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Abstract 

To date, no demonstration of a direct correlation between the presence of mycoviruses and the 

quantitative or qualitative modulation of mycotoxins has been shown. In our study, we transfected a 

virus-free ochratoxin A (OTA)-producing isolate of Aspergillus ochraceus with purified mycoviruses 

from a different A. ochraceus isolate and from Penicillium aurantiogriseum. Among the mycoviruses 

tested, only Aspergillus ochraceus virus (AoV), a partitivirus widespread in A. ochraceus, caused a 

specific interaction that led to an overproduction of OTA, which is regulated by the European 

Commission and is the second most important contaminant of food and feed commodities. Gene 

expression analysis failed to reveal a specific viral upregulation of the mRNA of genes considered to 

play a role in the OTA biosynthetic pathway. Furthermore, AoOTApks1, a polyketide synthase gene 

considered essential for OTA production, is surprisingly absent in the genome of our OTA-producing 

isolate. The possible biological and evolutionary implications of the mycoviral regulation of 

mycotoxin production are discussed. 
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2 Nerva et al. 

 

Originality-Significance Statement 

We report the first evidence of differential mycotoxin accumulation associated with specific 

mycovirus infection. Ochratoxin A (OTA) is a mycotoxin produced by a number of Penicillium spp. 

and Aspergillus spp. and is considered the second most important contaminant in food and feed 

commodities after aflatoxin. The costs of maintaining OTA contamination below the legal threshold 

are considerable. OTA is regulated by the European Union, and the results presented by our work may 

be taken into account to update provisional models to predict OTA contamination. Furthermore, from 

an ecological point of view, we herein describe an interaction between a virus and its fungal host that 

suggests evolutionary advantages for virus-infected isolates. Our results support the recent interest in 

mutualistic virus-host interactions, as opposed to the classical binary host-pathogen relationship.  
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3 Nerva et al. 

Introduction 

Mycoviruses, widespread in all major fungal phyla, were first reported as a pathogen of cultivated 

mushrooms ( i.e., Agaricus bisporus) (Hollings, 1962). Most reports have studied the ability of 

mycoviruses to reduce the virulence (i.e., hypovirulence) of pathogenic fungi (Nuss, 2010) and the 

broad spectrum of their biotechnological applications (Nuss, 2005; van de Sande et al., 2010; Ghabrial 

et al., 2015). Contrary to most bacterial viruses, mycoviruses do not cause lysis of the fungal host cell 

and accumulate to high levels without specific cytotoxic effects as persistent and often cryptic 

infections (Ghabrial et al., 2015). The idea that multi-level interactions between mycoviruses and 

fungi, involving molecular and biochemical targets able to modulate host behaviour to successfully 

spread and survive in the environment (Son et al., 2015) and provide adaptive advantages, is well-

established (Mehle et al., 2012; Selman et al., 2012).       

Many studies have tried to decipher the molecular mechanisms concerning mycovirus-induced 

hypovirulence using different approaches (Allen et al., 2003; Li et al., 2008; Cho et al., 2012). The 

model system for these studies is the ascomycetous fungus Cryphonectria parasitica, the causal agent 

of chestnut blight (Hepting, 1974). Many reports have demonstrated that infection by Cryphonectria 

hypovirus 1 (CHV1), a naturally occurring virus, leads to reduced virulence of the fungal pathogen 

(Elliston, 1985; Allen et al., 2003). In addition, this virus-induced phenotype has been exploited in 

Europe as a natural biocontrol agent against C. parasitica (Nuss, 1992). In the same fungus, we 

recently showed an increased osmotic stress tolerance when it was infected with Penicillium 

aurantiogriseum partiti-like virus 1 (PaPLV1) (Nerva et al., 2017b), highlighting a further level of 

complexity in the fungus-virus-environment interactions that needs elucidation. Despite the vast array 

of interesting features discovered in specific mycovirus-host combinations, the vast majority of 

mycoviruses appear to be cryptic, at least under laboratory conditions, based on phenotype and/or 

virulence evaluations (Pearson et al., 2009).  

The fungal genus Aspergillus contains species of economic importance for industry, agriculture 

and medicine. The presence of mycoviruses infecting Aspergillus spp. was first demonstrated in 1970 

for A. foetidus (Banks et al., 1970; Ratti and Buck, 1972), followed by a number of mycovirus reports 

in the Aspergillus sections Nigri (Varga et al., 1994), Flavi (Schmidt et al., 1986), Circumdati and 

Fumigati (Varga et al., 1998). Most of these studies were focused on viral epidemiology, whereas 

others addressed the possibility of using mycoviruses as biocontrol agents for the human and insect 

pathogenic fungal species A. fumigatus (Bhatti et al., 2011; Özkan and Coutts, 2015). Some 

Aspergillus species have been used also for food fermentation, taking advantage of their ability to 

improve food quality, as in the case of A. oryzae (Hong et al., 2004) and A. sojae (Matsushima et al., 

2001). A major industrial species is A. niger, which is used to manufacture citric acid (Currie, 1917) 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



4 Nerva et al. 

and numerous commercial enzymes (Bentley and Bennett, 2008). A. terreus is known for the 

production of the statin lovastatin, a cholesterol-lowering agent used for the treatment of 

hypercholesterolemia (Alberts, 1988). Conversely, there are also species with negative impacts on 

human and animal health. For instance, many Aspergillus spp. are common contaminants of 

agricultural crops; these species are involved in food and feed decay and often produce metabolites 

highly toxic and carcinogenic to mammals, known as mycotoxins. Among these species, A. flavus and 

some other Aspergillus spp. produce aflatoxin B1 (Davis et al., 1966), one of the main natural 

carcinogenic substances threatening human and livestock health (Eaton and Gallagher, 1994). Another 

important mycotoxin-producing species is Aspergillus ochraceus, which is able to produce ochratoxin 

A (Harris and Mantle, 2001) (OTA, a dihydrocoumarin moiety amide linked to a molecule of L-β-

phenylalanine derived from the shikimic acid pathway), a contaminant regulated by the European 

Commission for food and feed commodities (EC1881, 2006). OTA has teratogenic, embryotoxic, 

genotoxic, neurotoxic, immunosuppressive and carcinogenic properties (IARC group 2B), in addition 

to nephrotoxic effects (FAO/WHO, 2001). OTA contamination can also have a huge economic 

impact: a Canadian study estimated that if OTA residues would be considered a food contaminant, the 

potential cost for Canadian food producers could reach 240 million dollars per year (Wu et al., 2014). 

A. ochraceus was described for the first time by the German botanist and mycologist Karl Adolf 

Wilhelm in 1877. A. ochraceus is an ubiquitous fungus usually described as a soil inhabitant (Domsch 

et al., 1980) but has also been reported to live in the marine environment (Cui et al., 2010). A. 

ochraceus was exploited for the industrial production of xylanase, β-xylosidase, and some 

antibacterial molecules able to inhibit human pathogens (Meenupriya and Thangaraj, 2011; Michelin 

et al., 2012). Moreover, A. ochraceus is one of the main contaminants of grapes and coffee and its 

derivatives in warm climates (Patiño et al., 2005). A. ochraceus is able to grow and synthesise OTA at 

a low water activity level (Pardo et al., 2004). 

Mycoviruses infecting Aspergilli have been studied extensively because of the medical, 

economic and ecological importance of this fungal genus. Several studies have focused on 

hypovirulence traits for a possible biotechnological exploitation against the human, animal and insect 

pathogen A. fumigatus (Kotta-Loizou and Coutts, 2017) without success. Additionally, several studies 

attempted to identify mycovirus-mediated mechanisms involved in the qualitative or quantitative 

production of aflatoxins in A. flavus. Initially, a possible correlation between the presence of a 

Chrysovirus and the production of aflatoxins in A. flavus NRRL5565 (Schmidt et al., 1986) was 

observed but was not confirmed in the same or different virus-host systems (Elias and Cotty, 1996; 

Silva et al., 2001; Kotta-Loizou and Coutts, 2017). 
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5 Nerva et al. 

Here, we decided to investigate the possibility of a metabolic shift in the presence of different 

mycoviruses in A. ochraceus. In the present work, two different isolates of A. ochraceus were selected 

from the Mycotheca Universitatis Taurinensis: MUT2036 and MUT2096. These fungi were isolated 

from the same ecological niche and are endophytes of Holoturia polii (also known as sea cucumber), a 

marine invertebrate widely distributed in the Mediterranean Sea. The two isolates differ from each 

other in their ability to produce OTA; MUT2036 is the only isolate able to synthesize OTA. 

MUT2096 is infected with a partitivirus, Aspergillus ochraceus virus (AoV), but cannot synthesize 

OTA. We previously characterized the virome of a marine fungus, Penicillium aurantiogriseum var. 

viridicatum (MUT4330), harbouring six different viruses belonging to six different viral families in 

the positive single-stranded RNA (+ssRNA) and double-stranded RNA (dsRNA) lineages (Nerva et 

al., 2016). Here, we used partially purified virus particles from both MUT4330 and MUT2096 isolates 

to transfect the virus-free and OTA-producing isolate MUT2036. These investigations of mycoviruses 

in a new host following viral transfection proved to be a useful tool to decipher aspects of the virus-

host interaction (Chiba et al., 2016; Nerva et al., 2017b). We demonstrate here for the first time an 

effect of a mycovirus, Aspergillus ochraceus virus (AoV), on OTA production. This finding illustrates 

new perspectives in mycovirus-fungus-environment interaction studies, highlighting complex and 

possibly mutualistic interactions beyond the common concept of mere host exploitation for 

replication. 

  

Results and Discussion 

Virus detection and OTA production assay    

 Virus detection was achieved following dsRNA purification from two different A. ochraceus 

isolates from the same geographical origin and original substrate, stored at Mycotheca Universitatis 

Taurinensis. Both isolates were isolated from Holoturia polii (sea cucumber) tissue. Isolate MUT2096 

contained two dsRNA elements, whereas isolate MUT2036 contained no dsRNA elements. The 

dsRNAs present in isolate MUT2096 were identified as the genomic segments of AoV (Kim and 

Bozarth, 1985; Liu et al., 2008). 

To assess OTA production by MUT2096 and MUT2036, we first grew the two isolates under the 

same conditions with and without an inducer of OTA, carbon tetrachloride (CCl4). Under these 

conditions, only MUT2036 had the ability to produce OTA as confirmed by HPLC-DAD analysis 

(Supplementary Fig. 1). 

 

Transfection of A. ochraceus MUT2036 and OTA quantification  
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6 Nerva et al. 

 Partially purified virus particles of AoV obtained from isolate MUT2096 and from Penicillium 

aurantiogriseum var. viridicatum (MUT4330) containing a mixed virus infection were used to 

transfect protoplasts of the OTA-producing isolate MUT2036. Forty-eight colonies from each 

individual transfection (using virions from MUT2096 and MUT4330 and using water as a negative 

control) were screened for viral replication using quantitative reverse transcription PCR (qRT-PCR). 

All MUT2036 colonies transfected with AoV virions were successfully infected, as confirmed by 

northern blot analysis (Fig. 1a), and three isolates, namely, T1, T3 and T24, were randomly selected 

for further study. Conversely, only one isolate of those transfected with viruses from MUT4330, 

isolate T20, was stably infected with Penicillium aurantiogriseum totivirus 1 (PaTV1), as assessed by 

qRT-PCR and northern blot analysis (Fig. 1b). One colony transfected with water and confirmed 

negative for all the viruses used for transfection was named TH2O and was used as a negative control 

in further experiments. 

To evaluate OTA production in the presence of viral infections, we used the original MUT2036 isolate 

as a control, the derived isolates (T1, T3, T24, T20) as virus-infected isolates, and the TH2O isolate as 

a virus-free control isolate. Extracts from each of three biological replicates for each isolate were 

analysed for OTA quantification in an HPLC-DAD apparatus using a reference dilution curve. 

The results showed that isolates T1, T3 and T24 produced at least 3 times more OTA than the 

original MUT2036 or TH2O isolates. Conversely, isolate T20 (harbouring viruses from MUT4330), 

isolate MUT2036 (the original virus-free isolate) and isolate TH2O (transfected with water only) 

showed a similar pattern of OTA production without any significant difference (Fig. 2 and 

Supplementary Tab. 1). 

Relationships between mycovirus infection and metabolic changes were previously reported 

for C. parasitica infected by CHV1 (Allen and Nuss, 2004), where an extensive modulation of 

metabolites belonging to classes of amino acids, carbohydrates, lipids, nucleotides and polyamines 

was observed (Dawe et al., 2009). Moreover, we recently observed that C. parasitica isolates infected 

by Penicillium aurantiogriseum partiti-like virus 1 display higher resilience to osmotic stress than do 

isogenic virus-free isolates (Nerva et al., 2017b). As previously suggested, it is possible that some 

biotic/abiotic-mediated stress-response pathways lead to the expression of partially overlapping suites 

of genes and metabolite production, inducing crosstalk signalling (Bostock, 2005). Moreover, Okada 

et al. (Okada et al., 2018) recently reported mycovirus-mediated effects on Alternaria alternata 

disease development in Japanese pear. The authors demonstrated a Chrysovirus-mediated 

enhancement of A. alternata pathogenicity through the overproduction of an effector (AK-toxin), 

which is a host-specific toxin able to induce necrotic spots in leaves.  
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7 Nerva et al. 

Nevertheless, to our knowledge, no correlation between mycotoxin production and mycoviral 

infection has been demonstrated to date. Here, we report for the first time a mycovirus effect on the 

production of a mycotoxin. AoV is a known mycoviral species reported ca. 40 years ago (Kong, 

1979), but its ability to modify host metabolism has not been investigated. 

Following the transfection of a virus-free isolate of the fungus, we demonstrated a host-

specific ability of AoV to modulate OTA production when virus-infected and virus-free isolates 

sharing a genetic background were compared. The specificity of the interaction between A. ochraceus 

and AoV was further demonstrated since the isogenic isolate T20, infected with a different mycovirus, 

did not show significant differences in OTA production. Several A. ochraceus isolates have been 

reported to be infected by AoV (Kim and Bozarth, 1985; Liu et al., 2008), supporting the hypothesis 

of a long and widespread co-evolutionary relationship (Pearson et al., 2009) between the two 

biological entities, potentially providing an evolutionary and ecological advantage for AoV-infected 

isolates. In the last decade, the intriguing concept of “good viruses” (Roossinck, 2011; Virgin, 2014) 

has been proposed to highlight that the relationships between viruses and their host are often 

mutualistic. Indeed, several studies in fungal biology showed that many species of filamentous fungi 

can rapidly produce complex substances that are not directly involved in the survival of the organism 

but whose production can provide a competitive edge in a range of different environmental conditions 

(Magan and Aldred, 2007). It has been postulated that secondary metabolites produced by long, 

complex and energetically expensive biosynthetic pathways represent an intrinsic competitive benefit 

for the fungus (Williams et al., 1989; Vining, 1990). This ecological concept results from the 

observation that several of the genes involved in the production of secondary metabolites were 

positively selected over time, highlighting strong evidence for evolutionary selection (Stone and 

Williams, 1992). Moreover, the production of mycotoxins was also linked to a further competitive 

advantage, favouring substrate colonization by limiting the surrounding microbial competitors (Magan 

and Aldred, 2007). Consequently, it has been recently suggested that OTA biosynthesis represents a 

strategy to colonize substrates by providing a territorial advantage (Magan and Aldred, 2007). The 

ability to exploit the same substrate by other microorganisms is conditioned by the ability to detoxify 

OTA, which requires an active, expansive set of enzymes (Calvo et al., 2002). Taking all these aspects 

into consideration, we speculate that AoV infection could provide a competitive advantage to its 

fungal host. 

 

OTA-related gene expression and AoV quantification  

To assess whether the amounts of OTA measured are correlated with increased expression of 

genes putatively involved in the biosynthetic pathway, we performed RT-qPCR analysis on MUT2036 
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8 Nerva et al. 

and T1 isolates at 48, 96 and 144 h post inoculation. We chose to perform gene expression analysis on 

these two isolates because they displayed the greatest differences in OTA production. The OTA 

biosynthetic pathway is not as well-defined as the aflatoxin pathway. Several genes have been 

reported in the literature as being putatively involved in OTA biosynthesis. Two of these genes belong 

to the polyketide synthase (pks) family (Wang et al., 2015), one belongs to the cytochrome P450 

family, and one is an oxygenase (Sartori et al., 2014). Polyketide synthase 1 (AoOTApks1) was not 

amplified in any of the samples analysed, while polyketide synthase 2 (AoOTApks2) was equally 

expressed in the two isolates (Fig. 5a). The levels of cytochrome P450 (AoOTAP450) and oxygenase 1 

(AoOTAOxi1) were significantly lower in isolate T1 than in MUT2036 (Fig. 5b and 5c).  

To confirm the absence of AoOTApks1 transcripts, we also performed a BLASTn search with 

an e-value of e-20 as the threshold for selected genes (AoOTApks1, AoOTApks2, AoOTAP450, 

AoOTAOxi1, AoβTub) in the fungal transcriptome assembled from our RNA-seq analysis. All the 

searched genes were confirmed to be present in the transcriptome assembly except for AoOTApks1. 

For these reasons, the molecular mechanism(s) by which AoV can induce OTA overproduction 

remain(s) unclear, because none of the genes putatively involved in the biosynthetic pathway 

displayed virus-associated upregulation at any of the time points we checked.  

The intriguing absence of AoOTApks1 transcripts in an OTA-producing strain and the presence 

of the other three genes confirmed in the transcriptome assembled from the total RNA sequencing 

characterization suggest the possible involvement of a molecular pathway to synthetize OTA different 

from that previously suggested (Sartori et al., 2014; Wang et al., 2015). Furthermore, the lack of virus-

induced differential transcript accumulation suggests a possible AoV-mediated direct/indirect post-

transcriptional or post-translational modification of the genes analysed, including a potential 

interference with mycotoxin secretion, as is the case for the hydrophobin cryparin in the CHV1-C. 

parasitica system (Kazmierczak et al., 2012). Alternatively, we can envision a possible viral impact 

on still-uncharacterized genes (downstream and/or upstream in the biosynthetic pathway) leading to a 

perturbation of OTA production. To better characterize the enzymes differentially involved in OTA 

biosynthesis in AoV-free and AoV-infected A. ochraceus isolates, a more comprehensive 

transcriptomic and proteomic approach is ongoing.  

Given the statistically significant differences among the three AoV infected isolates regarding 

OTA production, we wanted to determine whether this observation could be correlated with the 

partitivirus titre. Relative quantification by RT-qPCR for each of the viral RNAs was performed, but 

no correlation was observed between OTA production and the differential accumulation of viral RNA 

(Fig. 3). The absence of a correlation between the viral titre and the strain-specific OTA accumulation 

suggests further regulatory elements not directly linked to the AoV titre.  
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9 Nerva et al. 

 

 

Phenotypic evaluation 

To evaluate the macroscopic phenotypes of MUT2036 (TH2O) and the four transfected isolates 

(T1, T3, T24 and T20), all the isolates were grown on 18 different growth media in combinations of 

six different media (ACM, YES, YPD, MEA, CYA and CREA) and three different salt (NaCl) 

concentrations (0%, 3% and 10%) for each substrate. The colony diameters of each isolate were 

measured after five and ten days and were statistically analysed. 

Minimal phenotypic differences were observed on all media, and no significant differences in 

colony diameter were observed at either 5 or 10 days post inoculation (dpi) (Supplementary Tab. 2 

and 3). The phenotype of the T20 isolate, which was infected with PaTV1, was lightly pigmented on 

the reverse side of solid cultures of YES containing no salt, with an absence of exudate and 

significantly weaker sporulation than all the other isolates (Fig. 4, Supplementary Tab. 4).  

Fungal phenotypic features mediated by mycovirus infection are largely undetectable in 

laboratory axenic cultures (Ghabrial et al., 2015). In our study, the absence of phenotypic differences 

between virus-infected and virus-free isolates confirms the cryptic behaviour of mycoviruses at least 

in axenic conditions (Pearson et al., 2009). Noticeable differences were observed in pigmentation and 

conidial production only for the PaTV1-infected strain, a virus unrelated to AoV and only 

experimentally introduced in A. ochraceus through protoplast transfection. Since PaTV1 is not a 

naturally occurring virus infecting Aspergillus species, the observed relatively strong virus-induced 

phenotypic effects could be explained by recent host adaptation, whereas longer co-evolution times 

would allow the minimization of symptoms, as is the case with AoV-A. ochraceus interactions. 

 

Virome analysis 

To confirm viral infection in MUT2036 and to confirm the absence of further viruses not 

detected following dsRNA isolation, we analysed the virome of isolates T1 and T20 using Illumina 

next generation sequencing. Assembled contigs were used for BLASTx searches against a curated 

viral database. Only the two anticipated viral genomes were identified in these studies, confirming that 

isolate MUT2036 was not infected with other viruses.   

Moreover, the data from RNA-seq were used to assess any possible nucleotide and/or amino 

acid alterations to the PaTV1 genome upon the infection of a new host species. More than 100,000 

reads were mapped to the viral sequence (NC_028948.1), with an average nucleotide coverage of 

2,000×. 
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10 Nerva et al. 

The results reported in Supplementary Tab. 5 reveal that seven nucleotide substitutions were 

detected, one in the 5’ UTR sequence and six in the coding region, two of which resulted in amino 

acid changes. There was one change at position 745 in the reference genome (NC_028948.1) that 

resulted in an altered hydrophobicity pattern.  

In contrast, following RNAseq, the nucleotide sequence of AoV after transfection into the new 

isolate of the same fungal species was confirmed to be identical to that observed in the original A. 

ochraceus isolate. 

Since mycoviruses are transmitted through hyphal anastomosis, their natural host range is 

thought to be limited to vegetative compatible isolates of the same species, but the host range can be 

artificially expanded through transfection, as demonstrated by several authors (Kanematsu et al., 

2010; Nerva et al., 2017b; Nerva et al., 2017a). In addition, viral features such as a short generation 

time and high mutation rate support the quasispecies theory (Domingo and Holland, 1997), in which a 

viral infection in a single host is represented by a modal distribution of different sequences. Often, 

when new host adaptation occurs, a new modal distribution is selected to improve viral fitness, as 

previously observed for Penicillium aurantiogriseum partiti-like virus infecting C. parasitica (Nerva et 

al., 2017b). Here, we observed stable nucleotide changes in the PaTV1 genome sequence following 

infection of the new host species, A. ochraceus isolate MUT2036, confirming the selection of the best-

fitting viral genome sequence from quasispecies variants. In our work, the original amino acid leucine, 

which is non-polar (hydrophobic), is substituted by serine, which is polar and acidic. Hydrophobic 

patterns play an important role in protein structure (secondary and tertiary structures) and in protein-

protein interactions (Huang et al., 1996). 

  

Conclusions 

In this work, we demonstrated for the first time that mycovirus infection induces enhanced 

toxin production in the presence of AoV, a virus that likely has coevolved with its host. Our results 

provide valuable information regarding possible evolutionary and ecological advantages for AoV-

infected isolates. Mycovirus-mediated metabolite overproduction provides an additional parameter to 

exploit the production of secondary metabolites from fungi. In addition, these results reveal a new 

factor that must be considered when predicting OTA contamination in food and feed commodities. In 

fact, mycotoxin modulation should be considered on a case-by-case basis when considering 

mycoviruses as biological control agents, especially where myco-toxigenic fungi are considered 

targets. The beneficial effect of virus-associated hypovirulence could be countered by an increase in 

mycotoxin production.  
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11 Nerva et al. 

Material and methods  

Fungal maintenance 

The two A. ochraceus isolates (MUT2036 and MUT2096) were maintained on solidified 

Aspergillus complete medium (ACM) (Bhatti et al., 2011). For increased RNA yield and for AoV 

purification, fungi were cultured in liquid ACM at 26°C in a flask with shaking at 130 rpm for 48 to 

72 h. 

P. aurantiogriseum (MUT4330) was maintained on solidified CY medium (Nerva et al., 

2016). The large amounts of mycelia required for virus purification were grown in liquid CY media at 

26°C in a flask with shaking at 120 rpm for 72 h. 

 

Virus detection 

To detect the viral infection of A. ochraceus, dsRNA was isolated and analysed as described 

previously (Nerva et al., 2016).  

Isolated dsRNA was used as a template for cDNA synthesis, and the cDNA was then amplified 

by PCR using an anchored primer to generate random amplified fragments that were cloned and sub-

sequentially sequenced as previously described (Nerva et al., 2016). The sequences obtained were 

used in BLASTp searches against the non-redundant protein database. 

 

Protoplast transfection 

Partially purified virus particles from MUT4330 and MUT2096 were obtained using a 

differential centrifugation protocol (Nerva et al., 2016) and visualized by electron microscopy using 

carbon-formvar coated copper grids to confirm virion abundance.  

Protoplasts from MUT2036 were obtained following a previously described method (Tilburn 

et al., 1983) with minor modifications. An inoculum of 10
6
 to 10

7
 conidia was germinated in 

Aspergillus minimal medium (AMM) for 16 h. Mycelia were washed twice with 0.6 M MgSO4 and 

then re-suspended in 1.2 M MgSO4 (1 g in 5 ml), and the cell walls were digested with 1 mL Glucanex 

(Sigma-Aldrich, Saint Louis, MO, USA), 0.15 ml β-glucuronidase (Sigma-Aldrich) and 5 mg bovine 

serum albumin (Sigma-Aldrich, Saint Louis, MO, USA). The solution was shaken at 30°C and 100 

rpm for 120 min. Protoplasts were then filtered through a disposable sterile 30 µm mesh cell filter, 

washed twice in 1 M sorbitol (pH 7.5) and re-suspended in 500 µL 1 M sorbitol, 10 mM CaCl2 and 10 

mM Tris-HCl (pH 7.5). Using 100 µl aliquots of protoplasts, transfection was performed by adding 20 

µl virions to 1 mL of PEG solution (25% PEG 4000, 10 mM CaCl2 and 10 mM Tris-HCl pH 7.5). 

Protoplasts were incubated for 20 min; washed with 1 M sorbitol, 10 mM CaCl2 and 10 mM Tris-HCl 

(pH 7.5); and plated in solidifying AMM (36°C) supplemented with 1 M sucrose. 
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12 Nerva et al. 

Fifteen days after transfection, the regenerated colonies were transferred from 24-well plates 

and cultured on ACM. The regenerated colonies were then grown in 3.5 ml liquid ACM medium in 

12-well plates. Forty-eight hours post-inoculation, mycelia were harvested and lyophilized in 2 ml 

tubes for 24 h. A crude extract of the transfected cells was obtained by adding 0.5 mL glass beads (0.5 

mm diameter) and 1 mL TE buffer, followed by vigorous shaking with a FastPrep bead beater. The 

extract was then diluted 1:5 in sterile water and directly used as a template for RT-PCR amplification 

using TaqMan™ Fast Virus 1-Step Master Mix (Thermo Scientific, Waltham, MA, USA). 

Further confirmation of successful viral infection followed at least 5 subcultures of selected 

isolates. For this, total RNA was extracted from each transfected isolate, and northern blot analyses 

with radioactively labelled probes were performed as previously described (Nerva et al., 2017b; Nerva 

et al., 2017a) for the detection of both AoV and PaTV1. 

 

OTA quantification 

To test the OTA production capability, MUT2036 and MUT2096 were grown in 150 mm Petri 

dishes with 50 ml ACM medium with or without 20 mM CCl4 in the dark under static conditions at 

26°C for 6 days. Mycelia were then harvested, lyophilized and extracted with a three-step solid-liquid 

extraction by using 1.5 mL methanol:chloroform (1:2 v/v), ethyl acetate and 2-propanol, each for 30 

min in an ultrasonic bath. After each passage, the organic phase was collected in a flask. The final 

extract was evaporated to dryness in a rotary evaporator at 35°C. The residue was dissolved in 500 µL 

H2O:CH3CN (1:1 v/v) for HPLC-DAD analysis. The original standard for OTA (Merck KGaA; 

Darmstadt, Germany; purity ≥99%) was used for the identification by comparing retention time and 

the UV spectrum. The external calibration method was used. 

Nine biological replicates of each A. ochraceus isolate (MUT2036, T1, T3, T24, T20 and 

TH2O) were grown in 150 mm Petri dishes with 50 ml ACM supplemented with 20 mM carbon 

tetrachloride (CCl4) in the dark under static conditions at 26°C for 6 days. At the end of the growth 

period, the nine biological replicates of each isolate were pooled together three by three to minimize 

individual differences but to retain three distinct biological replicates for further analyses. Mycelia 

were lyophilized, and then 1 g of each replicate was extracted with the method described above and 

quantified using an HPLC-DAD apparatus. 

The HPLC apparatus was an Agilent 1220 Infinity LC system (Agilent®, Waldbronn, 

Germany) model G4290B equipped with a gradient pump, auto sampler, and column oven set at 30°C. 

A 170 Diode Array Detector (Gilson, Middleton, The USA) set at 230, 276, 300 and 330 nm was used 

as the detector. An XTerra Shield RP18 analytical column (150×4.6 mm i.d., 3.5 µm, Waters 

Corporation, MA, USA) was used. The mobile phases consisted of water acidified with formic acid 
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0.1% (A) and acetonitrile (B) at a flow rate of 0.800 mL/min in gradient mode, 0-5 min: 5% B, 5-45 

min: from 5% to 50% B, 45-60 min: from 50% to 80% B, and 60-70 min: from 80% to 100% B. 

Twenty microliters of each sample was injected and analysed. 

 

Phenotype evaluation 

The phenotypes of the virus-infected isolates T1, T3, T24 and T20 were compared with that of 

the isogenic virus-free TH2O isolate. Six different media (ACM, YES, YPD, MEA, CYA and CREA) 

were selected from those commonly used for Aspergillus spp. (Samson et al., 2004), and three 

different NaCl percentages (0%, 3% and 10%) were used, obtaining up to 18 different conditions. 

Each isolate was inoculated in three biological replicates, and each biological replicate was observed 

for pigmentation, conidiation, exudate production and colony diameter at 5 and 10 days post 

inoculation (dpi). A total of 270 colonies were measured. Colony diameters were measured on the 

reverse side of the plate in duplicate for each biological replicate. The average diameters and standard 

deviation were calculated for each isolate, and ANOVA and Tukey post hoc tests were used to assess 

statistical differences among isolates. 

Conidial counting was performed by harvesting conidia from each plate at the end of the 

growing experiment, using 2 ml water supplemented with 0.01% Tween 20. Each biological replicate 

was counted independently, and then statistical analyses were performed as described above. 

 

Viral genome re-sequencing 

The total RNA of isolates T1 and T20 was purified using the Total Spectrum RNA reagent 

(Sigma-Aldrich, Saint Louis, MO, USA), and RNA concentration was quantified with a NanoDrop 

1000 spectrophotometer. Ribosomal RNA (rRNAs) was depleted with the Ribo-Zero™ Gold kit 

(Epicentre, Madison, USA), and after library assembly, samples were sequenced in a single lane of 

Illumina NovaSeq (100 M, 100 bp, paired-end reads). The raw reads were then mapped against 

reference genomes using BWA (Li and Durbin, 2009) and SAMtools (Li et al., 2009) as previously 

described (Matsumura et al., 2017). Integrative Genomics Viewer was used for data visualization and 

exploration (Thorvaldsdottir et al., 2013). Nucleotide changes were annotated, and the ORF 

translation was analysed to identify amino acid changes. 

 

AoV quantification  

Total RNA from the previously obtained mycelia was extracted with Total Spectrum RNA 

reagent (Sigma-Aldrich). For each replicate of the six isolates, cDNA was synthetized following the 

manufacturer’s instructions provided for the High-Capacity cDNA Reverse Transcription kit (Applied 
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Biosystems). iTaq universal SYBR Green supermix (Bio-Rad) and specific primers (Supplementary 

Tab. 6) were then used to amplify β-tubulin (AoβTub), as a housekeeping gene, and the three viral 

RNAs. For each biological replicate, three technical replicates were analysed, and the relative 

quantification to MUT2036 was calculated using the 2
-Ct

 method (Livak & Schmittgen, 2001).  

 

OTA gene expression analysis 

Isolates MUT2036 and T1 were grown in OTA-inducing media as described above. Nine 

replicates for each isolate and time point (48 h, 96 h and 144 h) were pooled (three by three) to obtain 

three biological replicates for each isolate. Total RNA was extracted, cDNA was synthetized and iTaq 

universal SYBR Green supermix (Bio-Rad) with specific primers (Supplementary Tab. 6) was used to 

amplify four genes of the OTA metabolic pathway: AoOTApks1 (Wang et al., 2015), AoOTApks2 

(Wang et al., 2015), AoOTAP450 (Sartori et al., 2014), and AoOTAOxi1 (Sartori et al., 2014). β-

Tubulin (AoβTub) was used as a housekeeping gene. The relative quantification was calculated using 

the 2
-Ct

 method (Livak & Schmittgen, 2001); three technical replicates were run for each biological 

replicate, and the expression of transcripts was quantified after normalization to the expression of the 

housekeeping gene AoβTub. The results were calculated as an expression ratio (relative quantity, RQ) 

to MUT2036 at 48 h, as previously described (Chitarra et al., 2017). 

In addition, the presence of the selected genes in the fungal transcriptome was assessed using 

BLASTn with a custom database containing the nucleotide coding sequences. The threshold e-value 

was fixed at e
-20

 to retain only significant alignments. 

 

Statistical analysis 

Significant differences among isolates were statistically analysed by one-way ANOVA, and 

mean separation was done using Tukey’s post hoc test only when the ANOVA results were significant 

(P < 0.05). Significant differences in pairwise comparisons were assessed by Student’s t test. The 

SPSS statistical software package (version 22; SPSS) was used for statistical analyses. 

 

Author contributions 

L.N. designed the experiments, carried out the experiments and drafted the first manuscript. W.C. 

provided most of the material, helped refine the experimental setup and helped draft the 

manuscript. I.S. helped by designing and interpreting the HPLC experiments. M.C. and M.F. 

helped with experiments and data analysis. F.G. helped with data analysis and carefully reviewed 

the manuscript. G.C.V. carefully reviewed the manuscript and provided the original fungal 

isolates. M.T. supervised the experiments and edited the manuscript. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



15 Nerva et al. 

 

Competing Interests 

The authors declare that they have no conflicts of interest. This article does not contain any studies 

with human or animal participants. 

Acknowledgements  

We thank Lorenzo Lovat for his excellent technical assistance in HPLC experiments. 

 

 

REFERENCES 

Alberts, A.W. (1988) Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62: J10-J15. 

Allen, T.D., and Nuss, D.L. (2004) Linkage between mitochondrial hypovirulence and viral 

hypovirulence in the chestnut blight fungus revealed by cDNA microarray analysis. Eukaryot Cell 3: 

1227-1232. 

Allen, T.D., Dawe, A.L., and Nuss, D.L. (2003) Use of cDNA microarrays to monitor transcriptional 

responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating 

hypoviruses. Eukaryoti Cell 2: 1253-1265. 

Banks, G., Buck, K., Chain, E., Darbyshire, J.E., Himmelweit, F., Ratti, G. et al. (1970) Antiviral 

activity of double stranded RNA from a virus isolated from Aspergillus foetidus. Nature 227: 505-

507. 

Bentley, R., and Bennett, J.W. (2008) A ferment of fermentations: reflections on the production of 

commodity chemicals using microorganisms. Adv Appl Microbiol 63: 1-32. 

Bhatti, M.F., Jamal, A., Petrou, M.A., Cairns, T.C., Bignell, E.M., and Coutts, R.H. (2011) The effects 

of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol 

48: 1071-1075. 

Bostock, R.M. (2005) Signal crosstalk and induced resistance: straddling the line between cost and 

benefit. Annu Rev Phytopathol 43: 545-580. 

Calvo, A.M., Wilson, R.A., Bok, J.W., and Keller, N.P. (2002) Relationship between secondary 

metabolism and fungal development. Microbiol Mol Biol Rev 66: 447-459. 

Chiba, S., Lin, Y.H., Kondo, H., Kanematsu, S., and Suzuki, N. (2016) A novel betapartitivirus 

RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. 

Virus Res 219: 62-72. 

Chitarra, W., Perrone, I., Avanzato, C.G., Minio, A., Boccacci, P., Santini, D. et al. (2017) Grapevine 

Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. Front 

Plant Sci 8: 654. 

Cho, W.K., Yu, J., Lee, K.-M., Son, M., Min, K., Lee, Y.-W., and Kim, K.-H. (2012) Genome-wide 

expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium 

graminearum virus 1-DK21 infection. Bmc Genomics 13: 173. 

Cui, C.-M., Li, X.-M., Meng, L., Li, C.-S., Huang, C.-G., and Wang, B.-G. (2010) 7-Nor-

ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived 

endophytic Aspergillus ochraceus EN-31. J Nat Products 73: 1780-1784. 

Currie, J.N. (1917) The citric acid fermentation of Aspergillus niger. J Biol Chem 31: 15-37. 

Davis, N.D., Diener, U., and Eldridge, D. (1966) Production of aflatoxins B1 and G1 by Aspergillus 

flavus in a semisynthetic medium. Applied Microbiol 14: 378-380. 

Dawe, A.L., Van Voorhies, W.A., Lau, T.A., Ulanov, A.V., and Li, Z. (2009) Major impacts on the 

primary metabolism of the plant pathogen Cryphonectria parasitica by the virulence-attenuating virus 

CHV1-EP713. Microbiol 155: 3913-3921. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



16 Nerva et al. 

Domingo, E., and Holland, J. (1997) RNA virus mutations and fitness for survival. Ann Rev Microbiol 

51: 151-178. 

Domsch, K.H., Gams, W., and Anderson, T.-H. (1980) Compendium of soil fungi. Volume 1: 

Academic Press (London) Ltd. 

Eaton, D.L., and Gallagher, E.P. (1994) Mechanisms of aflatoxin carcinogenesis. Annu Rev 

Pharmacol Toxicol 34: 135-172. 

Elias, K.S., and Cotty, P.J. (1996) Incidence and stability of infection by double-stranded RNA 

genetic elements in Aspergillus section flavi and effects on aflatoxigenicity. Can J Botany 74: 716-

725. 

Elliston, J.E. (1985) Characterisation of dsRNA-free and dsRNA-containing strains of Endothia 

parasitica in relation to hypovirulence. Phytopathol 75: 151-158. 

European Commision, Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting 

maximum levels for certain contaminants in foodstuff. (2006R1881-EN-01.09. 2014-014.001-1, 

2006). 

Ghabrial, S.A., Castón, J.R., Jiang, D., Nibert, M.L., and Suzuki, N. (2015) 50-plus years of fungal 

viruses. Virol 479: 356-368. 

Harris, J.P., and Mantle, P.G. (2001) Biosynthesis of ochratoxins by Aspergillus ochraceus. 

Phytochemistry 58: 709-716. 

Hepting, G.H. (1974) Death of the American chestnut. J Forest Hist 18: 60-67. 

Hollings, M. (1962) Viruses associated with a die-back disease of cultivated mushroom. Nature 196: 

962-965. 

Hong, K.-J., Lee, C.-H., and Kim, S.W. (2004) Aspergillus oryzae GB-107 fermentation improves 

nutritional quality of food soybeans and feed soybean meals. J Med Food 7: 430-435. 

Huang, Enoch S., S. Subbiah, and Michael Levitt. (1995) Recognizing native folds by the arrangement 

of hydrophobic and polar residues.J Molec Biol 252.5: 709-720. 

Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Mycotoxins in 

Food. 2001; WHO Food Additivies Series 47; FAO Food and Nutrition Paper 74. 

Kanematsu, S., Sasaki, A., Onoue, M., Oikawa, Y., and Ito, T. (2010) Extending the Fungal Host 

Range of a Partitivirus and a Mycoreovirus from Rosellinia necatrix by Inoculation of Protoplasts with 

Virus Particles. Phytopathol 100: 922-930. 

Kazmierczak, P., McCabe, P., Turina, M., Jacob-Wilk, D., and Van Alfen, N.K. (2012) The 

Mycovirus CHV1 Disrupts Secretion of a Developmentally Regulated Protein in Cryphonectria 

parasitica. J Virol 86: 6067-6074. 

Kim, J.W., and Bozarth, R.F. (1985) Intergeneric occurrence of related fungal viruses: the Aspergillus 

ochraceous virus complex and its relationship to the Penicillium stoloniferum virus S. J Gen Virol 66: 

1991-2002. 

Kong, T. (1979) Biophysical and biochemical characteristics of viruslike particles in Aspergillus 

ochraceous. In. Indiana State University. 

Kotta-Loizou, I., and Coutts, R.H. (2017) Mycoviruses in Aspergilli: A Comprehensive Review. 

Front Microbiol 8: 1699. 

Li, H., and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics 25: 1754-1760. 

Li, H., Fu, Y., Jiang, D., Li, G., Ghabrial, S.A., and Yi, X. (2008) Down-regulation of Sclerotinia 

sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-

associated RNA virus. Virus Res 135: 95-106. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. et al. (2009) The Sequence 

Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079. 

Liu, W., Duns, G., and Chen, J. (2008) Genomic characterization of a novel partitivirus infecting 

Aspergillus ochraceus. Virus Genes 37: 322-327. 

Livak, Kenneth J., and Thomas D. Schmittgen. (2001)Analysis of relative gene expression data using 

real-time quantitative PCR and the 2− ΔΔCT method. methods 25.4: 402-408. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



17 Nerva et al. 

Magan, N., and Aldred, D. (2007) Why do fungi produce mycotoxins? 

Maplestone, R.A., Stone, M.J., and Williams, D.H. (1992) The evolutionary role of secondary 

metabolites—a review. Gene 115: 151-157. 

Matsumura, E.E., Coletta-Filho, H.D., Nouri, S., Falk, B.W., Nerva, L., Oliveira, T.S. et al. (2017) 

Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area 

reveals diverse known and putative novel viruses. Viruses 9: 92. 

Matsushima, K., Yashiro, K., Hanya, Y., Abe, K., Yabe, K., and Hamasaki, T. (2001) Absence of 

aflatoxin biosynthesis in koji mold (Aspergillus sojae). Applied Microbiol Biotechnol 55: 771-776. 

Meenupriya, J., and Thangaraj, M. (2011) Analytical characterization and structure elucidation of 

metabolites from Aspergillus ochraceus MP2 fungi. Asian Pac J Trop Biomed 1: 376-380. 

Mehle, A., Dugan, V. G., Taubenberger, J. K., & Doudna, J. A. Reassortment and mutation of the 

avian influenza virus polymerase PA subunit overcome species barriers. J Virol. 2012; 86.3: 1750-

1757. 

Michelin, M., Maria de Lourdes, T., Ruzene, D.S., Silva, D.P., Ruiz, H.A., Vicente, A.A. et al. (2012) 

Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal 

strains. Bioprocess Biosyst Eng 35: 1185-1192. 

Nerva, L., Varese, G.C., Falk, B.W., and Turina, M. (2017a) Mycoviruses of an endophytic fungus 

can replicate in plant cells: evolutionary implications. Sci Rep 7: 1908-1908. 

Nerva, L., Silvestri, A., Ciuffo, M., Palmano, S., Varese, G.C., and Turina, M. (2017b) Transmission 

of Penicillium aurantiogriseum partiti‐like virus 1 to a new fungal host (Cryphonectria parasitica) 

confers higher resistance to salinity and reveals adaptive genomic changes. Env Microbioly 19: 4480-

4492. 

Nerva, L., Ciuffo, M., Vallino, M., Margaria, P., Varese, G.C., Gnavi, G., and Turina, M. (2016) 

Multiple approaches for the detection and characterization of viral and plasmid symbionts from a 

collection of marine fungi. Virus Res 219: 22-38. 

Nuss, D.L. (1992) Biological-control of chestnut blight - an example of virus-mediated attenuation of 

fungal pathogenesis. Microbiological Rev 56: 561-576. 

Nuss, D.L. (2005) Hypovirulence: Mycoviruses at the fungal-plant interface. Nat Rev Microbiol 3: 

632-642. 

Nuss, D.L. (2010) Mycoviruses. In Cellular and Molecular Biology of Filamentous Fungi: American 

Society of Microbiology, pp. 145-152. 

Okada, R., Ichinose, S., Takeshita, K., Urayama, S.-i., Fukuhara, T., Komatsu, K. et al. (2018) 

Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: 

Down-regulation of host growth and up-regulation of host plant pathogenicity. Virol 519: 23-32. 

Özkan, S., and Coutts, R.H. (2015) Aspergillus fumigatus mycovirus causes mild hypervirulent effect 

on pathogenicity when tested on Galleria mellonella. Fungal Genet Biol 76: 20-26. 

Pardo, E., Marın, S., Sanchis, V., and Ramos, A. (2004) Prediction of fungal growth and ochratoxin A 

production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water 

activity. Int J Food Microbiol  95: 79-88. 

Patiño, B., González-Salgado, A., González-Jaén, M.T., and Vázquez, C. (2005) PCR detection assays 

for the ochratoxin-producing Aspergillus carbonarius and Aspergillus ochraceus species. International 

J Food Microbiol 104: 207-214. 

Pearson, M.N., Beever, R.E., Boine, B., and Arthur, K. (2009) Mycoviruses of filamentous fungi and 

their relevance to plant pathology. Mol Plant Pathol10: 115-128. 

Ratti, G., and Buck, K. (1972) Virus particles in Aspergillus foetidus: a multicomponent system. J  

Gen Virol 14: 165-175. 

Roossinck, M.J. (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9: 99-108. 

Samson, R.A., Hoekstra, E.S., and Frisvad, J.C. (2004) Introduction to food-and airborne fungi: 

Centraalbureau voor Schimmelcultures (CBS). 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



18 Nerva et al. 

Sartori, D., Massi, F.P., Ferranti, L.S., and Fungaro, M.H.P. (2014) Identification of genes 

differentially expressed between ochratoxin-producing and non-producing strains of Aspergillus 

westerdijkiae. Indian journal of microbiology 54: 41-45. 

Schmidt, F.R., Lemke, P.A., and Esser, K. (1986) Viral influences on aflatoxin formation by 

Aspergillus flavus. Applied Microbiol Biotechnol 24: 248-252. 

Selman, M., Dankar, S. K., Forbes, N. E., Jia, J. J., & Brown, E. G. Adaptive mutation in influenza A 

virus non-structural gene is linked to host switching and induces a novel protein by alternative 

splicing. Emerging microbes & infections, 2012; 1.11: e42. 

Silva, V.N., Durigon, E.L., Pires, M.d.F.C., Lourenço, A., Faria, M.J.d., and Corrêa, B. (2001) Time 

course of virus-like particles (VLPs) double-stranded rna accumulation in toxigenic and non-toxigenic 

strains of Aspergillus flavus. Braz J Microbiol 32: 56-60. 

Son, M., Yu, J., and Kim, K.-H. (2015) Five questions about mycoviruses. PLoS Path 11: e1005172. 

Stone, M., and Williams, D. (1992) On the evolution of functional secondary metabolites (natural 

products). Mol Microbiol 6: 29-34. 

Thorvaldsdottir, H., Robinson, J.T., and Mesirov, J.P. (2013) Integrative Genomics Viewer (IGV): 

high-performance genomics data visualization and exploration. Brief Bioinform 14: 178-192. 

Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., and Davies, 

R.W. (1983) Transformation by integration in Aspergillus nidulans. Gene 26: 205-221. 

van de Sande, W.W.J., Lo-Ten-Foe, J.R., van Belkum, A., Netea, M.G., Kullberg, B.J., and Vonk, 

A.G. (2010) Mycoviruses: future therapeutic agents of invasive fungal infections in humans? Eur J 

Clin Microbiol Infect Dis 29: 755-763. 

Varga, J., Kevei, F., Vágvölgyi, C., Vriesema, A., and Croft, J.H. (1994) Double-stranded RNA 

mycoviruses in section Nigri of the Aspergillus genus. Can J Microbiol 40: 325-329. 

Varga, J., Rinyu, E., Kevei, E., Toth, B., and Kozakiewicz, Z. (1998) Double-stranded RNA 

mycoviruses in species of Aspergillus sections Circumdati and Fumigati. Can J Microbiol 44: 569-

574. 

Vining, L.C. (1990) Functions of secondary metabolites. Ann Rev Microbiol 44: 395-427. 

Virgin, H.W. (2014) The virome in mammalian physiology and disease. Cell 157: 142-150. 

Wang, L., Wang, Y., Wang, Q., Liu, F., Selvaraj, J.N., Liu, L. et al. (2015) Functional characterization 

of new polyketide synthase genes involved in ochratoxin A biosynthesis in Aspergillus ochraceus fc-

1. Toxins 7: 2723-2738. 

Williams, D.H., Stone, M.J., Hauck, P.R., and Rahman, S.K. (1989) Why are secondary metabolites 

(natural products) biosynthesized? J Nat Prod 52: 1189-1208. 

Wu, F., Bui-Klimke, T., & Naumoff Shields, K. (2014). Potential economic and health impacts of 

ochratoxin A regulatory standards. World Mycotoxin Journal, 7(3), 387-398. 

 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



Nerva et al. 

 

FIGURE LEGENDS 

 

Figure 1. Northern blot analysis of total RNA extracted from MUT2036 and isogenic transfected 

isolates. In panel a, the probe matching the RdRP sequence of Aspergillus ochraceus virus (AoV) was 

used. Isolates T1, T3 and T24 had the same band as the positive control MUT2096 (used as the viral 

inoculum source). In panel b, the probe matching the RdRP of Penicillium aurantiogriseum totivirus 1 

(PaTV1) was used. Only isolate T20 showed evidence of infection (MUT4330 is the virion source 

used as a positive control). 

 

Figure 2. Ochratoxin A (OTA) quantification in MUT2036 and derived isolates. Isolates T1, T3 and 

T24 infected with Aspergillus ochraceus virus had an overproduction of OTA compared with that of 

MUT2036. Isolates TH2O (virus free) and T20 (infected with Penicillium aurantiogriseum totivirus 1) 

were not significantly different from the isogenic virus-free MUT2036. The lower-case letters above 

the bars denote significant differences according to Tukey's HSD test (P < 0.05). The data are 

expressed as the means ± SEs (n = 3). DW = dry weight. 

 

Figure 3. Quantification of Aspergillus ochraceus virus RNA1 (Panel a), RNA2 (Panel b) and RNA3 

(Panel c) in the different infected isolates. The lower-case letters above the bars denote significant 

differences according to Tukey's HSD test (P < 0.05). The data are expressed as the means ± SDs (n = 

3). 

 

Figure 4. Phenotype evaluation of virus-free (TH2O) and virus-infected isolates on YES media 10 

days post-inoculation. In panel a, isolate T20, harbouring Penicillium aurantiogriseum totivirus 1, had 

a lighter colony colour, an absence of exudate production and reduced conidiation. The reverse of the 

colony in panel b showed a lighter colour for isolate T20. 

 

Figure 5. Relative quantification of genes putatively involved in ochratoxin A production in the 

original MUT2036 isolate and in isolate T1 infected with Aspergillus ochraceus virus. Panel a: 

AoOTApks2, a polyketide synthase, shows no significant difference in expression between MUT2036 

and isolate T1. In panel b, AoOTAP450, an enzyme in the cytochrome P450 family, showed 

statistically different expression between the two isolates. Starting at 96 hours post inoculation (hpi), 

MUT2036 showed higher expression levels of AoOTAP450 than T1. In panel c, the oxygenase 

AoOTAOxi1 had an increase in transcript accumulation at 96 hpi, followed by a decrease at 144 hpi. 

The expression trend is similar for both isolates, but in MUT2036, expression was upregulated at 96 

hpi. The asterisks (*) denote significant differences supported by a two-tailed Student’s t test for each 

time point (P < 0.05). The data are expressed as the means ± SDs (n=3). 
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