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Abstract 

In this study, Au-based nanoglasses in the form of thin films deposited by magnetron 

sputtering are comparatively dealloyed. The films have either nanograined or nanocolumnar 

microstructure, depending on the working pressure of Ar in the sputtering chamber. 

Nanocolumnar thin films exhibit much higher dealloying rate reducing effectively the 

dealloying time with respect to nanograined and homogenous thin films. Electrocatalysis 

experiments indicate that the resulting nanoporous films are active for the methanol electro-

oxidation, with promising results in term of stability especially for the dealloyed 

nanocolumnar film. 
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1. Introduction 

Conventional dealloying is applied to crystalline foils of Au-Ag [1] or Au-Cu [2] alloys to 

form porous, coarse-grained gold. A network of interconnected ligaments and pores results 

from percolation of an electrolyte which removes less noble elements while the Au atoms 

rearrange by surface diffusion [3,4]. In contrast, dealloying of Au-based metallic glasses, 

produced in the form of ribbons by rapid solidification, generates ligaments made of 

numerous nanocrystals germinated from the amorphous phase [5,6]. Ligaments are more 

defective and their surface is rougher than that of dealloyed crystalline alloys, which is 

attractive for electrocatalytic and spectroscopic applications [7,8]. However, a long 

dealloying time, required especially to dealloy tens of microns thick ribbons, may cause 

coarsening of ligaments and grains due to surface diffusion [9], reducing the specific surface 

area of the nanoporous gold (NPG). Optimizing the the morphology of dealloyed products 

requires either the tuning of the dealloying conditions such as acid concentration, temperature 

and dealloying time or the modification of the precursor composition [2,7,10–12]. In metallic 

glasses however, the choice of the composition is restricted to the range where the alloy 

presents a good glass forming ability [13], requiring the use of a different strategy to optimize 

the dealloying product. Nanoglass is a new class of material formed of amorphous regions 

separated by amorphous interfaces of lower density [14,15]. In nanoglasses, the size of the 

amorphous clusters and the density of the interfaces can be tailored to modify the material 

properties. To date, nanoglasses have been produced by different techniques such as inert gas 

condensation [16] and magnetron sputtering [17] achieving attractive magnetic [18], 

mechanical [19] and catalytic properties [20]. We investigated whether we can tailor the 

nanoglass microstructure to decrease the dealloying time and limit the coarsening of the 

grains and ligaments in our material. 
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Here we present the synthesis of Au-based nanoglasses as thin films deposited by 

magnetron sputtering with controlled nanograined or nanocolumnar microstructure and 

investigate their dealloying and coarsening behaviour. The dealloying of the films is 

compared to that of homogeneous glassy thin films and ribbons. It is highlighted that the 

nanoglass thin films can be properly dealloyed and have a high dealloying rate with respect to 

homogeneous metallic glasses of the same composition. Additionally, the ligaments are 

shown to be constituted of crystalline domains of only a few nanometers in size. The 

dealloyed thin films are shown to be active to the methanol electro-oxidation and can be used 

as a catalyser for this reaction. 

2. Materials and method 

Metallic glass thin films were deposited from a 5 cm diameter crystalline target with 

nominal composition Au40Cu28Pd5Ag7Si20 (at. %). This composition was selected for its high 

glass forming ability, among the highest for the Au-based alloys [21]. The master alloy was 

induction melted and the target was cast in a graphite mold at PX Services, La Chaux-de-

Fonds (CH). Thin films were deposited by DC magnetron sputtering with a working distance 

of 4.5 cm and a discharge power of 30 W. Before deposition, a background pressure below 

10
-4

 Pa was reached in the sputtering chamber. The substrates were cover glasses of 

dimension 24 × 24 mm. An intermediate adhesive layer of Cr, around 5 nm thick, was 

deposited on the substrate. A Au layer, around 50 nm thick, was then deposited on top of the 

Cr layer to prevent the corrosion of Cr during dealloying. Finally, the metallic glass was 

deposited on top of the Au layer. The films were deposited for 5 min at 0.4 Pa, 4 Pa and 10 

Pa of Ar working pressure, respectively, to reach a thickness of around 350 nm. The metallic 

glass thin films have the same composition as the target, as confirmed by energy dispersive 

X-ray spectroscopy (EDX) measurements performed on the as-deposited thin films. The thin 

films were dealloyed by free corrosion in a HNO3 electrolyte solution, with a concentration 
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of 2 M at 70 °C, during different times. The Au intermediate layer, once partially exposed 

after dealloying, will have a low specific surface area, since there will not be formation of 

nanopores in it. Therefore, it will not contribute to the signal in CV measurements in a 

significant way. 

The structure of the material before and after dealloying was characterized by glancing 

angle X-ray diffraction (GAXRD, Philips PW3830), measured with a glancing angle of 0.8° 

under Cu Kα radiation at 40 kV. The microstructure of the thin films, before and after 

dealloying, was observed on the top and cross section (after cleaving) views by scanning 

electron microscopy (SEM). Moreover, for the purpose of Transmission Electron Microscope 

(TEM) only, nanocolumnar thin films were deposited on a glass substrate without Au and Cr 

intermediate layers at a working pressure of 10 Pa, and then were dealloyed for 10 min and 1 

h in a 2 M HNO3 solution at 70 °C. These samples were easily removed from the glass 

substrate during dealloying and used for TEM observation. The samples were placed on a Cu 

grid without any thinning and examined using a JEOL JEM3010 High-Resolution TEM at 

300 kV accelerating voltage employing a LaB6 electron gun source. An Oxford EDX 

equipment was used for chemical analyses. The electrochemical behaviour of the thin films 

was studied with electrochemical polarization curves using a typical three-electrode 

electrochemical cell. The sputtered thin films were used as the working electrode, with 

Ag/AgCl as reference and a platinum sheet as counter electrodes. The measurements were 

performed in 2 M HNO3 solution at 70 °C, immediately after immersion of the films in the 

electrolyte, to compare the corrosion kinetics at the initial stage of dealloying. The 

potentiodynamic polarization curves were recorded at a linear scan rate of 5 mV/s from -150 

to 500 mV vs. Ag/AgCl versus the open circuit potential. The electrocatalytic activity of the 

dealloyed samples for the methanol (MeOH) electro-oxidation reaction was tested at room 

temperature. Before testing, the working electrodes were scanned at a sweeping rate of 20 
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mV/s in a 0.5 M KOH solution from -0.1 V to 0.5 V vs Ag/AgCl and the active 

electrochemical surface area was calculated for every working electrode from the area of the 

reduction peak of the Au oxide species [22]. Cyclic voltammetry was performed for 300 

cycles in the same potential range for all the samples in a solution of 0.5 M KOH and 5 M 

CH3OH at room temperature with the same scan rate of 20 mV/s. All current densities were 

normalized with respect to the electrochemical active surface area of the electrodes.  

3. Results and discussion 

3.1 As-sputtered thin films characterization 

The metallic glass thin films, deposited under different working pressures of Ar in the 

sputtering chamber, have a composition close to the one of the target, as confirmed by energy 

dispersive X-ray spectroscopy (EDX) measurements (Table S1). The microstructure of the 

thin films was investigated by SEM measurements (Fig.1). Top views show that sample A, 

deposited at 0.4 Pa, has homogeneous microstructure (Fig.1a) and sample B, deposited at 4 

Pa, is nanograined with clusters having an average diameter of 18 nm, separated by less 

dense interfaces (Fig.1b). Both corresponding cross section view (Fig.1d and 1e) display vein 

patterns characteristic of metallic glass fracture surface [23]. The fracture was induced by 

cleaving the glass substrate of the film. The evidence of plastic deformation mechanism 

inherent to metallic glasses is taken as an additional proof of the amorphous structure of the 

film. Sample C, deposited at 100 Pa, contains grouped clusters with an average diameter of 

14 nm, separated by less dense interfaces and voids (Fig.1c). Its cross section (Fig.1f) reveals 

that the voids observed on the top view form the boundaries between nanocolumns along 

which fracture progresses. The nanograined and nanocolumnar thin films present different 

variations of the new materials termed nanoglasses [20,24]. The transition from dense to 

nanocolumnar thin films with an increase in Ar working pressure is well known for 
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crystalline thin films [25,26]. The present results suggest that a similar transition occurs in 

amorphous thin films. The smaller nanocluster size in sample C with respect to sample B 

originates certainly from a reduction of the surface diffusivity of the deposited atoms with an 

increase of Ar working pressures [26,27]. It was indeed reported that the size of the 

nanoclusters is controlled by a diffusion process [20]. 

Glancing angle XRD patterns of all films show broad diffraction halos due to the respective 

amorphous phase (Fig.2a). However, reflections of low intensity associated with Au in a 

face-centered cubic lattice can be found overlapped by the amorphous halos. The formation 

of small crystals is probably favoured by the underneath Au layer. In fact, in both the 

intermediate Au layer and the Au-based thin films, the (220) diffraction peak has the highest 

intensity (Fig.2a) while it should be (111) in polycrystalline Au without preferential 

orientations. 

3.2 Mechanism of dealloying 

Previous studies with amorphous ribbons indicated that dealloying involves various steps: 

germination of crystalline islands of nanometer size, formation of mounds and their 

undercutting, development of a mixed crystal-amorphous region tens of nanometer thick, and 

formation of ligaments by crystal impingement [6]. With this guideline, experiments were 

performed to reveal the mechanism operative in amorphous thin films. Fig.3 shows the top 

view of films A, B, and C after immersion in 2 M HNO3 solution for 10 min and 1 h at 70 °C. 

Relatively large pores and islands of around 50 nm in diameter are seen in sample A after 10 

min (Fig.3a) while after 1 h finer continuous ligaments with an average width of 35 nm at 

their necks are formed (Fig.3d). The microstructure of sample B is definitely finer after 10 

min, with ligaments of around 30 nm in width and pores around 20 nm in diameter (Fig.3b). 

After 1 h, the size of both ligaments and pores increased, with ligaments necks around 70 nm 
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in width and pore diameter ranging from tens to hundreds of nanometers (Fig.3e). In sample 

C fine crystalline islands of around 20 nm in width started evolving into ligaments after 10 

min while the pores formed a continuous network surrounding the crystals (Fig.3c). After 1 h, 

the ligaments became continuous by coarsening and reached a width of 30 nm (Fig.3f). The 

interconnected pores in between the ligaments had a width of around 25 nm in average. 

Images of the cross sections show large pores in the top part of sample A while the internal 

part fractured as bulk metallic glass with vein patterns [23] proving it was still not dealloyed 

(Fig.3g). Broad diffraction halos were found in the XRD pattern confirming this statement 

(Fig.2b). Sample B was dealloyed in its whole thickness (Fig.3h). Sample C was fully 

dealloyed with ligaments of constant size elongated in the vertical direction, vestiges of the 

original columnar microstructure (Fig.3i). The XRD patterns of dealloyed samples B and C 

(Fig.2b), containing only reflections associated with Au in a face-centered cubic lattice, 

confirms the complete dealloying of the films.  

The corrosion potential and current density obtained in polarization curves (Fig.4) explain 

the different dealloying behaviours of the films. For sample A they are 0.73 V and 1.7×10
-5 

A/cm
2
, respectively, reproducing values obtained for amorphous ribbons with the same 

composition [6]. The potential decreases to 0.65 V for sample B and 0.55 V for sample C 

while the current density increases to 9.9×10
-5

 A/cm
2
 and 2.6×10

-4
 A/cm

2
, respectively. The 

approximately 15 times increase in current density with respect to sample A, accompanied by 

the decrease in corrosion potential, suggests faster corrosion kinetics in nanoglass films with 

respect to homogeneous samples. 

EDX measurements were performed on the samples after 1 h dealloying in 2 M HNO3 

(Table 1). The concentration of Cu is the largest in sample A (17.6 at. %). This concentration 

is reduced in sample B but still reaches 11.6 at. %. In sample C, however, only a small 
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amount of Cu could be detected. Sample A and B contain a small amount of Pd and Ag after 

dealloying. The Pd concentration is further reduced in sample C and Ag was not in sufficient 

quantity to be detected in this sample. The presence of residual Pd is considered beneficial to 

the ligament stability against coarsening in NPG [29]. On the other hand, the concentration of 

Au was the highest in sample C. It suggests a better dissolution of the less noble elements in 

the nanoglass thin films in respect to the homogeneous thin film. Si was also detected in all 

the samples, in relatively large quantities. This reproduces the  finding of SiO2 patches in the 

case of chemically dealloyed Au-Si metallic glass ribbons [30] which were shown to 

originate from Si oxidation. The silica particles are placed at random in between the 

ligaments when they are not released into the electrolyte. They do not appear to hinder the 

electrolyte from penetrating into the pores of the material.   

The etching of sample A is slow in comparison with the other films because it is constituted 

of a fully dense amorphous phase in contact with the electrolyte only through its external 

surface. The resulting microstructure both in the early stage and after prolonged dealloying is 

akin to that found with bulk amorphous ribbons of the same composition whose dealloying 

mechanism was elucidated earlier [6]. In short, crystalline mounds are formed first by 

spontaneous germination and surface diffusion of Au atoms freed from less noble nearest 

neighbours. Ligaments form later when the mounds are undercut by electrolyte penetration. 

The crystal growth in this film is influenced by the presence of fine crystals, as it has been 

demonstrated with bulk metallic glasses [31–33]. Here, the enhanced intensity of the (220) 

diffraction peak after dealloying suggests that crystals with (220) orientation originally 

embedded in the amorphous phase constitute heterogeneous seeds for growth of Au crystals 

with preferential orientation (Fig.2).  
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Sample C has less dense interfaces and voids at boundaries in between nanocolumns where 

the electrolyte can percolate initiating corrosion at multiple sites, not only from the top but 

also laterally, resulting in increased dealloying rate. The identical ligaments morphology 

across the thickness suggests indeed that the whole film was dealloyed simultaneously 

(Fig.3i). The inter-columnar voids present in the as-sputtered state may also hamper the 

diffusion of Au across nanocolumns, limiting coarsening of the ligaments in the early stages 

of dealloying. The ligaments become finally interconnected after 1 h, but their thickness is 

still limited (Fig.3f). As a comparison, the size of the ligaments is around 8 times lower than 

that of Au-based glassy ribbons of the same composition as the film which were dealloyed at 

70°C for the same amount of time [34]. The presence of residual Cu, Ag and Pd is also less in 

this sample than it is in samples A and B (Table 1).  

Sample B is an intermediate case in that it has no voids but interfaces of lower density in 

between nanoclusters which apparently provide preferential sites for corrosion, as shown by 

the formation of thin ligaments and pores after 10 min of dealloying (Fig.3b). However, the 

electrolyte did not penetrate immediately in the film, at variance with sample C which has 

inter-columnar voids. It is observed that the pores near the top of film B are larger than those 

at the bottom (Fig.3h), suggesting that dealloying and coarsening occurred progressively 

across the film section. At variance with sample A, in sample B and C the crystals germinated 

without preferential orientation directly from the amorphous phase as testified by the normal 

ratio of the intensity of the diffraction peaks (Fig.2b). They grew to a limited extent and then 

impinged on each other forming ligaments. 

Images of sample C deposited for TEM observation are reported in Fig.5 after dealloying 

for 10 min (a, b) and 1 h (c, d). The presence of less noble elements was confirmed by EDX 

analyses. Their atomic percentages after 10 min were measured to be 4.5 ± 1.8 for Pd, 0.9 ± 
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0.6 for Ag, 21.4 ± 2.0 for Si; and after 1 h, 2.1 ± 0.5 for Pd, 0.7 ± 0.4 for Ag and 21.5 ± 0.7 

for Si. Cu was not considered since the sample holder was a Cu grid. Fig.5 shows the 10 min 

dealloyed columns evolving into ligaments and the final ligament network. Ligaments are 

constituted by crystals with an average size below 10 nm. Their surface is rough with kinks 

and necks, especially at grain boundaries. Necks result from impingement of ligaments 

during growth. High-resolution images of portions of ligaments reveal the Au-based crystals, 

clearly identified from the lattice fringes of {111} and {200} planes (Fig.5b, d). Amorphous 

portions of the material can be distinguished locally, attached to the ligaments. They are 

identified with EDX analysis as silica patches which are usually obtained in dealloying Au-Si 

based metallic glasses. Atomic steps are clearly visible on the surface of ligaments with 

favorable orientation. Atomic steps and surface defects were evidenced on dealloyed rapidly 

solidified ribbons and were shown to constitute active sites for catalytic reactions [35]. TEM 

studies of Au-based amorphous ribbons showed the occurrence of fine ligaments as those 

reported in Fig.5 only in the interlayer between the still glassy region and the region with 

grown ligaments [6]. It is apparent that dealloying thin films from both the surface and 

internal channels provides a mean to obtain a fine microstructure which is seen in ribbons 

only in a transition zone. 

3.3 Electrochemical properties 

After dealloying for 1 h in 2 M HNO3 at 70 °C, cyclic voltammetry (CV) scans were 

performed in 0.5 M KOH aqueous solution for 15 cycles in order to explore the 

electrochemical surface status of the A, B and C dealloyed samples (Fig.6). The results 

suggest the occurrence of various processes due to their different microstructure and amount 

of less noble elements. The formation of Au oxides at around 0.25 V [29,34,36,37] is 

apparent from a current peak only in the case of sample C. For samples A and B, the total 

current density comes not only from the Au redox couple, but also from the redox states of 
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the remaining less noble elements overlapping the peak of Au oxidation. In fact, literature 

reports that Cu [38,39] Ag [40,41] and Pd [42,43] form oxide species from -0.1 V to 0.5 V vs 

Ag/AgCl ( details in supplementary). We confirmed these results by performing CV 

experiments in 0.5 M KOH solution with Ag, Cu and Pd electrodes. The highest current 

density from 0.3 to 0.5 V is observed on sample A, suggesting a larger presence of Cu, Ag, 

and Pd, oxidizing in this range. The substantial presence of Cu on this sample was indeed 

confirmed by EDX measurements (Table 1). For sample B, the current density also increased 

in this range, but less than in sample A. This is consistent with the lower Cu concentration 

measured in this sample (Table 1). A negative current peak was observed for all the samples 

at around 0.05 V. This peak can be associated with the reduction of Au oxide [29,36,37]. 

However, the lower current density of sample A in this range suggests that the reduction of 

residual Ag and Pd contributes as well to the signal with this sample [36–39] whereas sample 

C is closer to the pure NPG state. 

 

Fig.7 shows CV scans performed in 0.5 M KOH + 5 M CH3OH (MeOH) solution in the 

presence of samples A, B, and C, after 1 h dealloying. The first cycle with sample C has a 

current density peak of 0.9 mA/cm
2
 at 0.27 V (Fig.7c), consistent with the assignment of 

MeOH electro-oxidation catalyzed by NPG to formate ions expected in the potential range 

from -0.1 V to 0.4 V [36,37,44]. A small increase in current density is detected above 0.45 V, 

consistent with the MeOH electro-oxidation to carbonates expected above this potential 

[36,37]. Scanning the potential back to -0.1 V, a current density peak appears in the range 

from 0.25 V to -0.1 V due to oxidation of MeOH on Au after Au oxide reduction occuring 

during the reverse scan at around 0.25 V. The first cycles for samples A and B give broader 

current peaks associated to MeOH electrooxidation below 0.4 V (Fig.7a, b). It is believed that 

the less noble elements both residual and re-deposited in these films, present in their oxidized 
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or metallic state on the exposed surface, lead to a broader potential range for MeOH 

electrooxidation [34]. The rise in current density at 0.35 V in Fig. 7 is described as a result of 

the methanol electro-oxidation, not only on Au oxides [36,37] but also on Cu oxides [38,39]. 

Residual Cu is both trapped in ligaments and contained in the remaining amorphous phase, 

particularly in sample A. 

The electrochemical stability of the samples dealloyed 1 h in 2 M HNO3 at 70 °C was 

investigated by performing multiple CV cycles. For both samples A and B, the normalized 

current density
 
decreased rapidly and reached values below 0.1 after 300 cycles (Fig.7d) 

because of the progressive coverage of Au active sites by oxidized species of less noble 

elements, especially Cu, formed during the upward scan [34]. For sample C, the 

concentration in less noble elements is reduced and the normalized current density is still 

0.48 after 300 CV cycles. A sample C dealloyed for only 10 min in 2 M HNO3 at 70 °C 

showed a normalized current density of 0.42 after 300 cycles (Fig.S1), demonstrating the 

good stability of this thin film, even after short dealloying time. Finally, it is remarked that 

the ligament morphology and size is retained after the electrocatalysis experiments for the 

two C samples (Fig.S2).  

4. Conclusion 

In summary, Au-based glassy thin films prepared by magnetron sputtering were carefully 

tailored to obtain homogeneous, nanograined and nanocolumnar microstructures. The films 

were dealloyed by free corrosion obtaining a range of behaviour according to their defect 

content (i.e. interfaces and voids). The homogeneous thin film was partially dealloyed; the 

nanograined film was dealloyed on its whole thickness obtaining a range of pore sizes not 

completely interconnected; the nanocolumnar thin film was fully dealloyed forming a 

nanoporous material where thin ligaments are separated from each other by interconnected 
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nanopores. Polarization curves demonstrate that the dealloying rate of the nanocolumnar thin 

film is around 15 times higher than that of the homogeneous thin film under the same 

conditions. Voids and lower density regions at the interfaces between nanocolumns provide 

sites for electrolyte penetration, allowing dealloying not only from the top but also from 

lateral sides. The resulting NPG contains a higher Au concentration than the other two 

dealloyed thin films while keeping the ligament width finer. This work shows a novel 

strategy to produce nanoporous materials in a short time, starting from nanoglass precursors, 

to limit coarsening of the grains and ligaments, and therefore increase the specific surface 

area of the NPG. The resulting nanoporous films are catalytically active for methanol electro-

oxidation with good stability of the dealloyed nanocolumnar thin film.  

Supporting Information 

Detailed description of the current contribution of the redox couples from the residual 

elements in dealloyed thin films during CV scans in 0.5 M KOH solution, CV Cycles of 

samples C dealloyed in 2 M HNO3 at 70 °C for 10 min and 1 h (FIG. S1), SEM images of 

samples C dealloyed for 10 min and 1 h in 2 M HNO3 at 70 °C, before and after methanol 

electro-catalysis experiments (FIG. S2) and EDX measurements of the as-sputtered thin films 

(Table S1). 
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 FIG. 1 SEM top views and cross section views of Au-based metallic glass thin films 

deposited under different working pressures of Ar. Sample A was deposited under 0.4 Pa, 

sample B under 4 Pa and sample C under 10 Pa. 

FIG. 2 Glancing angle XRD patterns of sample A, B and C before (a) and after (b) dealloying 

for 1 h in a 2 M HNO3 solution at 70 °C. On (a) the glancing angle XRD pattern of the Au 

intermediate layer is also shown. The positions of the Au reflections in a face-centered cubic 

lattice are also indicated. 

FIG. 3 SEM images (top and cross section views) of samples A, B and C after dealloying 10 

min and 1 h in a 2 M HNO3 solution at 70 °C 

FIG. 4 Potentiodynamic polarization curves for samples A, B and C dealloyed in 2 M HNO3 

at 70 °C for 1 h, obtained with a scan rate of 5 mV/s in a 2 M HNO3 aqueous solution at 70 

°C. The anodic branch refer to oxidation of less noble elements (Si and Cu) and the cathodic 

one to reduction of nitrate ions to nitrite. The corrosion current density (jcorr) were calculated 

using the Tafel extrapolation of the cathodic branch at zero overvoltage [28]. 

FIG. 5 TEM images of sample C after dealloying (a, b) 10 min and (c,d) 1 h in a 2 M HNO3 

solution at 70 °C. Samples were deposited employing the same sputtering parameters as for 

other samples of type C but without the Cr and Au adhesion layers in order to detach them 

easily from the glass substrate after dealloying and observe them in TEM without cutting or 

thinning. (a,c) In bright field images, ligament size and shape are consistent with SEM 

observations. On HRTEM images, arrows evidence a (b) twin boundary and a (d) grain 

boundary. 

FIG. 6 Cyclic voltammetry (CV) cycles in 0.5 M KOH solution with a scan rate of 20 mV/s 

for samples A, B and C dealloyed in 2 M HNO3 at 70 °C for 1 h 
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FIG. 7 The electrocatalytic performance of dealloyed samples (a) A, (b) B and (c) C for 1 h in 

2 M HNO3 at 70 °C. The samples were tested for 300 cycles with a scan rate of 20 mV/s in 

0.5 M KOH+5 M CH3OH. Current densities are reported with respect the effective surface 

area obtained from I-V plots. The effective surface area is: 0.98, 3.75 and 5.87 cm2 for 

samples A, B and C, respectively. (d) The maximum current density in the selected CV scans 

is normalized with respect to the maximum value of the first scan and reported as a function 

of the number of cycles. 
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 Sample A Sample B Sample C 

Au 60.6 63.9 72.9 

Cu 17.6 11.6 0.2 

Pd 4 3.9 1.7 

Ag 3.6 2.5 --- 

Si 14.2 18.1 25.2 

 

Table 1 Concentration in at. % measured by EDX in samples A, B and C dealloyed in 2 M 

HNO3 at 70 °C for 1 h. The concentration of Ag in sample C was too low to be detected. 

 


