) and theoretical 

(Vielzeuf & Schmidt, 2001) studies. The core of omphacite (Cpx II; XJd = 0.29) suggests a 

pressure of 1.9 GPa, while the clinopyroxene rim with lower XJd indicates equilibration at a 

lower pressure. The composition of plagioclase (XAb = 0.72) and clinopyroxene (XJd = 0.15) 

intersect at about 1.3 GPa, 720 ˚C, which is interpreted as the equilibrium P–T of the 

crystallized assemblage.   

The phase diagram in Figure 11 shows a P–T range for the formation of the 

symplectite after omphacite. Due to using the NCKFMASH system, phengite occurs at higher 

pressure with the phengite-out curve displaying a positive dP/dT slope from 1.1 GPa, 650 ˚C 

to 2.0 GPa, 900 ˚C. The assemblage of amphibole+clinopyroxene+feldspar with a trivial 

amount of free fluid covers a large area at 1.0–1.7 GPa, 680–1000 ˚C. In this field, XJd in 

clinopyroxene varies from 11 to 16 mol%, which agrees with the measured clinopyroxene 

composition (Figure 11b). Only a minor amount of K is considered for the modelling, thus 

feldspar is essentially plagioclase. The feldspar in the P–T field of 

clinopyroxene+amphibole+plagioclase contains 61 to 66 mol% albite, in agreement with the 

analyzed plagioclase (Figure 11b). The symplectite probably evolved over the large P–T field 

on the exhumation path, and is thus not used to determine an exact equilibration condition. 

 

6 | EMPIRICAL AND TRACE ELEMENT THERMOBAROMETRY  

6.1 | Amphibole–plagioclase thermometry 

Amphibole–plagioclase thermometry (Holland & Blundy, 1994) was used to evaluate the P–

T conditions for crystallization of the melt domain (Figure 5e–h). Since quartz is absent in 

this crystallized melt pocket, only the edenite–richterite thermometer based on the reaction of 

edenite + albite = richterite+anorthite could be used. The thermometer gives an uncertainty of 

± 40 °C. A temperature of 717 °C was obtained using the representative composition of 

amphibole and plagioclase from the crystallized melt pocket (Table 2) at an estimated 1.3 

GPa, which was derived from isopleths of clinopyroxene, amphibole and plagioclase in the 

modelled phase diagram. Using the same thermometry, the composition of amphibole and 

plagioclase (Table 2) in the symplectite yielded an equilibrium temperature of 732 °C at 1.3 

GPa.  

 

6.2 | Zr-in-rutile thermometry 

Rutile incorporates Zr in its crystal structure and is saturated with this element when in 

equilibrium with SiO2 and zircon. The amount of Zr in rutile is mainly temperature dependent, 

and has been utilized as a single-mineral thermometer (Zack, Moraes, & Kronz, 2004). Since 

the studied sample contains quartz and zircon, this thermometer can be applied. Experiments 

have demonstrated that pressure influences the Zr-in-rutile thermometer (Tomkins, Powell, & 

Ellis, 2007; Watson, Wark, & Thomas, 2006). For this reason, the calibration after Tomkins 

et al. (2007) was used, which contains an uncertainty of ± 30 °C (2 σ). Rutile enclosed in 

garnet yields 781–817 °C at 3.4 GPa, and 726–758 °C at 1.8 GPa. Matrix rutile gave 773–

801 °C at 3.4 GPa At 1.8 GPa, the temperature range for the matrix rutile (718–744 °C) is 

lower. 

 

7 | DISCUSSION 

The P–T path for the kyanite eclogite (Figure 12) displays a slightly different position and 

shape than the one deduced by Lang and Gilotti (2015) for metapelites from the UHP terrane. 

This might be caused by uncertainties in mineral analyses and the applied thermodynamic 

database and solution models (e.g. Palin, Weller, Waters, & Dyck, 2016). Our path has an 
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inferred prograde path and an exhumation path containing a decompression segment with 

slight cooling followed by a strong cooling segment (Figure 12). 

 

7.1 | Prograde and peak pressure stages 

Delineating the prograde P–T evolution of the UHP kyanite eclogite is challenging due to a 

HP history of over 50 million years of crustal thickening caused by the Caledonian collision 

before a late stage of UHP via intracontinental subduction (Gilotti & McClelland, 2007). 

Figure 12 shows a dotted line originating at approximately 1.8 GPa and 800 °C that 

represents the path from the HP metamorphism at 425–390 Ma to our peak UHP estimate at 

365–350 Ma. Temperature estimates of ~750 °C for matrix rutile and ~760 °C for rutile 

inclusions at 1.8 GPa in garnet corroborate the prograde path. A tectonic setting at the base of 

an overthickened crustal welt is consistent with this prograde path and the high peak UHP 

temperature estimate. Subsequent diffusion also modified the peak-T estimate. Fast diffusion 

at high temperature, coupled with a long resident time at UHP, has erased any prograde 

garnet zoning. At a high temperature (~ 900 ˚C) and a long residence time (10 Ma), diffusion 

will fully homogenize centimetre-sized garnet (Caddick, Konopásek, & Thompson, 2010). 

Grt I, which is smaller than 1 cm and displays a homogeneous core (Figures 5 and 6), has 

been homogenized due to a residence time of at least 15 Ma at UHP (Gilotti et al., 2014; 

McClelland et al., 2006). The presence of single phase inclusions such as omphacite and 

kyanite in garnet cores indicates entrapment during the eclogitization and subsequent 

prograde to peak metamorphic stage. Zr-in-rutile thermometry for matrix grains and 

inclusions in garnet yielded ~800–820 ˚C at 3.4 GPa, indicating that they were already 

formed on the prograde path.  

Peak pressure was attained under subsolidus conditions within the coesite stability 

field (Figures 9b and 12). The estimated P–T (3.4 GPa, 940 ˚C) from isopleths of garnet (Grt 

I) is taken as the calculated peak condition. This P–T condition is lower than the previous 

estimate of 3.6 GPa, 972 ˚C (Gilotti & Ravna, 2002) calculated using garnet-clinopyroxene-

kyanite-phengite-coesite empirical thermobarometry (Ravna & Terry, 2004). The deviation is 

attributed to the uncertainties in both methods. The garnet-clinopyroxene-phengite 

thermobarometry has an error range of ± 0.32 GPa and ± 65 °C in the coesite field (Ravna & 

Terry, 2004). Massonne (2013) suggested errors of 10% for pressure, and 5% for temperature 

from phase equilibrium modelling, which would lead to an error of ± 0.3 GPa and ± 45 °C. 

 

7.2 | Retrograde development of the UHP kyanite eclogite 

7.2.1 | Initial Exhumation 

The P–T path for initial exhumation of the UHP eclogite is difficult to determine. An 

exhumation path with strong cooling forms hydrous minerals (e.g. epidote-group mineral at 

2.3 GPa, 750 °C and amphibole at 2.1 GPa, 750 °C), as predicted by the modelled diagram 

with a relatively limited water content (Figure 9a). Due to the dry nature of eclogite at UHP 

(e.g. Zheng et al., 2011), formation of hydrous minerals typically requires external fluid 

(Massonne, 2012; Palin et al., 2014). However, such flux of fluid into the system at > 800 °C 

would lead to fluxed melting of the eclogite (Weinberg & Hasalova, 2015). The garnet 

compositional contours from core to rim point to an exhumation path with strong cooling, 

along which the garnet mode decreases; this contradicts the observed increase of garnet 

modes, and thus renders the modelled phase diagram unsuitable for deciphering retrograde 

conditions. As discussed below, a P–T path with slight cooling is more likely for exhumation. 
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7.2.2 | Evidence for partial melting of the eclogite 

Crystallized melt pockets are common in the studied UHP eclogite, both in the matrix and as 

inclusions in garnet (Figures 3b,c,e,f and 4b–d). The cuspate boundaries are interpreted as 

melt-solid boundaries, where the cuspate grain (e.g. plagioclase) was crystallized from melt 

and surrounding minerals (e.g. garnet) were solid (e.g. Brown, 2001; Harte, Hunter, & Kinny, 

1993; Holness & Sawyer, 2008; Rosenberg & Riller, 2000). Dihedral angles at plagioclase–

solid–solid boundaries in the studied samples fall in the range of measured melt–solid–solid 

dihedral angles for plagioclase (e.g. Holness, 2006; Jurewicz & Watson, 1984; Laporte, 

Rapaille, & Provost, 1997; Longhi & Jurewicz, 1995), corroborating the interpretation of 

such textures as due to former melt.  

Graphic intergrowths are present in kyanite eclogite 03-110 and pegmatite 03-111 

(Figure 1c). Such textures have been documented in numerous rock types with different 

mineral assemblages; for example, pyroxene and plagioclase in basalt (Beaty, Hill, Albee, & 

Baldridge, 1979) and dolerite (Vernon, 2004), plagioclase and K-feldspar in gneiss (Braun, 

Raith, & Kumar, 1996), diopside and feldspar, and albite and K-feldspar in leucocratic veins 

(Bakker & Elburg, 2006), and albite, amphibole and clinopyroxene in pegmatite (Nijland & 

Touret, 2001). The formation of graphic textures has been attributed to hydrothermal 

replacement (e.g. Bakker & Elburg, 2006; Nijland & Touret, 2001) or melt crystallization 

(e.g. Fenn, 1986; Lentz & Fowler, 1992; London & Morgan, 2012). Hydrothermal 

replacement is unlikely to be the mechanism for the graphic intergrowth of amphibole and 

plagioclase, because the existence of water would have triggered extensive melting of the 

eclogite at high temperature, which is not the case for the studied eclogite. The graphic 

intergrowth of amphibole and plagioclase is interpreted to have formed by crystallization of a 

pre-existing hydrous melt. Large pargasite (Figure 3d) crystallized from the melt pocket first 

enriching the remaining melt in silica. With further cooling, pargasitic amphibole, plagioclase 

and quartz crystallized. The graphic texture formed because undercooling may have inhibited 

nucleation of new minerals, favoring epitaxial growth along crystalline structures of already 

formed grains of amphibole and plagioclase (e.g. Fenn, 1986; London & Morgan, 2012; 

Smith, 2012).   

Polymineralic inclusions within garnet and kyanite show cusps and embayments 

indicating that the UHP eclogite was partially melted (Figure 4). The inclusions contain relict 

metamorphic phases and minerals crystallized from melt, suggesting that former melt pockets 

interacted with surrounding minerals or rocks (e.g. Ferrero et al., 2012). Large polymineralic 

inclusions were also documented in eclogite and calc-silicate gneiss from the Dabie UHP 

terrane (Y. X. Chen et al., 2014; Gao et al., 2014; P. L. Liu et al., 2014), which are ascribed 

to crystallization of partial melt derived from hydrous minerals (e.g. phengite and epidote-

group minerals).   

On the mesoscale, a pegmatite vein with intermediate composition was formed within 

the eclogite boudin (Figures 1c and 2b). Since the pegmatite is located in the eclogite pod and 

cross-cuts the foliation, partial melting of the eclogite pod best explains its origin. This 

further supports that the studied eclogite pod was partially melted.   

 

 

7.2.3 | Melting reactions 

The documented textures demonstrate that the UHP eclogite was partially melted. Rare K-

feldspar-bearing inclusions of melt in garnet (Figure 4a) and biotite+plagioclase cusps into 

omphacite in the matrix (Figure 3a) indicate that phengite has contributed to initial melting. 

The polymineralic inclusions of albite+K-feldspar (Figure 4a) were formed through 

crystallization of granitic (senso lato) melt formed from the melting reaction, whereas biotite 

and plagioclase crystallized from the melt in the matrix. The incongruent melting reaction of 
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phengite+ omphacite+quartz  amphibole±garnet+melt (Q. Liu et al., 2013) best explains 

the melt composition and textures. However, the rare occurrence of these polymineralic 

inclusions indicates that phengite-driven melting is not significant in the studied eclogites.   

In contrast, the more abundant inclusions of 

clinopyroxene+quartz±kyanite±plagioclase (Figure 4b–d) in garnet and crystallized melt 

pockets in matrix (Figure 3) are interpreted as products from an intermediate melt. Grt II is 

more Mg- and Fe-rich, and lower in Ca than Grt I (Figure 6; Table 2). The plagioclase, as 

oligoclase, contains a non-negligible amount of Ca. Pargasitic amphibole in the crystallized 

melt pocket contains 0.46–0.59 p.f.u. Na in A-site and 1.79–1.86 p.f.u. Ca in M4 site. 

Although mineral compositions could have been re-equilibrated during the retrograde stage, 

their Ca-rich nature suggests a Ca-rich phase as the source. Amphibole melting is unlikely as 

no amphibole was present at > 2.5 GPa, indicated by phase equilibria (Figures 9 and 10) and 

observed petrographically. Amphibole melting also requires heating to cross the steep dP/dT 

slope of amphibole-out boundaries on calculated or experimental phase diagrams (e.g. Rapp 

& Watson, 1995), which is not the case for exhumation of the UHP kyanite eclogite. 

Incongruent melting of an epidote-group mineral best explains the composition and mineral 

assemblage in melt pockets. A reaction of epidote-group mineral+ omphacite+quartz  

melt+kyanite+diopsidic clinopyroxene±garnet is seen in experimental melting of natural 

zoisite eclogite at HP conditions (Skjerlie & Patiño Douce, 2002). Quartz, jadeite component 

in omphacite and an epidote-group mineral partially melted in the experiments using the 

Verpenesset eclogite (Norway), forming a hydrous melt, Ky II, Cpx II and peritectic garnet 

(Grt II) (Skjerlie & Patiño Douce, 2002). Rare coarse-grained relicts of clinozoisite partially 

replaced by amphibole and plagioclase, which shows cusps into adjacent phases in our 

sample, suggests melting of an epidote-group mineral.  

Mineral assemblages in the leucosomes and phase equilibria (Figure 9) reveal that the 

generated melt is intermediate in composition. The pegmatite vein in the eclogite pod, 

interpreted as crystallized melt, contains high proportions of quartz and plagioclase, and a 

relatively small amount of biotite and amphibole, which suggests melting of epidote-group 

minerals with minor involvement of phengite. The phase diagram predicts that the first 

droplet of melt is granitic close to solidus at > ~2.0 GPa, and that the melt becomes more 

trondhjemitic with decreasing pressure and increasing temperature.   

 

7.2.4 | Partial melting conditions  

Partial melting of the eclogite occurred on the exhumation path. Due to the limited 

application of melt solution models at HP and UHP (Green et al., 2016; Holland & Powell, 

2001), the phase diagram (Figure 9) for the bulk rock is not exclusively utilized to determine 

the P–T conditions of melting, but experimentally determined phase relations are considered 

as well. The phase relations from Skjerlie and Patiño Douce (2002) are particularly relevant 

to our example, because the zoisite-bearing Verpenesset eclogite has a similar bulk 

composition. Phase relations from experiments on eclogite and theoretical calculation on 

mafic rocks with respect to wet solidus of basalt are shown in Figure 12 (Kessel, Ulmer, 

Pettke, Schmidt, & Thompson, 2005; Q. Liu et al., 2009; Vielzeuf & Schmidt, 2001).  

At the estimated peak P–T, melt was not present in any experiments on mafic 

composition (Figure 12). Instead, the solidus curve of incongruent melting is initially crossed 

at HP conditions on the retrograde path with slight cooling (Figure 12). The first melting 

curve crossed during exhumation of the studied eclogite is the phengite breakdown curve (Q. 

Liu et al., 2009; Skjerlie & Patiño Douce, 2002). Phengite melting may occur with matrix 

minerals of omphacite and quartz as reactants, and forms kyanite, plagioclase and melt with 

or without garnet (Fig. 12; Q. Liu et al., 2009; Q. Liu & Wu, 2013).  
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Another melting reaction encountered during exhumation is the zoisite breakdown 

melting (Fig. 12; Skjerlie & Patiño Douce, 2002). During further exhumation of the studied 

rock to ~2.2 GPa, 920 °C, an epidote-group mineral, omphacite and quartz reacted to form 

melt, kyanite, garnet and diopsidic clinopyroxene (Skjerlie & Patiño Douce, 2002). Peritectic 

garnet grew during the partial melting, with the last garnet rim formed under suprasolidus P–

T conditions at 1.4 GPa, 900˚C (Figure 12; Table 2). The melt pockets may have connected 

as indicated by the plagioclase poikiloblasts, leading to possible melt loss to form leucocratic 

veins at the mesoscale. Residual melt pockets crystallized with further decompression and 

cooling, forming the cuspate boundaries, graphic intergrowth and inclusions of melt within 

host minerals.   

The mineral assemblage of clinopyroxene, amphibole and plagioclase crystallized 

from generated melt during cooling and exhumation. An exact crystallization condition is 

unattainable from the modelled phase diagrams, but the empirical amphibole-plagioclase 

thermometry (Holland & Blundy, 1994) indicates that the assemblage of 

amphibole+plagioclase+ clinopyroxene equilibrated at 1.3 GPa, 717 ˚C during further 

cooling. A similar temperature of 725 ˚C is obtained for zircon, interpreted as crystallized 

from melt, in a granitoid within quartzofeldspathic gneisses from the same outcrop (Gilotti et 

al., 2014). The cooling rate from peak temperature conditions was probably low, because of 

the lack of supercooled melt (i.e. glass) in the samples, and the long duration of exhumation 

recorded by zircon in leucocratic melts (Gilotti et al., 2014). These authors calculated a 

cooling rate of 11 ˚C/Ma from ~950 ˚C at UHP to 725 ˚C at HP over a ~20 Ma span.  

Partial melting may have occurred within garnet or kyanite (Perchuk, Burchard, 

Maresch, & Schertl, 2008; Perchuk et al., 2009), if clinopyroxene, zoisite and quartz 

coexisted; but melting in the matrix is more likely due to coexistence of the reacting minerals. 

Newly formed garnet II grew on preexisting garnet and thus enclosed the melt along with 

other minerals. Crystallization of the melt took place above the jadeite-albite transformation, 

leading to the formation of omphacite to diopsidic clinopyroxene (XJd up to 0.34) and cracks 

in host minerals due to volume increase (Figure 4). Newly formed garnet or kyanite may not 

fully enclose the melt pocket. In such cases, crystallization of melt in the matrix is under 

lithostatic pressure (Figure 10), below the jadeite–albite reaction curve, leading to the 

crystallization of plagioclase rather than clinopyroxene in the melt domain (Figure 4d).   

 

7.2.5 | Symplectite formation 

An isochemical phase equilibrium diagram for a symplectite after omphacite yielded a P–T 

estimate of 1.0–1.7 GPa, 680–1000 ˚C, which is located in the field with an assemblage of 

clinopyroxene (Cpx II)+amphibole+feldspar and a small amount of free fluid (Figures 11 and 

12). The temperature estimate by amphibole-plagioclase thermometry, 730 ˚C at 1.3 GPa 

falls within the P–T range. This P–T range is similar to the estimate for the crystallized melt 

pocket; however, the development of symplectite is a dynamic process. Joanny, 

Vanroermund, and Lardeaux (1991) demonstrated that symplectite with thinner lamellae 

towards the unreacted mineral develop at progressively lower temperature. Martin (2018) 

showed that amphibole in the symplectite postdates the symplectite of clinopyroxene and 

plagioclase. The symplectitization process, forming Cpx II+amphibole+feldspar after 

omphacite, requires water or a reactive fluid (Spruzeniece et al., 2016). Such fluid could be 

derived internally, such as from hydroxyl in omphacite and residual water in grain boundaries 

(Martin & Duchene, 2015), or externally by diffusion or migration into the system from 

surrounding domains (e.g. melt pockets) (e.g. Martin, 2018; Massonne, 2012; Palin et al., 

2014). Internal fluid, which is limited at UHP, cannot be the single source for sysmplectite 

with a high amount of amphibole, but can provide fluid for symplectite with little amphibole 

or without the hydrous mineral.  
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7.3 | Implications for phase equilibrium modelling 

The phase diagrams (Figures 9a, 10a and 12) for the bulk rock and the melt pocket do not 

show a stable epidote-group mineral at UHP, but the calcic composition of the crystallized 

melt pockets and the lack of K-bearing phases argue for the former existence of an epidote-

group mineral. Epidote melting would not occur on the path of exhumation with slight 

heating; the diagram predicts that modal epidote increases with cooling. Various factors can 

influence phase relations and accuracy of phase equilibrium modelling, for example, 

estimates of equilibrium composition (e.g. Lanari & Engi, 2017; Stüwe, 1997), solid solution 

models and mineral composition analysis (e.g. Palin, Weller, et al., 2016). Melt loss can also 

lead to inaccurate bulk rock composition for phase equilibrium modelling of the hand 

specimen. The P–X(CaO) phase diagram shows that a slightly higher amount of CaO (12.5 

wt%) in the bulk composition stabilizes an epidote-group mineral at UHP. Melt loss causes 

the decrease of the component in the residual sample, which renders phase diagram modelled 

with such composition incorrect. All these factors contribute to uncertainties in quantitatively 

determining exact P–T conditions for the metamorphic stages.    

Our phase diagram modelled with the bulk composition of the Verpenesset eclogite 

(Appendix S1 and Figure S1) shows a large discrepancy with experimental results; i.e., 

zoisite can exist up to 1400 ˚C at UHP in experiments on natural zoisite eclogites (Skjerlie & 

Patiño Douce, 2002), but the upper temperature limit of zoisite in modelled diagram is about 

200 ˚C lower. The contradicting phase relations between models and experiments imply that 

large uncertainties still exist, particularly in the solid-solution models for the epidote-group 

mineral and melt. The model for epidote-group mineral needs to be improved, for example, 

by thermodynamic data on the incorporation of Fe
3+

 into pure endmembers of zoisite and 

clinozoisite (e.g. Enami, Liou, & Mattinson, 2004), on the basis of thermochemical 

measurements by experiments. The melt solution model needs to be further developed by 

extending applicability to higher P and producing more reliable results at UHP. 

 

8 | SUMMARY AND CONCLUSION  

The UHP kyanite eclogite from Rabbit Ears Island in North-East Greenland was partially 

melted at HP during exhumation. A peak mineral assemblage of garnet, omphacite, kyanite, 

coesite, rutile, clinozoisite, and former presence of phengite are documented in the kyanite 

eclogite. Numerous partial melting textures, such as cuspate grain boundaries, graphic 

intergrowths, neoblasts and polymineralic inclusions, reveal that the kyanite eclogite was 

partially melted. Abundant Ca-rich polymineralic assemblages of clinopyroxene, amphibole, 

plagioclase, peritectic garnet, with or without kyanite indicate that an epidote group mineral 

was the main melted phase. Phase equilibria demonstrate that the kyanite eclogite reached 

peak conditions of 3.4 GPa at 940 ˚C, which is located at subsolidus in both the modelled 

isochemical phase equilibrium diagrams and experiments for metabasites. Experimental 

phase relations revealed that a major melting event occurred at 2.2 GPa, 920 ˚C. Phase 

equilibria of a melt pocket shows that the partial melting continued to 1.4 GPa, 900 ˚C. The 

assemblage of amphibole, clinopyroxene and plagioclase in the symplectite after omphacite 

and the melt pocket equilibrated at 1.3 GPa, 717–732 ˚C. The problem of the modelled phase 

diagrams not agreeing with experimental phase relations is mainly attributed to uncertainties 

of the epidote and melt solution models. 
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SUPPLEMENTARY INFORMATION 

 

Appendix S1. 

Isochemical phase equilibrium diagram for zoisite eclogite in Skjerlie and Patiño Douce 

(2002). 

Table S1. Whole rock bulk composition of zoisite eclogite in experiments by Skjerlie and 

Patiño Douce (2002) and adjusted for phase equilibrium modelling. 

Figure S1. P–T phase diagram (A) of zoisite eclogite in experiments by Skjerlie and Patiño 

Douce (2002). 

 

FIGURE AND TABLE CAPTIONS 

Figure 1. a) Location of the ultrahigh-pressure (UHP) terrane on Rabbit Ears Island (REI) in 

the larger North-East Greenland eclogite province (NEGEP). b) Geological map of REI, 

modified after McClelland et al. (2006). c) Detailed geological map of the outcrop where 03-

110 was collected, showing the field relations of eclogite boudins with respect to host 

gneisses and pegmatite. Location of pegmatite 03-111 studied by Gilotti et al. (2014) (G 14) 

and Gilotti and McClelland (2007) (GM 07) is also shown.   
Figure 2. a) UHP kyanite eclogite with intrafolial folds of compositional layering; location of 

the kyanite eclogite 03-110. Hammer shaft is 50 cm. b) Image of small, interconnected felsic 

veins in foliated eclogite, with a field notebook for scale.  

Figure 3. Photomicrographs showing retrograde textures in kyanite eclogite 03-110. A, E and 

F are under plane-polarized light (PPL); B–D are under cross-polarized light (XPL). A: Rare 

clinozoisite (Cz) is surrounded by amphibole (Amp) and plagioclase (Pl). B: Plagioclase is 

intergrown with biotite (Bt) and embays omphacite (Cpx I), as marked by arrows. C: 

Plagioclase surrounds kyanite (Ky I) and shows embayments into omphacite (pointed by the 

arrow). D: Graphic intergrowth of euhedral amphibole and poikiloblastic plagioclase; note 

the crystallographic orientation of amphibole is the same. E: Second generation, smaller 

garnet (Grt II at filled arrows) at the rim of the first generation garnet (Grt I). F: Garnet II 

with straight boundaries (filled arrows) against plagioclase. Note the plagioclase poikiloblast 
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in the upper part of the image, and string of bead of plagioclase in the box. The unfilled 

arrows in E-F point to a highly cuspate plagioclase.   

Figure 4. Photomicrographs showing polymineralic inclusions in large garnet (Grt I) in the 

studied kyanite eclogites. A: Backscattered electron (BSE) image of a polymineralic 

inclusion of albite (Ab) and K-feldspar (Kfs). B: Polymineralic inclusion of quartz rimmed by 

clinopyroxene (Cpx II) + plagioclase (Pl). Plagioclase displays cuspate shapes at quartz (Qz)–

Cpx II and Cpx II–Grt I boundaries, XPL. C: BSE image of polymineralic inclusion of quartz 

surrounded by clinopyroxene (Cpx II) and plagioclase. D. Polymineralic inclusion (connected 

to matrix) consisting of quartz, clinopyroxene (Cpx II), kyanite (Ky II) and plagioclase with 

magmatic texture (interstitial plagioclase and Cpx II). The filled arrow points to a euhedral 

crystal face of garnet against plagioclase. The unfilled arrows point to plagioclase cusps with 

low dihedral angles in garnet, XPL.  

Figure 5. Major element X-ray maps of garnet I (A–D) and a compositional zoning profile in 

sample 03-110. Unit for the colour scale is marked as counts per time unit during EMP 

mapping. The black line on A marks the profile shown in E. E: Zoning profiles plotted with 

the left axis for almandine, pyrope and grossular and the right axis for spessartine.  
Figure 6. Major element X-ray maps of Grt II, with colour scale as counts per time unit. Grt 

II is smaller than garnet I, and displays a composition similar to the rim of Grt I. The 

clinopyroxene grain (Cpx II) contains a higher Ca and Mg content at rim than the centre. 

Note the prominent cusps formed among plagioclase–garnet–garnet or plagioclase–garnet–

clinopyroxene, marked by the arrows.  

Figure 7. P–X(H2O) phase diagram for kyanite eclogite 03-110 modelled at 900 ˚C. The bulk 

composition used in the modeling varies from Na2O 2.881, MgO 7.449, Al2O3 20.335, SiO2 

52.021, K2O 0.119, CaO 11.136, TiO2 0.293, MnO 0.098, FeO 5.635, O2 0.031, H2O 0.000 to 

Na2O 2.852, MgO 7.376, Al2O3 20.132, SiO2 51.501, K2O 0.119, CaO 11.025, TiO2 0.290, 

MnO 0.097, FeO 5.635, O2 0.031, H2O 1.000, all in weight percentages. A: P-X(H2O) 

diagram with water content varying from 0 (X(H2O) = 0) to 1 wt% (X(H2O) = 1). Phengite is 

the only hydrous mineral present in the peak assemblage at 900 ºC; epidote-group minerals 

are absent in the diagram. B. Modal amounts of melt and amphibole on the diagram. Modal 

melt increases with increasing water content; modal amphibole remains constant in 

amphibole-present fields, and increases with increasing water content in melt-absent fields.  

Figure 8. P–X(CaO) diagram for kyanite eclogite 03-110 modelled at 900 ˚C. The bulk 

composition in wt% varies from Na2O 2.908, MgO 7.519, Al2O3 20.527, SiO2 52.511, K2O 

0.120, CaO 10.000, TiO2 0.296, MnO 0.099, FeO 5.689, O2 0.032, H2O 0.300 to Na2O 2.746, 

MgO 7.100, Al2O3 19.382, SiO2 49.584, K2O 0.114, CaO 15.000, TiO2 0.279, MnO 0.093, 

FeO 5.371, O2 0.030, H2O 0.300. A: Phase diagram showing the influence of CaO content 

from 10 (corresponding to X(CaO) = 0) to 15 wt% CaO (X(CaO) = 1). The phase diagram 

shows that the upper stability limit of epidote increases with increasing CaO content. B: 

Isopleths of XGr-in-garnet and modal epidote on the P–X(CaO) phase diagram. XGr-in-garnet 

mostly depends on the bulk CaO content in the feldspar- and epidote-absent fields, and 

becomes more pressure-dependent in the feldspar-present and epidote-present fields.  

Figure 9. P–T diagram for the kyanite eclogite. The bulk composition is given in Table 3. A: 

P–T isochemical phase equilibrium diagram with mineral assemblages labelled. The solidus, 

free fluid and epidote phase stability boundaries, and the quartz/coesite transformation are 

highlighted. The mineral assemblages saturated with a trace amount of water are above the 

curve marked by +V. B: Isopleths of XAlm, XGr and XPy in garnet for the diagram. C: Isopleths 

of XJd-in-Cpx, where Cpx refers to both Na-poor clinopyroxene and omphacite, and garnet, 

melt and epidote modes for the phase diagram.  
Figure 10. P–T diagram for a crystallized melt domain (Figure 6); Table 3 gives the bulk 

composition. A: Isochemical phase equilibrium diagram showing phase relations of minerals. 
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Phase boundaries of melt, amphibole and epidote are highlighted. B: Isopleths of XAlm, XPy, 

and XGr in garnet (Grt II) for the phase diagram. The star marks where the P–T conditions are 

indicated by garnet isopleths. C: Isopleths of the XAb-in-Pl and XJd-in-Cpx. The star marks 

where the XJd and XAb contours intersect.   

Figure 11. P–T diagram for a symplectite of amphibole, clinopyroxene and plagioclase after 

omphacite in the kyanite eclogite. See Table 3 for the bulk composition. A: P–T phase 

diagram showing the modeled phase relations. B: Isopleths of Ca in amphibole, and XAb-in-

plagioclase and XJd-in-clinopyroxene in the modeled phase diagram. The star marks the P–T 

condition where the analyzed composition intersects.  

Figure 12. Estimated P–T path (solid curve) for kyanite eclogite 03-110 along with modeled 

phase boundaries, and experimental and theoretical phase relations. The solid black line 

represents the wet solidus for a MORB (Mid-Ocean Ridge Basalt) from Kessel et al. (2005; 

K05). The gray dot-dashed curves of phengite-out and solidus are from Q. Liu et al. (2009), 

an experimental study on phengite- and zoisite-bearing eclogites. The thin dashed curve 

marks the solidus from experimental study on natural zoisite eclogite from Skjerlie and 

Patiño Douce (2002; SPD02). In the lower pressure region, theoretically derived epidote and 

amphibole breakdown melting of metabasites are shown (Vielzeuf and Schmidt, 2001; 

VS01): zoisite is present at < 790 ˚C and melted at higher temperature at < 2.5 GPa, while the 

grey area marks the multivariant field of amphibole+quartz breakdown. The exhumation path 

for the Northeast-Greenland UHP metapelites from Lang and Gilotti (2015) is marked as a 

thick closely-spaced dashed curve (LG15). Dashed and solid arrowed curves are deduced 

metamorphic P–T path of the studied UHP eclogite, with stars referring to estimated P–T 

conditions based on phase equilibria and empirical thermobarometry.  

Table 1. Sequence of the metamorphic minerals from sample 03-110. The black lines on the 

table mark the presence of the minerals.  

Table 2. Representative analyses of peak and retrograde mineral assemblages of sample 03-

110 in textural settings. MP stands for crystallized melt pocket. FeOTOT refers to total FeO. 

The dash symbol marks the elements that were not analyzed with the microprobe. Garnet is 

normalized to 24 oxygen atoms with 10 six- and eight-fold coordinated cations. Omphacite is 

normalized to 6 oxygen atoms with 4 cations. Plagioclase is normalized to 8 oxygen atoms; 

biotite is normalized to 11 oxygen. Amphibole is normalized to 24 anions, with Fe
3+

 

estimated by charge balance. 

Table 3. Analyzed bulk composition and adjusted and calculated compositions used for phase 

equilibrium modelling, all in weight % of oxides.  
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Appendix S1. 

Isochemical phase equilibrium diagram for zoisite eclogite in Skjerlie and Patiño Douce 

(2002). 

Table S1. Whole rock bulk composition of zoisite eclogite in experiments by Skjerlie and 

Patiño Douce (2002) and adjusted for phase equilibrium modelling. 

Figure S1. P–T phase diagram (A) of zoisite eclogite in experiments by Skjerlie and Patiño 

Douce (2002). 
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Table 2. Representative analyses of peak and retrograde mineral assemblages of sample 03-110 in textural settings.

Miner Omp Grt II Bt

Comm Inner Matri Rim MP MP

Analys g1bl3 43 G-B19 G-B20 g1b-62 G-B11 g1b-26 g1b-66 g1b-22 m11

39.94 40.24 53.83 40.06 61.63 ### 52.01 54.37 52.73 45.47 37.86

0.05 0.03 0.17 0.02 0.00 0.03 0.29 0.10 0.22 0.54 1.95

23.16 23.31 12.00 22.98 24.38 ### 9.16 5.42 5.31 12.23 17.66

12.95 16.68 3.21 18.61 0.21 0.57 4.06 3.66 4.32 7.85 8.30

0.30 0.55 0.00 0.50 0.01 0.00 0.02 0.00 0.09 0.04 0.05
9.88 9.14 9.27 10.40 0.01 2.05 11.87 13.11 14.49 16.64 18.75

14.06 10.15 14.79 8.94 5.72 6.96 20.36 20.69 20.86 12.07 0.04

0.00 0.01 5.63 0.01 8.30 7.31 2.48 2.46 1.50 1.98 0.17

- - 0.00 - 0.18 0.30 0.00 0.05 0.12 0.58 10.42

0.09 0.08 0.08 0.21 - 0.05 - 0.21 0.17 - 0.24
100.44 100.19 98.98 101.73 100.44 99.42 100.25 100.07 99.81 97.40 95.44

24 24 24 6 24 8 8 8 6 6 6 11

5.85 6.05 1.93 5.86 2.73 2.68 1.88 1.97 1.92 6.45 2.74

0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.06 0.11

4.00 4.13 0.51 3.96 1.27 1.20 0.39 0.23 0.23 2.04 1.51

0.00 0.00 0.01 0.01 0.00 0.02 0.01 0.00 0.03 0.63 0.00

1.59 2.10 0.09 2.27 0.01 0.00 0.11 0.11 0.10 0.30 0.50

0.04 0.07 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.01 0.00

2.16 2.05 0.50 2.27 0.00 0.00 0.64 0.71 0.79 3.52 2.02

2.21 1.64 0.57 1.40 0.27 0.34 0.79 0.80 0.81 1.83 0.00

0.00 0.00 0.39 0.00 0.71 0.64 0.17 0.17 0.11 0.54 0.02

- - 0.00 - 0.01 0.02 0.00 0.00 0.01 0.11 0.96

0.01 0.01 0.00 0.02 - 0.00 - 0.01 0.01 - 0.01

0.27 0.36 0.38

0.37 0.28 0.23

0.36 0.35 0.38

0.38 0.15 0.17 0.07

0.72 0.64

0.27 0.34

Ab 0.66

An 0.33

Total 100.94 99.95 97.30

Grs 0.29

Py 0.36

Jd

K - 0.02 0.15

Cr 0.01 0.00 0.03

Alm 0.34

Mg 2.18 0.00 3.43

Ca 1.74 0.33 1.89

Na 0.01 0.66 0.50

Fe3+ 0.00 0.02 0.11

Fe2+ 2.02 0.00 0.07

Mn 0.05 0.00 0.01

Si 5.82 2.69 6.58

Ti 0.00 0.00 0.08

Al 3.99 1.23 1.99

K2O - 0.29 0.83

Cr2O3 0.08 0.03 0.25

MgO 9.99 1.19 15.99

CaO 11.05 6.88 12.23

Na2O 0.02 7.65 1.78

23.09 23.33 11.71

FeOTOT 16.50 0.44 7.99

MnO 0.43 0.05 0.00

No Oxygen

Grt Pl Cpx II Amp

Core Outer Symplectite Symplectite MP

g1bl22 g1bl2 g1b-

64

G-B17

SiO2 39.74 60.03 45.74

TiO2 0.04 0.06 0.78

Al2O3
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Table 3. Analyzed bulk composition and adjusted and calculated compositions used

for phase equilibrium modelling, all in weight % of oxides.

XRF-derived Adjusted Melt pocket Symplectite

SiO2 52.34 51.87 51.17 54.59

Al2O3 20.46 20.27 18.00 11.56

TiO2 0.30 0.29 - -

FeOTOT 5.67 5.62 6.86 3.19

MnO 0.10 0.10 0.14 -

MgO 7.50 7.43 8.26 9.99

CaO 11.28 11.10 11.40 16.37

Na2O 2.90 2.87 3.74 3.61

K2O 0.12 0.12 - 0.19

O2 - 0.03 0.04 -

P2O5 0.06 - - -

H2O - 0.30 0.40 0.50

Total 100.72 100.00 100.00 100.00  
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