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Abstract

This paper analyzes risk sharing in economies with no aggregate uncertainty when

agents have non-convex preferences. In particular, agents need not be globally risk-averse,

or uncertainty-averse in the sense of Schmeidler (1989). We identify a behavioral condi-

tion under which betting is inefficient (i.e., every Pareto-efficient allocation provides full

insurance, and conversely) if and only if agents’ supporting probabilities (defined as in

Rigotti, Shannon, and Strzalecki, 2008) have a non-empty intersection. Our condition is

consistent with empirical and experimental evidence documenting violations of convex-

ity in either outcomes or utilities. Our results show that the connection between spec-

ulative betting and inconsistent beliefs does not depend upon global notions of risk or

ambiguity aversion.

1 Introduction

Consider an exchange economy with a single consumption good and no aggregate uncer-

tainty. It is well understood that in such an economy risk-averse and (subjective) expected-
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utility-maximizing agents will choose to introduce individual uncertainty in the final alloca-

tion if and only if they have different beliefs. That is, betting can occur in equilibrium only if

agents disagree on the probabilities of some events (Milgrom and Stokey, 1982). At the same

time, it is also well understood that agents may not have unique probabilistic beliefs when

some events relevant for the economy are more ambiguous than others (Ellsberg, 1961). The

result on the connection between disagreement of beliefs and betting has been extended to

take this into account. For instance, Billot, Chateauneuf, Gilboa, and Tallon (2000) show that

risk-averse agents whose preferences satisfy the maxmin expected utility model of Gilboa and

Schmeidler (1989) will bet if and only if they do not share a belief ; i.e., if the sets of probabilities

that they employ (in the maxmin representation) do not intersect. This result has been sig-

nificantly extended by Rigotti et al. (2008, henceforth RSS). They showed that a similar result

holds for any collection of agents whose preferences are suitably well-behaved and, notably,

satisfy strict convexity in consumption: given any two contingent consumption plans f and

g , any nondegenerate convex combination1 α f +(1−α)g is (strictly) preferred to either plan.

In other words, agents have a (strict) preference for consumption smoothing across states.

Since these “risk-sharing2” results imply that, in equilibrium, agents will attain a state-

independent (i.e., maximally smooth) consumption profile, one may expect convexity to play

a key role. This paper shows that this is not the case. We identify a behavioral assumption

that is sufficient to deliver the equivalence between risk sharing and consistency of the agents’

“supporting probabilities” (defined below), but permits substantial departures from convexity

in consumption (though it is implied by it).

Loosely speaking, our assumption only restricts the preferences of agents who are fully

hedged against uncertainty. This allows for a broad range of attitudes towards risk and am-

biguity, and enables us to address many empirical, experimental, and theoretical concerns

about convexity. With expected-utility preferences and a single consumption good, convexity

1Note that convex combinations (here and in RSS) are not mixtures in the Anscombe and Aumann (1963)

sense: they are the usual vector-space notion. They represent convex combinations of consumption, not utilities.

2Strictly speaking, the noted no-betting results for MEU and more general preferences concern agents’ shar-

ing of risk and ambiguity, or more broadly uncertainty. We use the terminology “risk sharing,” rather than “un-

certainty sharing,” for consistency with the literature.
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in consumption characterizes risk aversion. Beyond expected utility, it implies a combination

of risk and ambiguity aversion (we will be more precise below). However, there is empirical

evidence that investment decisions are sometimes risk-seeking, either because of intrinsic

preferences (e.g., Kumar, 2009), or due to the nature of incentive contracts for fund managers

(e.g., Chevalier and Ellison, 1997). In the context of insurance decisions, Wakker, Timmer-

mans, and Machielse (2007) documents ambiguity-seeking behavior; for similar findings in

asset markets, see Brenner and Izhakian (2012).

In experimental settings, the classic findings of Curley and Yates (1985) and Heath and

Tversky (1991) raise questions about the pervasiveness of aversion to ambiguity (broadly de-

fined). More recent papers cast doubts on the specific formalization of uncertainty aversion

as convexity in utilities, due to Schmeidler (1989). To elaborate, most parametric representa-

tions of ambiguity-sensitive preferences associate with each contingent consumption bundle

f = ( f1, . . . , fS ) a utility index I (u ( f )), where u ( f ) =
�
u ( f1), . . . , u ( fS )

�
is the state-contingent util-

ity vector associated with f and I is a function defined over utility vectors.3 Schmeidler (1989)

defines “uncertainty aversion” as quasiconcavity of I (hence, convexity in the induced prefer-

ences over state-contingent utility vectors). However, L’Haridon and Placido (2010) document

patterns of behavior that, while intuitively consistent with aversion to ambiguity, cannot be

represented by a utility index of the form f 7→ I (u ( f )), if I is quasiconcave and consistent with

EU for unambiguous bundles f (Baillon, L’Haridon, and Placido, 2011).

Finally, from a theoretical perspective, the connection between convexity and aversion

to risk or ambiguity is not clear-cut. For preferences that are probabilistically sophisticated

(Machina and Schmeidler, 1992) but not EU, intuitive notions of risk aversion do not imply

convexity in consumption (though they are implied by it): see e.g. Dekel (1989). For pref-

erences that are not probabilistically sophisticated, Epstein (1999) and Ghirardato and Mari-

nacci (2002, henceforth GM) question the identification of ambiguity aversion with convexity

in utilities, as do Baillon et al. (2011), and provide alternative definitions.4

We illustrate how our results address these concerns by means of three examples in Sec-

3In particular, all parametric representations analyzed in of RSS (see their Section 2.4) have this form, with u

strictly concave.

4We provide GM’s definition in Appendix C.
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tion 2. First, we exhibit an Edgeworth-box economy in which agents are “locally” risk- and

ambiguity-seeking at their endowment point (which is uncertain). This is a stylized environ-

ment in which behavior is consistent with the experimental evidence described above on local

departures from risk and ambiguity aversion. The example shows that our results apply, and

equilibrium entails full risk-sharing. Second, we exhibit a probabilistically-sophisticated non-

EU preference (based on Dekel, 1989) that is risk-averse but not convex in consumption, yet

satisfies our key behavioral condition. Third, we exhibit a preference that is ambiguity-averse

in the sense of GM (henceforth, “GM-ambiguity averse”) and can accommodate the behav-

ior documented in L’Haridon and Placido (2010) (and hence violates convexity). Once again,

our condition is satisfied for this preference. These examples demonstrate that, as claimed

above, our key behavioral assumption is consistent with a wide range of attitudes toward risk

and ambigity. Furthermore, they show that risk sharing may still obtain despite significant

departures from convexity in consumption.

We now describe our main results in greater detail. As noted above, under our condition,

betting obtains if and only if agents’ “supporting probabilities” are inconsistent. The notion

of supporting probabilities coincides with RSS’s definition of “subjective beliefs as supporting

price vectors.5” In general, supporting probabilities may be different at different consumption

bundles; RSS employ an axiom that ensures that they are costant across riskless consump-

tions. Our main risk-sharing result (Theorem 3) does not adopt this assumption;6 however, to

facilitate comparison with RSS, we also provide one that does (Theorem 4).

The condition we propose, strict pseudoconcavity at certainty, (SPC), admits geometric,

economic, and decision-theoretic interpretations.7 Suppose there are two states, and con-

sider a constant consumption bundle that yields x units of the good in each state. Suppose

further that the indifference curve through x is smooth at x .8 Then, geometrically, SPC re-

5Our terminology avoids the use of the word “belief,” which—because we adopt weaker behavioral assump-

tions than RSS—may be debated by some.

6We discuss how this difference affects the conditions for betting to be inefficient in Section 4.

7See Remark 1 and the ensuing discussion for details.

8Without smoothness, SPC is a condition on the elements of the Clarke (1983) differential of the representa-

tion at certainty. If preferences are convex, the Clarke subdifferential coincides with the convex-analysis differ-

ential, and SPC follows from strict convexity (Proposition 2).
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quires that the entire indifference curve through x lie strictly above the tangent line. A natural

economic interpretation is that, if the tangent at x is viewed as a budget line, then any point

in the budget set is strictly worse than x . From a decision-theoretic perspective, SPC requires

a (weak) form of “risk aversion at x :” the individual strictly prefers x to any other bundle f for

which P · f = x , where P is the probability corresponding to the slope of the indifference curve

at x . Moreover, again if indifference curves are smooth at certainty, SPC admits a straightfor-

ward preference characterization that further clarifies its relationship with aversion to risk

and uncertainty: see Proposition 2. For general preferences, a stronger behavioral condition

is needed: see Appendix B. On the other hand, in Appendix C and in Online Appendix E.3 we

provide some details on the relationship of SPC to other notions of aversion to ambiguity.

This paper is organized as follows. Section 2 provides examples of non-convex preferences

that satisfy our assumptions. Section 3 introduces the formal setup. Section 4 contains the

main risk-sharing results. Section 5 provides a sketch of the proof of Theorems 3 and 4, and

contains additional results. Section 6 illustrates how condition SPC can be obtained for a spe-

cific parametric representation of preferences that we use in some of our examples and is not

covered by RSS’s results; this is generalized in Appendix C to all representation of the form

I (u ( f )), with u strictly concave. Appendix A contains further examples, and Appendix B pro-

vides a behavioral characterization of condition SPC. All proofs are in Appendix D. The Online

Appendix contains detailed calculations for the examples, additional examples, and an anal-

ysis of the connection between SPC and notions of ambiguity aversion in the literature.

Related literature The relation with RSS and Billot et al. (2000) has already been discussed.

A more detailed comparison of the differences between our analysis and the one in RSS can

be found at the end of Section 5. We note that these papers allow for an arbitrary state space;

for simplicity, we restrict attention to finite states.

Strzalecki and Werner (2011) extend and adapt the risk-sharing results in RSS to economies

with aggregate uncertainty and convex preferences. An investigation of risk sharing in economies

with aggregate uncertainty and non-convex preferences is left to future research.

Araujo, Chateauneuf, Gama-Torres, and Novinski (2014) study the existence of equilibrium

in economies with aggregate uncertainty, where both uncertainty-averse and uncertainty-
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loving agents are present. They also study equilibrium risk sharing. Araujo, Bonnisseau, Chateauneuf,

and Novinski (2015) study the existence of Pareto optima, and provide examples and results

about risk sharing among risk-loving and risk-averse agents who are probabilistically sophis-

ticated. Similarly, Assa (2015) studies risk sharing among agents with Choquet preferences

whose capacities are non-convex distortions of a common probability. Our analysis is com-

plementary; we do not require any agent to be globally uncertainty-averse, and do not require

the presence of uncertainty-loving agents. Indeed condition SPC is inconsistent with global

uncertainty appeal. Furthermore, we do not assume probabilistic sophistication.

Billot, Chateauneuf, Gilboa, and Tallon (2002) provide a version of Proposition 18 for Choquet-

expected utility preferences (CEU; Schmeidler, 1989). They also prove a risk-sharing result for

such preferences that does not assume convexity (or SPC) but requires large economies, with

a continuum of agents of each “type.”

Dominiak, Eichberger, and Lefort (2012) consider an economy with two CEU agents and

riskless (full-insurance) endowments, extending the prior analysis of Kajii and Ui (2006) which

assumed convexity. They provide a condition which is necessary and sufficient for the non-

existence of Pareto-improving trades. Their analysis relies on the fact that there are only two

agents in the economy, whose initial endowment is constant; on the other hand, it does not

require either convexity or pointwise ambiguity aversion.

Marinacci and Pesce (2013) consider preferences that are both GM-ambiguity averse and

invariant biseparable (Ghirardato, Maccheroni, and Marinacci, 2004). They study the im-

pact of changes in GM-ambiguity aversion on efficient and equilibrium allocations. Though

they do not focus on risk sharing, they independently derive a version of our Proposition 7.

Chateauneuf, Dana, and Tallon (2000) obtain a similar result for the special case of CEU pref-

erences. See however Example 4 in Appendix A on the implications of invariant biseparability.

There is a large literature on equilibrium analysis with non-convexities. For a survey that

focuses on non-convex production sets, see Brown (1991). Our proof of Proposition 5 employs

a result by Bonnisseau and Cornet (1988) that allows for non-convexities in consumption. An

alternative approach to circumvent violations of convexity is to consider large economies (see

e.g. Mas-Colell, Whinston, and Green, 1995, §17.I); we do not follow this approch, and instead

consider a fixed, finite number of agents.
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Finally, Ghirardato and Siniscalchi (2012) provides a behavioral foundation for the analysis

in the present paper. Leveraging the results therein, Appendix B in this paper characterizes

condition SPC in terms of the agent’s preferences.

2 Risk sharing without convexity: examples

The following examples illustrate that our key behavioral assumption, condition SPC, is con-

sistent with a wide range of attitudes toward risk and ambigity. They also show that risk shar-

ing may still obtain despite significant departures from convexity in consumption.

The first example (Section 2.1) demonstrates that risk sharing can obtain in an economy

in which agents are ambiguity-seeking (their indifference curves are locally concave) near the

endowment point, which is non-constant. The second example (Section 2.2) describes a prob-

abilistically sophisticated, risk-averse non-EU preference that does not satisfy convexity in

consumption, but satisfies condition SPC. The third example (Section 2.3) describes a prefer-

ence that is GM-ambiguity averse,9 though not ambiguity-averse in the sense of Schmeidler

(1989), and can thus account for the behavior in the reflection example of Machina (2009);

again, condition SPC holds, whereas convexity in consumption fails.

In all three examples, as in the rest of the paper, we consider a finite state space S and

preferences over contingent consumption bundles f ∈RS
+.

2.1 Risk- and ambiguity-seeking behavior near the endowment point

We begin with a graphical illustration. Consider the single-good, two-state Edgeworth-box

economy of Fig. 1. The endowment pointω is the midpoint between the allocations f and g ,

and lies below Agent 1’s indifference curve going through these points. In particular, starting

atω, Agent 1 would strictly prefer to carry out the trade g −ω and move to g , even though this

entails increasing the volatility of her consumption across the two states.

Despite this, preferences are such that the only points of tangency between 1’s and 2’s in-

difference curves are along the certainty line. Thus, at every efficient allocation, agents fully

9Indeed the preferences in all three examples of this section are GM-ambiguity averse.
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Figure 1: An economy with locally ambiguity-seeking agents

insure one another, i.e., they share risks. By the First Welfare Theorem, this holds a fortiori for

all equilibrium allocations.

We now describe the preferences in Fig. 1 analytically. Both agents have VEU preferences

(Siniscalchi, 2009), which are not necessarily convex:

V ( f ) =
∑
s∈S

Ps u ( fs ) +A

�∑
s∈S

Psζ0,s u ( fs ), . . . ,
∑
s∈S

PsζJ−1,s u ( fs )

�
, (1)

where u is a strictly increasing, differentiable, and strictly concave Bernoulli utility function,

P ∈∆(S ) is the baseline prior, ζ0, . . . ,ζJ−1 ∈RS are adjustment factors that satisfy
∑

s Psζ j ,s = 0

for each j , and A :RJ →R (the adjustment function) satisfies A(φ) = A(−φ) for allφ ∈RJ .

We show in Proposition 9 that, if the adjustment function A is also smooth and non-positive,

and an additional joint assumption on P,ζ, and A holds, the functional V thus defined sat-

isfies all the assumptions of Theorem 4, our stronger risk-sharing result. Furthermore, the

set of supporting probabilities consists of a single element, the baseline prior P . Thus, in an

economy in which all agents have such VEU preferences, with possibly different parameters,
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risk-sharing obtains if and only if they have a common baseline prior.

Figure 1 is obtained using the following parameterization: for both agents, P is uniform,

J = 1, ζ0 ≡ ζ= [−1, 1], and the adjustment function takes the form

A(φ) =−1

2
θ log

�
1+
φ2

θ

�

where θ ∈ (0, 4); note that A ≤ 0. The two agents differ in the value of θ , and in their utility

function u ; in Fig. 1, θ1 = 3 and u1(x ) = x 0.9 for agent 1, and θ2 = 3.5 and u2(x ) = x 0.95 for agent

2. This parameterization satisfies all the assumptions of Proposition 9: see Appendix E.2.

The example in Section 2.3 below employs the same class of VEU preferences, and dis-

cusses its properties further.

2.2 Probabilistically sophisticated, non-expected utility preferences

This example is based upon the proof of Proposition 1 in Dekel (1989). Fix a probability dis-

tribution P over the state space S , and consider the preferences represented by

V ( f ) = g

�∑
s

Ps u ( fs )

�
+ g

�∑
s

Ps fs

�
, (2)

where u :R+→R is strictly increasing and strictly concave, and g :R+ ∪{u (r ) : r ∈R+}→R is

strictly increasing and differentiable.

These preferences are probabilistically sophisticated and risk-averse, in the (strong) sense

that they exhibit aversion to mean-preserving spreads. To see this, letD be the set of all cumu-

lative distribution functions (CDFs) on [0,∞), and define a functional W :D→R by letting

W (F ) = g

�∫
u (x )d F (x )

�
+ g

�∫
x d F (x )

�
.

Then, for every bundle f ∈RS
+, V ( f ) =W (Ff ), where Ff is the CDF induced by f and the prob-

ability P by letting Ff (x ) = P ({s : f (s )≤ x }). Thus, a decision-maker with the preferences rep-

resented by Eq. (2) reduces uncertainty to risk. Online Appendix E.1 shows that the functional

W satisfies monotonicity with respect to first-order stochastic dominance, a suitable form of

continuity, and aversion to mean-preserving spreads.10 Furthermore, suitable specifications

of u and g can accommodate Allais-type behavior.

10Dekel (1989, Proposition 1) shows this for CDFs on a compact interval [0, M ]. Since the set of consumption

levels is unbounded above in the present paper, for completeness we extend the results in the Appendix.
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The preferences in Equation (2) satisfy our condition SPC. We show in Online Appendix E.1

that, given any strictly concave u and strictly increasing g , the Clarke subdifferential of V at

every constant bundle x is a multiple of the probability vector P . It then suffices to show that,

for every non-constant bundle f , if x = P · f , then V ( f )<V (x ) (see Remark 1). But this follows

from Jensen’s inequality, because u is strictly concave and g is strictly increasing:
∑

s u ( fs )Ps <

u (x ), and so V ( f ) = g (
∑

s Ps u ( fs )) + g (P · f ) < g (u (x )) + g (x ) = V (1S x ). Hence, Theorem 3

implies that agents with preferences as in Equation (2) (but possibly different functions u and

g ) will engage in mutually beneficial bets if and only if their beliefs P differ.

However, some parametric specifications within this class do not satisfy convexity in con-

sumption. For instance, the indifference curves in Figure 2 are drawn for a two-point state

space, with u (x ) a positive affine transformation11 of − 1
1+x , P uniform, and g (r ) = e 2(r−3).

1.0 2.0 3.0 4.0 5.0

1.0

2.0

3.0

4.0

5.0

Figure 2: Risk-averse, non-convex preferences (see §2.2)

11Similarly to the construction in Dekel (1989), we fix two bundles f1, f2 such that P · f1 > P · f2 and f2 is strictly

preferred to f1 by an EU decision maker with beliefs P and utility v (x ) = − 1
1+x . To obtain u , we normalize v so

that P ·u ◦ f1 = P · f2 and P ·u ◦ f2 = P · f1.
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2.3 Machina’s reflection paradox

Consider the family of VEU preferences in Eq. (1). As illustrated in Section 2.1, these pref-

erences are not necessarily convex in either consumption or utility; however, under suitable

assumptions on the parameters P,ζ, A, they satisfy the assumptions of our risk-sharing re-

sults. We now demonstrate that these preferences can accommodate the modal preferences

in the “reflection example” of Machina (2009) (see also L’Haridon and Placido, 2010; Baillon

et al., 2011). Let S = {s1, s2, s3, s4} and assume that the events {s1, s2} and {s3, s4} are unambigu-

ous and equally likely, but no further information is provided as to the relative likelihood of

s1 vs. s2 and s3 vs. s4. Furthermore, the draw of s1 vs. s2 and s3 vs. s4 are perceived as being

independent. Consider the bets in Table 1.

s1 s2 s3 s4

f 1 $4,000 $8,000 $4,000 $0

f 2 $4,000 $4,000 $8,000 $0

f 3 $0 $8,000 $4,000 $4,000

f 4 $0 $4,000 $8,000 $4,000

Table 1: Machina’s reflection example. Reasonable preferences: f 1 ≺ f 2 and f 3 � f 4

Machina (2009) argues on the basis of symmetry considerations that the preference rank-

ing f 1 ≺ f 2 and f 3 � f 4 is plausible and intuitively consistent with aversion to ambiguity;

L’Haridon and Placido (2010) verify that these rankings do occur in an experimental setting.

However, Baillon et al. (2011) show that this behavior cannot be accommodated by prefer-

ence models that satisfy uncertainty aversion a la Schmeidler (1989), and (a) are consistent

with EU in the absence of ambiguity, and (b) respect the symmetry of betting preferences in

this example (e.g., s1 and s2 are deemed equally likely and ambiguous, etc.). We now provide

a parameterization of the VEU preferences in Eq. (1) that does generate these rankings, and

is consistent with (a) and (b). The parameterization we provide is also consistent with GM’s

“comparative” notion of aversion to ambiguity.12

12A similar example is provided in Siniscalchi (2009), but the VEU preferences described therein are not smooth

and violate SPC, our main preference assumption.
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Assume a uniform baseline prior P and two adjustment factors ζ0,ζ1 ∈RS :

ζ0 = [1,−1, 0, 0] and ζ1 = [0, 0, 1,−1].

The adjustment function is a two-factor analog of the one considered in Section 2.1:

A(φ) = A(φ0,φ1) =−
1

2
θ
∑
j=0,1

log

�
1+
φ2

j

θ

�

where θ ∈ (0, 4). Finally, let u (0) = 0, u (8, 000) = 4, and u (4, 000) = 4α, for some α ∈ ( 12 , 1).

Appendix E.2 shows that this specification of the parameters P, A,ζ0,ζ1 yields a strictly mono-

tonic preference. Furthermore, while this parameterization does not satisfy the Uncertainty

Aversion axiom of Schmeidler (1989), it is ambiguity-averse in the sense of GM: see Siniscalchi

(2009), Proposition 2.13 Finally, Appendix E.2 shows that the rankings f 1 ≺ f 2 and f 3 � f 4 ob-

tain iff 0<θ < α(1−α)
2 .

3 Setup

We consider an Arrow-Debreu economy with finitely many states S , no aggregate uncertainty,

a single good that can be consumed in non-negative quantity, and N consumers.

3.1 Decision-theoretic assumptions

We begin by describing consumers’ preferences. To simplify notation, in this section we do

not use consumer indices. We complete the description of the economy in section 3.2.

Behavior is described by a preference relation ¼ over bundles (contingent consumption

plans) f ∈ RS
+. We assume that ¼ is represented by a function V : RS

+ → R: that is, for every

pair f , g ∈RS
+, f ¼ g if and only if V ( f )≥V (g ).

Given n ≥ 1, an open subset B ofRn , and a function F : B →R, the Clarke subdifferential

of F at b ∈ B (Clarke, 1983) is

∂ F (b ) = cl conv
n

lim
k→∞

d k : ∃(b k )→ b such that d k =∇F (b k )∀k
o

. (3)

13For VEU preferences, A ≤ 0 characterizes preferences that are ambiguity-averse in the sense of GM; on the

other hand, uncertainty aversion (convexity) requires that A be non-positive and concave.
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That is, ∂ F (b ) is the set of all limits of gradients of the function F , taken along sequences

(b k ) for which∇F (b k ) exists for all k .14 The Clarke subdifferential is non-empty at any b ∈ B

where F is locally Lipschitz. If F is monotonic,15 then its Clarke subdifferential consists of

non-negative vectors (cf. e.g. Rockafellar, 1980, Theorem 6, Corollary 3). Appendix D.1 pro-

vides additional results on the characterization of Clarke subdifferentials. Finally, a function

F : B → R , with B ⊂ Rn open, is nice at b ∈ B if (0, . . . , 0) 6∈ ∂ F (b ). Loosely speaking, nice-

ness is a form of “infinitesimal non-satiation;” in the differentiable case, it means that F has

a non-zero gradient at b .

We summarize our basic decision-theoretic assumptions in the following:

Assumption 1 The relation ¼ admits a representation V satisfying the following properties:

1. V is strongly monotonic: that is, f ≥ g and f 6= g imply V ( f )>V (g );

2. V is locally Lipschitz at every f ∈RS
++.

Ghirardato and Siniscalchi (2012) (henceforth GS) argue that most parametric models of

ambiguity-sensitive preferences admit a representation where V satisfies property 2; for in-

stance, this is the case if V is monotonic and concave, or if it is constant-additive.16 GS also

provide axioms that ensure the existence of a locally Lipschitz representation; see Appendix

B for details. Since strong monotonicity can clearly be expressed in terms of preferences, it

follows that all of the requirements in Assumption 1 admit a behavioral characterization.

RSS identify a set of measures that plays a key role in the analysis of risk sharing. Denote

by∆(S ) the unit simplex in RS . For every f ∈RS
+, let

π( f ) = {P ∈∆(S ) :∀g ∈RS
+, V (g )≥V ( f ) =⇒ P · g ≥ P · f }. (4)

That is, π( f ) is the set of (normalized) prices such that any bundle that is weakly preferred

to f is not less expensive than f . This is the usual notion of “quasi-optimality” in equilib-

14This is well-posed because, by Rademacher’s theorem, if F is Lipschitz in an open neighborhood of b , it is

differentiable almost everywhere on that neighborhood; see Clarke (1983), p. 63.

15That is, g ≥ g ′ implies F (g )≥ F (g ′).
16V is constant-additive if, for every act f and constant x , V ( f +1S x ) =V ( f ) + x .
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rium theory. Alternatively, we can interpret each P ∈ π( f ) as representing a risk-neutral SEU

preference whose better-than set at f contains the better-than set of ¼ at f .

RSS refer toπ( f ) as the agent’s “subjective beliefs.” Since we make weaker assumptions on

preferences than RSS, we adopt the more neutral terminology supporting probabilities.

3.2 The economy

An economy is a tuple (N , (¼i ,ωi )i∈N ), where N is the collection of agents, and for every i ,

agent i is characterized by preferences ¼i overRS
+ and has an endowmentωi ∈RS

+. As in RSS,

we assume that there is no aggregate uncertainty: formally,
∑

iωi = 1S x̄ for some x̄ > 0.

An allocation is a tuple ( f1, . . . , fN ) such that fi ∈ RS
+ for each i ∈ N ; as usual fi is the

contingent-consumption bundle assigned to agent i . The allocation ( f1, . . . , fN ) is feasible if
∑

i fi =
∑

iωi ; it is a full-insurance allocation if, for every consumer i , fi = 1S xi for some

xi ∈R+; it is Pareto-efficient if it is feasible, and there is no other feasible allocation (g1, . . . , gN )

such that g ¼ f for all i , and g j � j f j for some j .

For each i ∈N , we denote by Vi and, respectively,πi (·) the representation of i ’s preferences

and her sets of supporting probabilities.

4 Risk Sharing

To begin, it is useful to restate the main result of RSS for convex preferences.17 For complete-

ness, recall that a preference ¼ is strictly convex if, for all bundles f , g ∈RS
+ with f 6= g , f ¼ g

impliesα f +(1−α)g � g for allα ∈ (0, 1), or, equivalently, if the representation V of¼ is strictly

quasiconcave: that is, f 6= g and V ( f )≥V (g ) imply V (λ f + (1−λ)g )>V (g ) for all λ ∈ (0, 1).

Theorem 1 (cf. RSS, Proposition 9) Suppose that, for each i ∈ N , Assumption 1 holds, and

that furthermore ¼i is strictly convex and πi (1S x ) =πi (1S ) for every x > 0. Then the following

17Strictly speaking, the assumptions in Theorem 1 are slightly stronger than those in RSS’s Proposition 9.

Specifically, we maintain the assumption that each Vi is locally Lipschitz; RSS only assume continuity. We re-

tain all our assumptions to streamline the exposition. Also note that all the parametric representations analyzed

in RSS are concave, hence locally Lipschitz.
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are equivalent:

(i) There exists an interior, full-insurance Pareto-efficient allocation;

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;

(iv)
⋂

i πi (1S ) 6= ;.

The implications (ii)⇒ (iii)⇒ (i) hold for all strongly monotonic and continuous prefer-

ences.18 However, the implication (i)⇒ (iv) is proved by invoking the Second Welfare Theo-

rem, which requires convexity. RSS’s argument for (iv)⇒ (ii) also invokes strict convexity.

We now introduce our main assumption on preferences.

Definition 1 The function V is strictly pseudoconcave at f ∈RS
++ if

∀g ∈RS
+ \ { f }, V (g )≥V ( f ) =⇒ ∀Q ∈ ∂ V ( f ), Q · (g − f )> 0. (5)

The functional V satisfies strict pseudoconcavity at certainty (SPC) if it is strictly pseudo-

concave at 1S x for all x > 0.

The intuition for this condition is sharpest in case V is continuously differentiable at a

point f , in which case the Clarke subdifferential equals the gradient of V at f . Then, V is

strictly pseudoconcave at f if, whenever a bundle g is weakly preferred to f , moving from

f in the direction of g by a small (infinitesimal) amount is strictly beneficial. Appendix B

provides a behavioral characterization of strict pseudoconcavity that formalizes this intuition

leveraging Theorem 7 in GS.19

In the Introduction we described alternative intepretations of condition SPC. These build

upon the following characterization:

Remark 1 If V is monotonic and locally Lipschitz at f ∈RS
++, then it is strictly pseudoconcave

at f if and only if

∀g ∈RS
+ \ { f }, ∀Q ∈ ∂ V ( f ) : Q · g =Q · f =⇒ V (g )<V ( f ). (6)

18For (ii)⇒ (iii), the key step is in Remark 4, which follows from standard results.

19The notion of (non-strict) pseudoconcavity was introduced by Mangasarian (1965) for differentiable func-

tions; for a definition of (strict) pseudoconvexity for non-smooth functions and related results, see e.g. Penot

and Quang (1997).
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Furthermore, if V is monotonic, locally Lipschitz and strictly pseudoconcave at f , then V is

nice at f .

Thus, first, the hyperplane associated with the vector Q and going through f is tangent to

the indifference curve of V going through f , and strictly supports it. Second, interpreting Q

as a price vector, any point on the associated budget line (hence, by monotonicity, any point

in the budget set) is strictly worse than f . Third, in the special case of a constant bundle

f = 1S x , for every Q ∈ ∂ V (1S x ), if one interprets the normalized vector P = Q/(Q · 1S ) as a

“local probability,” then any bundle g with P -expected value x is worse than x . This can be

interpreted as a form of “risk aversion at 1S x .20”

As these interpretations suggest, strict pseudoconcavity at f is not just a local condition.

It connects the local behavior of V at f , represented by the Clarke subdifferential ∂ V ( f ), with

its global behavior: notice that g can be any bundle, not necessarily close to f . However, the

condition is imposed on a specific bundle f ; in particular, SPC requires that it hold for all

constant bundles. This is in contrast with (strict) quasiconcavity, which imposes a restriction

on every pair of bundles.

To further illustrate, the following result shows that condition SPC holds in particular when

preferences are strictly convex, as is assumed in RSS’s risk-sharing result. It also provides a

simple preference characterization that applies if V is smooth at a point; this result further

clarifies the connection with quasiconcavity.

Proposition 2 Suppose that V satisfies Assumption 1.

1. If V is strictly quasiconcave, then it is strictly pseudoconcave at every f ∈RS
++ where it

is nice.21 In particular, SPC holds if and only if V is nice at 1S x for every x > 0.

2. If V is strictly pseudoconcave at f ∈RS
++, then for every g ∈RS

+ \ { f },

V (g )≥V ( f ) =⇒ ∃λ̄ ∈ (0, 1) : ∀λ ∈ (0, λ̄), V (λg + (1−λ) f )>V ( f ). (7)

20Under condition SPC, for every x > 0, the set π(1S x ) coincides with the collection of normalized vectors

P = Q/(Q · 1S ), Q ∈ ∂ V (1S x ): see Proposition 8 in Section 5. Thus, the interpretation just given applies to the

elements of π(1S x ) as well.

21For the converse implication, Penot and Quang (1997) show that a locally Lipschitz function on a Banach

space that satisfies strict pseudoconcavity everywhere is strictly quasiconcave.
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3. If V is continuously differentiable on a neighborhood of f ∈ RS
++ and ∇V ( f ) 6= 0 , then

it is strictly pseudoconcave at f if and only if Eq. (7) holds for all g ∈RS
+ \ { f }.

Thus, under niceness, assuming global strict quasiconcavity ensures that condition SPC holds.

However, condition SPC restricts the behavior of the functional V and of its differential only

at certainty. This allows for violations of (strict or weak) quasiconcavity elsewhere on its do-

main. As the example in Section 2.3 illustrates, such violations are consistent with interesting

patterns of behavior. We provide additional examples in Appendix A.

Eq. (7) states that, if g is preferred to f , then a version of strict quasiconcavity holds around

f : mixtures of g and f are strictly preferred to f when the weight on g is small. Strict pseu-

doconcavity at f always implies this condition, and under smoothness, it is equivalent to it.22

However, many popular models of ambiguity-sensitive preferences are not smooth, especially

at certainty. The notion of strict pseudoconcavity is stronger than Eq. (7) (see Example 5 in

Online Appendix E.4) and allows us to handle non-smooth preferences as well. For further

discussion, see Appendix B, where we provide a behavioral characterization of strict pseudo-

concavity for general preferences.

We can now state our main result.

Theorem 3 Suppose that, for each i ∈ N , Assumption 1 holds, and furthermore Vi satisfies

SPC. Then the following are equivalent:

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;

(iv) For every feasible, full insurance allocation (1S x1, . . . , 1S xN ),

⋂
i

πi (1S xi ) 6= ;.

Furthermore, under the above equivalent conditions, every interior, feasible full-insurance

allocation is a competitive equilibrium with transfers.

Items (ii)–(iv) in the statement above correspond to items (ii)–(iv) in Theorem 1. This num-

bering is intentional: (i) no longer implies the other conditions. See Example 6 in Appendix

E.5 for further discussion.

22We thank an anonymous referee for suggesting this condition.
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In addition to replacing strict convexity with condition SPC, Theorem 3 differs from RSS’s

risk-sharing result in two related aspects. On one hand, RSS assume that the sets of support-

ing probabilities πi (1S xi ) are constant at certainty; there is no corresponding assumption in

Theorem 3 (cf. Example 7 in Appendix E.5). On the other hand, the condition in item (iv) of

Theorem 1 (RSS’s result) involves agents’ preferences alone, whereas condition (iv) in Theo-

rem 3 involves both preferences and endowments—agents’ sets of supporting probabilities

must have a non-empty intersection at all feasible, full-insurance allocations. Absent addi-

tional assumptions on preferences, a non-empty intersection at one such allocation is not

enough to ensure that betting is inefficient: see Example 6 in the Online Appendix.

It turns out that, if we additionally adopt RSS’s assumption that supporting probabilities at

certainty are constant, then we can similarly state condition (iv) purely in terms of preferences.

Consider the following definition:

Definition 2 Vi satisfies condition TIC (Translation Invariance at Certainty) ifπi (1S x ) =πi (1S )

for all x > 0.

RSS introduce an axiom that implies condition TIC for convex preferences. In Appendix B, we

show that their axiom implies TIC for non-convex preferences as well.

Theorem 4 Suppose that, for each i ∈ N , Assumption 1 holds, and furthermore Vi satisfies

SPC and TIC. Then the following are equivalent:

(i) There exists an interior, full-insurance Pareto-efficient allocation;

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;

(iv)
⋂

i πi (1S ) 6= ;.
Furthermore, under the above equivalent conditions, every interior, feasible full-insurance

allocation is a competitive equilibrium with transfers.

Thus, under assumptions SPC and TIC, we obtain a close counterpart to RSS’s risk-sharing

result (Theorem 1). In particular, note that, unlike in Theorem 3, under TIC condition (i) does

imply the other conditions, as in RSS’s result. The preferences in the example in Section 2.3

satisfy both TIC and SPC, though they are not convex.
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5 Analysis of the main results, and the role of SPC

This section provides a discussion of the key steps in the proof of Theorem 3. Omitted proofs

and remaining details can be found in Appendix D.4. The analysis highlights the role of con-

dition SPC, and also provides results on risk sharing that may be of independent interest. For

this reason, each individual result specifies the assumptions on preferences that are needed.

At the end of this section, we compare our proof strategy with the one in RSS.

Recall that the key implications in Theorem 3 are (iii)⇒ (iv)—if full-insurance allocations

are efficient, then agents share some supporting probability—and (iv)⇒ (ii)—if agents share

some supporting probability, then only full-insurance allocations are efficient (i.e., betting is

inefficient).

We begin with a result that is reminiscent of the implication (iii) ⇒ (iv). It generalizes

the standard result that smooth indifference curves must be tangent at any interior Pareto-

efficient allocation. With smooth, convex preferences, the common slope at the point of tan-

gency determines a supporting price vector; as we discuss momentarily, a “local price vector”

is also identified in the non-convex, non-smooth case, though the sense in which it “supports”

the allocation is more delicate. With this caveat, the following result can also be viewed as a

local version of the Second Welfare Theorem.23

Proposition 5 For each i ∈ N , assume that Vi is locally Lipschitz and monotonic. Let ( fi )i∈N

be an interior allocation such that each functional Vi is nice at fi . If ( fi )i∈N is Pareto-efficient,

then there exists a vector p ∈RS
+\{0} and, for each i ∈N , scalarsλi > 0 and vectors Qi ∈ ∂ Vi ( fi )

such that p =λiQi for every i .

The proof builds upon Bonnisseau and Cornet (1988), who show that, under the stated as-

sumptions, there is a vector p such that−p lies in the intersection of the Clarke normal cones

of the upper contour set of Vi at the bundle fi (see Appendix D.2 for a precise statement and

definitions of the required terms). By analogy with the convex case, this suggests interpreting

p as a “local price vector.24”

23This result does not require the assumption of no aggregate uncertainty.

24If preferences are convex, the Clarke normal cone coincides with the normal cone in the sense of convex

analysis.

19



For our purposes, it is convenient to restate the above result slightly. Recall that the el-

ements of the sets πi (·) that appear in Theorem 3 are probabilities—that is, they are non-

negative vectors normalized to lie in the unit simplex. On the other hand, the elements of

the Clarke subdifferential of the functional Vi are arbitrary non-negative vectors—they are

not normalized. Following GS, the normalized Clarke subdifferential of Vi at f ∈RS
++ is

Ci ( f ) =
§

Q

Q (S )
: Q ∈ ∂ Vi ( f ), Q 6= 0S

ª
. (8)

GS provide a behavioral characterization of the normalized Clarke subdifferential (see Ap-

pendix B). This notion allows us to restate Proposition 5 as follows:

Corollary 6 Let ( fi )i∈N be an interior allocation such that each functional Vi is nice at fi . If

( fi )i∈N is Pareto-efficient, then
⋂

i∈N Ci ( fi ) 6= ;.

The difference between this result and the implication (iii)⇒ (iv) in Theorem 3 is that Corollary

6 involves the normalized Clarke subdifferentials Ci (·) instead of the sets πi (·). Specifically,

Proposition 16 below shows that πi ( f ) ⊆ Ci ( f ) for every bundle f ; thus, the conclusion in

Corollary 6 is weaker than implication (iii)⇒ (iv) in Theorem 3.

In light of this Corollary, one may conjecture that, if the intersection of normalized Clarke

subdifferentials is non-empty at every full-insurance allocation, then betting is inefficient.

(Such a conclusion would be analogous to the implication (iv)⇒ (ii).)

Example 1 in Appendix A shows that this is not the case. Intuitively, if the normalized

Clarke subdifferentials have non-empty intersection at an allocation, then locally there are no

mutually beneficial trades. However, the notion of Pareto efficiency involves more than just

local comparisons: there may be Pareto-superior allocations sufficiently far from the given

one.25 Thus, to establish a converse to Corollary 6, we need to ensure that the probabilities in

the sets Ci (·) provide some global information about preferences as well—at least when con-

stant bundles are considered.

The discussion in Section 4 suggests that condition SPC—a classical notion from optimiza-

tion theory—can help establish the required connection between local and global behavior of

preferences. The following result confirms that this is, indeed, the case.

25This is indeed the case in Example 1: consider the allocation
�
1S x h , 1S (x̄ − x h )

�
.
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Proposition 7 Assume that, for every i ∈ N , Vi is locally Lipschitz and strongly monotonic,

and satisfies Condition SPC. Assume further that, for every feasible, full-insurance alloca-

tion (1S x1, . . . , 1S xN ), it is the case that
⋂

i Ci (1S xi ) 6= ;. Then every Pareto-efficient allocation

provides full insurance. Moreover, such an allocation is a competitive equilibrium allocation

(with transfers).

In words, under Condition SPC, if, at every feasible, full-insurance allocation, the agents’ nor-

malized differentials intersect, then betting is Pareto-inefficient. Indeed, as noted above, by

standard arguments, if every Pareto-efficient allocation provides full insurance, then it is also

the case that every feasible, full-insurance allocation is Pareto-efficient. Therefore, under the

assumptions of Proposition 7, the set of Pareto-efficient allocations coincides with the set of

feasible, full-insurance allocations.

Corollary 6 and Proposition 7 characterize the inefficiency of betting in terms of the nor-

malized Clarke subdifferentials of the representing functions Vi . Theorem 3 instead is formu-

lated in terms of the sets πi (·) of supporting probabilities, as is RSS’s original result. Thus, the

final step in our argument is to relate the sets πi (·) and Ci (·).
Once again, strict pseudoconcavity plays a central role:

Proposition 8 Fix i ∈N and f ∈RS
++. Assume that Vi is monotonic and locally Lipschitz. Then

Vi is strictly pseudoconcave at f if and only if it is nice at f and Ci ( f ) =πi ( f ).

In particular, under the assumption that each Vi is nice at constant bundles, condition SPC is

equivalent to the requirement that normalized Clarke subdifferential and the set of support-

ing probabilities coincide at every constant bundle. This provides the required link between

Clarke subdifferentials and supporting probabilities.

We now leverage Propositions 5, 7, and 8 to prove Theorems 3 and 4.

Begin with Theorem 3. As just noted, for every i and xi > 0, since SPC holds, Proposition

8 implies that Vi is nice at 1S xi and πi (1S xi ) =Ci (1S xi ). The implication (ii)⇒ (iii) is standard.

Now assume (iii) and fix a feasible, full-insurance allocation (1S x1, . . . , 1S xN ). Then this allo-

cation is Pareto-efficient. By Proposition 5,
⋂

i Ci (1S xi ) 6= ;; since πi (1S xi ) = Ci (xi ) for all i ,

(iv) holds. Finally, assume (iv): then, since Ci (1S xi ) =πi (1S xi ), by Proposition 7, every Pareto-
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efficient allocation provides full-insurance, i.e., (ii) holds.

Turn now to Theorem 4. Under SPC and TIC, πi (1S x ) = πi (1S ) = Ci (1S x ) = Ci (1S ). There-

fore, the condition in (iv) of Theorem 4 is equivalent to the condition in (iv) of Theorem 3.

Hence, the equivalence of (ii), (iii) and (iv) follows from Theorem 3. For (i)⇒ (iv), if (1S x1, . . . , 1S xN )

is an interior, full-insurance Pareto-efficient allocation, since each Vi is nice at 1S xi by SPC,

Proposition 5 implies that
⋂

i Ci (1S xi ) 6= ;, so (iv) holds by the equalities established above.

Finally, (iii)⇒ (i) is immediate.

We emphasize that, if condition SPC is not satisfied, then sharing a supporting probability—

i.e.,
⋂

i πi (1S xi ) 6= ; for all (1S x1, . . . , 1S xN )—is neither necessary nor sufficient for betting to be

inefficient. Example 2 in Appendix A shows that it is not necessary. To see that it is not suf-

ficient, consider an Edgeworth-box economy where both agents have risk-neutral expected-

utility preferences with the same subjective probability P . In this economy, every feasible al-

location is Pareto-efficient, including ones that do not provide full insurance; yet, both agents’

sets of supporting probabilities (at any bundle) consist of the sole probability P .26

Finally, we compare our analysis with RSS’s proof of their risk-sharing result (Proposition

9 in their paper). RSS first establish equivalent characterizations of the sets π(·) of supporting

probabilities. Given these preliminary results, their Proposition 9 “can be understood as [a]

straightforward consequence of the basic welfare theorems” (RSS, p. 1178). In particular, the

Second Welfare Theorem is employed in the proof that (i)⇒ (iv). Convexity is used in both

steps, as well as in the proof that (iv)⇒ (ii).

We also use our characterization of supporting probabilities as normalized differentials to

prove Theorems 3 and 4. However, the structure and details of our arguments are different,

due to the fact that we do not assume convexity (or, in Theorem 3, translation invariance at

certainty). Proposition 8 provides the alternative characterization of supporting probabilities

we need; this is of course different from the characterization obtained in RSS. Then, we use

our Proposition 5 in lieu of the second welfare theorem, and Proposition 7 to prove that (iv)

⇒ (ii).

26We owe this example to a referee of an earlier version of this paper.
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6 An illustration: smooth VEU preferences

A convenient class of preferences that satisfies the assumptions of Theorem 4, but is not nec-

essarily covered by RSS’s result, is the family of VEU preferences (Siniscalchi, 2009) that are

continuously differentiable (hence, regular) and GM-ambiguity-averse, but not necessarily

convex. In the present setting, a VEU representation is a function V :RS
+→R such that27

∀ f ∈RS
+, V ( f ) =

∑
s∈S

Ps u ( fs ) +A

�∑
s∈S

Psζ0,s u ( fs ), . . . ,
∑
s∈S

PsζJ−1,s u ( fs )

�
, (9)

where P ∈∆(S ) (the baseline prior), u :R+→R is a Bernoulli utility function, 0≤ J ≤ |S |, each

ζ j ∈ RS (an adjustment factor) satisfies P (ζ j ) = 0, and A : RJ → R (the adjustment function)

satisfies A(φ) = A(−φ) for all φ ∈RJ . The preferences in the examples of Sections 2.1 and 2.3

are a special case in which J = 1.

Proposition 9 Assume that V is a VEU representation such that u is strictly increasing, dif-

ferentiable and strictly concave, A is continuously differentiable with A(φ) ≤ 0 for all φ ∈RJ ,

P ({s }) > 0 for all s and, for all a ∈ u (X )S and s ∈ S , 1+
∑

0≤ j<J
∂ A
∂ φ j
(P (ζ0a ), . . . , P (ζJ−1a ))ζ j (s ) >

0.28 Then V satisfies Assumption 1; furthermore, SPC holds. Finally, π(1S ) = {P }.

Thus, under the assumptions of Proposition 9, our risk-sharing results apply. In particular,

since VEU preferences also satisfy constant-additivity, TIC holds, so we can invoke Theorem

4. One specific implication is that, in an economy where all agents have VEU preferences

satisfying these conditions, risk-sharing obtains if and only if agents have the same baseline

prior P (but possibly different adjustment factors and functions).

Appendix C considers a broad parametric class of preferences wherein the representation

V can be decomposed into a strictly concave Bernoulli utility u : R+ → R on consumption

and a suitable functional I defined over “utility profiles” u ◦ f . The Expected-Utility, maxmin

EU, Choquet, and smooth-ambiguity representations also admit a decomposition of this kind;

Eq. (9) shows that so does the VEU representation. Proposition 9 is obtained as a special case

within this class.

27If a , b : u (X )S →R, “a b ” denotes the function that assigns the value a (s )b (s ) to each state s .

28This last condition ensures that I is strictly monotonic.
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A Examples

A.1 Risk sharing and shared probabilities

We provide two examples that emphasize the different roles of the conditions on shared prob-

abilities discussed in Section 5. Example 1 shows that the condition
⋂

i Ci (1S xi ) 6= ; is not suf-

ficient for risk sharing. On the other hand, Example 2 shows that the condition
⋂

i πi (1S xi ) 6= ;
is not necessary. In both examples, condition SPC is not satisfied by at least one agent.

Example 1 Consider the following two-agent economy. Let S = {s1, s2}; agent 1’s preferences

are represented by

V1(h ) =max

��
1

2

p
h 1+

1

2

p
h 2

�2

,ε+ min
p∈[0.3,0.7]

[p h1+ (1−p )h2]

�

for some ε > 0. Agent 2 has risk-neutral expected-utility preferences, with probability P2 =

( 13 , 2
3 ). Figure 3 represents this economy in an Edgeworth box. The solid indifference curves

refer to agent 1’s preferences and the dashed ones represent agent 2’s preferences; as usual,

for agent 2, utility increases in the south-western direction. The indifference curves of agent
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Figure 3:
T

i Ci (1S xi ) 6= ; is not sufficient for risk sharing.

1 have a small inward “dent” at certainty; in a neighborhood of the 45� line, this preference

coincides with the risk-neutral MEU preference with priors D1 = {P 2�(S ) : 0.3 P (s1) 0.7}.
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Figure 3:
⋂

i Ci (1S xi ) 6= ; is not sufficient for risk sharing.

1 have a small inward “dent” at certainty; in a neighborhood of the 45◦ line, this preference

coincides with the risk-neutral MEU preference with priors D1 = {P ∈∆(S ) : 0.3≤ P (s1)≤ 0.7}.
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Notice that the allocation
�
1S x h , 1S (x̄−x h )

�
provides full insurance. The normalized Clarke

subdifferential of V1 at 1S x h (indeed, everywhere on the 45◦ line) is D1; hence, it contains that

of V2, which coincides with the probability P2. Moreover, π2(1S (x̄ − x h )) = {P2} (see RSS), but

P2 6∈π1(1S x h ): this follows because, as is apparent from Figure 3, P2 does not support 1’s indif-

ference curve at x h . Thus, π1(1S x h )∩π2(1S (x̄ − x h )) = ;.
However,

�
1S x h , 1S (x̄ −x h )

�
is not Pareto-efficient. Furthermore, the allocation (g , 1S x̄ −g )

is Pareto-efficient, but does not provide full insurance. �

Example 2 Let S = {s1, s2}. Assume that agent 2 has EU preferences, with a prior P2 that assigns

probability 0.4 to state s1 (on the horizontal axis) and power utility u (x ) = x 0.2. Consumer 1

has preferences represented by

V1(h ) =max
�

1

2
h1+

1

2
h2,δ+ min

p∈[0,1]
[p h1+ (1−p )h2]

�
.

Thus, agent 1’s preferences are risk-neutral EU, with a uniform prior, except within δ of the

certainty line. See Figure 4.
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Figure 4:
⋂

i πi (1S xi ) 6= ; is not necessary for risk sharing.

For agent 2, the supporting probability set is equal to π2(1S x2) = {P2} at every x2 > 0; this

follows from RSS’s characterization of supporting probabilities for EU preferences. For agent
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1, π1(1S x ) 6= ; for all x > 0: in particular, the uniform probability belongs to every such set

(note that any bundle that is at least as good as x lies strictly above the line going through the

point 1S x with slope −1.)

However, P2 6∈ π1(1S x1) for x1 sufficiently large. For instance, consider the point on the

certainty line labelled x in Figure 4. Observe that the tangent to 2’s indifference curve at x (the

dashed black line) crosses 1’s indifference curve going through x . This occurs because P2 is

not uniform, and the dent in 1’s preferences at certainty (which depends upon the parameter

δ) is sufficiently small.

Thus, π1(1S x ) ∩π2(1S (x̄ − x )) = ;. However, the value of δ in Figure 4 is chosen so that,

given the curvature of 2’s utility function, the agents’ indifference curves are not tangent any-

where except at certainty. That is, betting is inefficient in this economy: a feasible allocation

is Pareto-efficient if and only if it provides full insurance.29 �

B Behavioral characterization of conditions SPC and TIC

Throughout this section of the Appendix, and the next, we identify a probability distribution

P ∈∆(S )with the linear function it induces on RS . Thus, we write P ( f ) instead of P · f .

Fix a preference ¼ represented by a functional V that satisfies Assumption 1.

We first recall an axiom from RSS, and show that it implies condition TIC.

Axiom 1 (Translation Invariance at Certainty) For all x , x ′ ∈R+ and g ∈RS : if there is λ > 0

such that 1S x +λg ∈ RS
+ and 1S x +λg ¼ x , then there is λ′ > 0 such that 1S x ′ +λ′g ∈ RS

+ and

1S x ′+λ′g ¼ x .

Proposition 10 Assume that ¼ is represented by V . If Axiom 1 holds, then V satisfies condi-

tion TIC.

Proof: Fix x , x ′ ∈R++ and P ∈π(1S x ). Consider g ∈RS
+ such that V (g )≥V (1S x ′), i.e., g ¼ 1S x ′.

Equivalently, 1S x ′ + 1 · (g − 1S x ′) ¼ 1S x ′. Therefore, by Axiom 1, there exists λ > 0 such that

29 In Appendix D.4, we define the set πs
i ( f ) of strict supporting beliefs at f ∈ RS

++. It is always the case that

πs
i ( f ) ⊆ πi ( f ). Thus, a fortiori, this example shows that the non-empty intersection of these sets at certainty is

not necessary for risk sharing.
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1S x +λ(g − 1S x ′) ∈ RS
+ and 1S x +λ(g − 1S x ) ¼ 1S x . Since P ∈ π(1S x ), P (1S x +λ(g − 1S x ′)) ≥

P (1S x ) = x , i.e., x +λ[P (g )− x ′]≥ x , i.e., P (g )≥ x ′. Since g was arbitrary, P ∈π(1S x ′).

Therefore, π(1S x ) ⊆ π(1S x ′). Repeating the argument switching x and x ′ yields the re-

quired conclusion.

Observe that Axiom 1 is only sufficient for condition TIC.30

Next, we characterize SPC using a key notion from GS. That paper considers a preference

defined over acts mapping states to a convex subset X of a vector space, endowed with a mix-

ture operation, that admits a Bernoulli separable representation (I , u ). The utility u is affine

with respect to the assumed mixture operation on X . We take X = R+ and convex combi-

nation as the mixture operation. As a result, the utility function is affine on R+, so it can be

taken to be the identity; consequently, in the notation of this paper, I = V . This implies that

I = V subsumes both risk and ambiguity attitudes, whereas in GS risk attitudes are captured

by u . Moreover, since u is taken to be the identity, convergence of acts as defined in GS is

convergence in the usual Euclidean topology.

Definition 3 For any pair of acts f , g ∈ RS
+ and prize x ∈ R+, say that f is a (weakly) better

deviation than g near x , written f ¼∗x g , if, for every (λn )n≥0 ⊂ [0, 1] and (h n )n≥0 such that

λn ↓ 0 and h n → 1S x ,

λn f + (1−λn )h n ¼λn g + (1−λn )h n eventually.

The basic intuition is that f is a better deviation than g at x if, starting from an initial riskless

consumption bundle 1S x , the DM prefers to move by a vanishingly small amount in the direc-

tion of the bundle f rather than in the direction of the bundle g . Furthermore, this remains

true if the initial bundle is not exactly 1S x , but is close to it. We then have:

Proposition 11 For every x > 0, V is strictly pseudoconcave at 1S x if and only if it is nice at

1S x and

∀g ∈RS
+, g ¼ 1S x =⇒ ∃δ > 0 : g ¼∗x 1S (x +δ) (10)

30A full characterization can be obtained under condition SPC, leveraging the results in GS.
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To gain intuition, the “local quasiconcavity” property of Eq. (7) in Proposition 2 requires

that, if g ¼ 1S x , then, for all sequences (λn ) ↓ 0,

λn g + (1−λn )1S x � 1S x eventually

which can be written

λn g + (1−λn )1S x �λn 1S x + (1−λn )1S x eventually.

Thus, moving from x toward g by a small amount is strictly better than moving toward x —that

is, not moving away from x at all. Since we do not assume differentiability (cf. Proposition

2 part 3), we need to strenghten this requirement by asking that moving toward g be better

than moving toward x starting from bundles close to x as well. (This is also the main insight

behind the definition of the Clarke directional derivative.) We thus ask that, for all sequences

(h n )→ 1S x ,

λn g + (1−λn )h n �λn 1S x + (1−λn )h n eventually.

Finally, the above strict preference is not enough to ensure that, in the limit, g is a strictly

better deviation than x from x . To address this, we require that g be better than x + δ for

some (possibly small) δ > 0:

λn g + (1−λn )h n ¼λn 1S (x +δ) + (1−λn )h n eventually.

This is precisely the statement that g ¼x 1S (x +δ).

Proof: We first show that the preference ¼∗x is “translation-invariant” in the sense that, for

every f , g ∈RS
+ and ∆ > 0, f ¼∗x g iff f + 1S∆ ¼∗x g + 1S∆. Supplementary Appendix S.E of GS

shows that ¼∗x satisfies Independence: that is, for all f ′, g ′, h ′ ∈ RS
+ and λ ∈ (0, 1), f ′ ¼∗x g ′ iff

λ f ′ + (1−λ)h ′ ¼∗x λg ′ + (1−λ)h ′. Let f ′ = 2 f and g ′ = 2g ; then f ′, g ′ ∈ RS
+. Take h ′ = 21S∆.

Then f +1S∆¼∗x g +1S∆ is equivalent to 1
2 f ′+ 1

2 h ′ ¼∗x
1
2 g ′+ 1

2 h ′; by independence, this holds iff

f ′ ¼∗x g ′. Now apply independence again with h ′′ = 0S to conclude that f ′ ¼∗x g ′ iff 1
2 f ′+ 1

2 h ′′ ¼∗x
1
2 g ′+ 1

2 h ′′. But the latter preference statement is equivalent to f ¼∗x g . This proves the claim.

Now fix ∆ > 0 throughout. Assume first that V is nice at 1S x and Eq. (10) holds, and

consider g ∈ RS
+ such that g ¼ x . Then there is δ > 0 such that g ¼∗x 1S (x +δ). By the above

claim, g ′ ≡ g +1S∆¼∗x 1S (x +δ+∆). Furthermore, in the language of GS, g ′ is an interior act:
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that is, there are y , y ′ ≥ 0 such that y > g ′(s )> y ′ for all s . Since x ,δ,∆> 0, so is 1S (x +δ+∆).

Let ( f , f ′)be a spread of g ′, 1S (x+δ+∆): that is, f (s )> g ′(s ) and x+δ+∆> f ′(s ) for all s . Since

¼∗x is monotonic, f ¼∗x f ′. Then, by Theorem 7 in GS, P (g ) +∆ = P (g ′) ≥ P (1S [x +δ+∆]) =

x +δ+∆ for every P ∈ C (1S x ). Equivalently, P (g ) ≥ x +δ for all P ∈ C (1S x ). Since V is nice

at 1S x , this implies that, for every Q ∈ ∂ V (1S x ), Q (g )/Q (S ) ≥ x + δ, or Q (g − 1S x ) ≥ Q (S )δ.

Since ∂ V (1S x ) is compact, minQ ′∈∂ V (1S x )Q
′(S ) is attained by some Q ∗ ∈ ∂ V (1S x ); since V is

monotonic and nice at 1S x , Q ∗(S ) > 0. Therefore, Q (g − 1S x ) ≥ Q (S )δ ≥ Q ∗(S )δ > 0 for all

Q ∈ ∂ V (1S x ), which shows that V is strictly pseudoconcave at 1S x .

Conversely, assume that V is strictly pseudoconcave at 1S x and consider g ∈RS
+ such that

g ¼ 1S x . Then V is nice at 1S x , because it is monotonic (see Remark 1). Furthermore Q (g −
1S x ) > 0 for all Q ∈ ∂ V (1S x ). Equivalently, Q ([g + 1S∆]− 1S [x +∆]) > 0 for all Q ∈ ∂ V (1S x ).

Since ∂ V (1S x ) is compact, there are Q+,Q− ∈ ∂ V (1S x ) such that Q−([g + 1S∆]− 1S [x +∆]) =

minQ ′∈∂ V (1S x Q ′([g+1S∆]−1S [x+∆]) and Q+(S ) =maxQ ′∈∂ V (1S x )Q
′(S ). By strict pseudoconcavity

at 1S x , Q−([g +1S∆]−1S [x +∆])> 0; and by niceness at 1S x , Q+(S )> 0. Let

η=
Q−[g +1S∆]−1S [x +∆]

Q+(S )
> 0.

Observe that, for every Q ∈ ∂ V (1S x ),

Q ([g +1S∆]−1S [x +∆])≥Q−([g +1S∆]−1S [x +∆]) =ηQ+(S )≥ηQ (S ).

Now let ε> 0 be such that ε<∆ and ε< 1
2η. Then

Q ([g +1S (∆−ε)]−1S [x +∆+ε]) =Q ([g +1S∆]−1S [x +∆])−Q (S )(2ε)≥ (η−2ε)Q (S )

for every Q ∈ ∂ V (1S x ). Furthermore, by the choice of ε, the act g + 1S (∆− ε) is interior, and

δ≡η−2ε> 0. Further rewrite this as

Q ([g +1S (∆−ε)]−1S [x +∆+ε+δ])≥ 0

for all Q ∈ ∂ V (1S x ). Hence,

P (g +1S (∆−ε))≥ P (1S [x +∆+ε+δ])

for all P ∈C (1S x ). The act 1S [x +∆+ε+δ] is of course also interior. Then, by Theorem 7 in GS,

for all spreads ( f , f ′) of (g + 1S [∆− ε], 1S [x +∆+ ε+δ]), f ¼∗x f ′. One particular such spread
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is (g + 1S∆, 1S [x +∆+δ]). Thus, g + 1S∆ ¼∗x 1S [x +∆+δ]. By the above claim, this holds iff

g ¼∗x 1S [x +δ]. Since g was arbitrary, Eq. (10) holds.

C Preference representations with strictly concave utility

Most representations of ambiguity-sensitive preferences used in applications decompose the

functional V into a Bernoulli utility function u :R+→R, and an aggregator I :RS →R: that is,

for every f ∈RS
+,

V ( f ) = I (u ◦ f ),

where u ◦ f =
�
u ( f (s )

�
s∈S
∈RS is the utility vector associated with the bundle f . For instance,

MEU preferences admit such a representation, with I :RS →R given by

I (a ) =min
P∈D

∫
a d P ∀a ∈RS

where D ⊆ ∆(S ). Analogously, for smooth ambiguity-averse preferences (Klibanoff, Mari-

nacci, and Mukerji, 2005),

I (a ) =φ−1

�∫

∆(S )

φ

�∫

S

a d P

�
dµ

�
∀a ∈ u (X )S ,

where µ is a (second-order) probability on∆(S ) and φ is a concave (second-order) utility de-

fined on the range of u . As noted in Section 6, the VEU representation also admits such a

decomposition.

This Appendix provides conditions that ensure that both Assumption 1 and SPC hold for

all preferences that admit a decomposition (I , u ). Begin with basic assumptions about the

functional representation.

Assumption 2

1. u :R+→R is strictly increasing, strictly concave, and differentiable;

2. I :RS →R is normalized, strongly monotonic, locally Lipschitz and nice at each 1S u (x ),

x > 0.
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The following key assumption is the counterpart of Condition SPC. Unlike the latter, it

refers to the function I , which is defined over utility vectors, rather than acts.

Definition 4 Fix an act f ∈RS
++. The function I is ∂ -quasiconcave at u ◦ f if

∀g ∈RS
+, I (u ◦ g )≥ I (u ◦ f ) =⇒ ∀Q ∈ ∂ I (u ◦ f ), Q · (u ◦ g −u ◦ f )≥ 0. (11)

The function I satisfies differential quasiconcavity at certainty (DQC) if it is ∂ -quasiconcave

at 1S u (x ) for all x > 0.

To compare with SPC, consider an act g such that V (g ) = I (u ◦ g )≥ I (u ◦ f ) = V ( f ). Strict

pseudoconcavity at f requires that Q · (g − f ) > 0 for all Q ∈ ∂ V ( f ); on the other hand, ∂ -

quasiconcavity at u ◦ f requires that Q · (u ◦ g − u ◦ f ) ≥ 0 for all Q ∈ ∂ I (u ◦ f ). As noted

above, these assumptions pertain to different objects: in general, ∂ V ( f ) 6= ∂ I (u ◦ f ). Yet the

interpretation is similar: if g is at least as good as f , then moving from the utility vector u ◦ f

towards the vector u ◦ g should increase the value of I , at least weakly. Note also that SPC

requires a strict inequality, whereas DQC allows for a weak one. We now show that, when u is

strictly concave, this is sufficient to imply that V satisfies SPC. This is the main result of this

section.

Proposition 12 If (I , u ) satisfy Assumption 2, then V satisfies Assumption 1 and is nice at

every 1S x , x > 0. If in addition I satisfies DQC, then SPC holds.

(The term “∂ -quasiconcave” is due to Penot and Quang, 1997.)

Condition DQC holds in two useful special cases. We need two additional definitions. The

first is due to GM, to which we refer the reader for interpretation.

Core I = {P ∈∆(S ) : ∀ f ∈RS
+, I (u ◦ f )≤ P · (u ◦ f )}. (12)

GM deem ambiguity-averse a preference represented by a functional I such that Core I 6= ;.
The second is due to Clarke (1983). A locally Lipschitz function J : RS → R is regular at

b ∈RS if its directional derivative

J ′(b ; a ) = lim
t ↓0

J (b + t a )− J (b )
t

(13)
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is well-defined for all a ∈RS , and coincides with maxQ∈∂ J (b )Q ·a : see Clarke (1983, Def. 2.3.4).

If J is continuously differentiable at b , then it is regular there (Clarke, 1983, Corollary to Propo-

sition 2.2.1, and Proposition 2.3.6 (a)).

Corollary 13 Suppose that (I , u ) satisfy Assumption 2. Then I satisfies DQC, and hence SPC

holds, if one of the conditions below is satisfied:

1. I is quasiconcave, or

2. Core I 6= ; and I is regular at every 1S u (x ), x > 0.

The functional I in the MEU representation is normalized, strongly monotonic, globally

Lipschitz, and nice everywhere on its domain; furthermore, it is concave. The functional I

in the smooth ambiguity-averse representation is also normalized, and if φ is continuously

differentiable, satisfies φ′(r ) > 0 for all r ∈ u (R++), and is strictly concave, then I is also

strongly monotonic, locally Lipschitz, nice at certainty, and quasiconcave.31 Thus, condition

1 of Corollary 13 holds, and SPC is satisfied. Analogous conclusions hold for other parametric

uncertainty-averse models, such as variational preferences (Maccheroni, Marinacci, and Rus-

tichini, 2006) and confidence-function preferences (Chateauneuf and Faro, 2009). Of course,

these prefence models also satisfy the assumptions in RSS. Proposition 9 instead provides con-

ditions under which Corollary 13 part 2 applies for the VEU representation.

While Corollary 13 provides easy-to-check sufficient conditions for SPC, these conditions

are not necessary. Thus, Theorems 3 and 4 cover a broader set of preferences than the ones

that admit a decomposable representation satisfying the assumptions in Corollary 13. Exam-

ple 3 in the Online Appendix E illustrates this.

Moreover, the conditions in Corollary 13 are restrictive in conjunction with certain struc-

tural properties of the functional I . For instance, this is the case for Choquet-expected utility

preferences (Schmeidler, 1989). Example 4 in the Online Appendix E provides the details.

31A direct calculation shows that, under the stated assumptions on φ, I is continuously differentiable, and

thus locally Lipschitz; furthermore, its gradient at any 1Sγ, γ ∈ u (R++), is
∫
∆(S )P dµ 6= 0S , so I is nice at certainty.

Finally, since a 7→ ∫
∆(S )φ(

∫
a d P )dµ is concave andφ−1 is strictly increasing, I is quasiconcave.

32



D Proofs

As in the previous Appendix, for P ∈ ∆(S ) and f ∈ RS , we write P ( f ) instead of P · f . For

expositional reasons, Proposition 16 is proved “out of order,” in Appendix D.3.

D.1 Preliminaries: Clarke derivatives and differentials

We introduce additional notation and definitions related to differentials and their properties.

Fix a function F :Rn →R that is locally Lipschitz on an open set B ⊂Rn . The Clarke upper

derivative of F at b ∈ B in the direction a ∈Rn is

F ◦(b ; a ) = lim sup
t ↓0,c→b

F (c + t a )− F (c )
t

; (14)

Clarke (1983) shows that the set ∂ F (b ) ≡ {Q ∈ Rn : Q · a ≤ F ◦(b ; a )} is such that F ◦(b ; a ) =

maxQ∈∂ F (b )Q (a ). Furthermore, it admits the characterization given in Eq. (3) in Section 3.

The Clarke lower derivative (cf. Ghirardato et al., 2004, pp. 150 and 157) is instead

F `(b ; a ) = lim inf
t ↓0,c→b

F (c + t a )− F (c )
t

; (15)

It is readily verified that F `(b ; a ) =−F ◦(b ;−a ) and, therefore, F `(b ; a ) =minQ∈∂ F (b )Q (a ) for all

b ∈ B and all a ∈Rn .

D.2 Preliminaries: Clarke tangent and normal cones; supporting proba-

bilities

The following geometric notions will be useful. For every bundle f ∈RS
+, let

U ( f ) = {g ∈RS
+ : g ¼ f },

the upper countour set of the preference ¼ at f . For every set C ⊂RS
+ and bundle f ∈RS

+, let

dC ( f ) = inf{‖ f − g ‖ : g ∈C }

The Clarke tangent cone to C at some f ∈C is

TC ( f ) = {v ∈RS : (dC )
0( f ; v ) = 0},
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i.e. the set of directions v for which the Clarke derivative of the distance function (which is

Lipschitz and convex) is zero. The following characterization (Clarke, 1983, Theorem 2.4.5) is

useful:

TC ( f ) = {v ∈RS :∀( f k , t k )⊂C×R++ s.t. f k → f , t k ↓ 0, ∃(v k )⊂RS s.t. v k → v, f k+t k v k ∈C ∀k}.

Finally, define the Clarke normal cone to C at f by polarity:

NC ( f ) = {Q ∈ ba(S ) =RS : Q (v )≤ 0∀v ∈ TC ( f )}.

Specializing to our environment, we have

T ( f )≡ TU ( f )( f ) =
�

v ∈RS : ∀( f k , t k )⊂RS
+×R++ s.t. f k ¼ f ∀k , f k → f , t k ↓ 0,

∃(v k )⊂RS s.t. v k → v, f k + t k v k ¼ f ∀k
	

.

and it is convenient to define

N ( f )≡NU ( f )( f ) = {Q ∈RS : Q (v )≤ 0∀v ∈ T ( f )}.

Loosely speaking, T ( f ) is the set of directions v with the property that any sequence of bundles

preferred to f and converging to it can be perturbed in the direction v without leaving the

upper contour set of f . More informally, moving from bundles near f in the direction v by a

small amount leads to an act that is at least as good as f . Then, if Q is in the normal cone, −Q

is a price vector that assigns non-negative value to such changes.

The following two results pertain to the Clarke normal cone. Note that the first does not

require any specific assumption on the functional V .

Remark 2 For every bundle f ∈RS
++, −π( f )⊆N ( f ).

Proof: Fix P ∈ π( f ). Consider v ∈ T ( f ), the constant sequence f k ≡ f , and an arbitrary

sequence (t k ) ↓ 0. Since v ∈ T ( f ), there exists a sequence (v k ) → v such that, for every k ,

f k + t k v k ¼ f , i.e., V ( f + t k v k ) ≥ V ( f ). Since P ∈ π( f ), P ( f + t k v k ) ≥ P ( f ), and therefore

P (v k )≥ 0 for every k . By continuity, P (v )≥ 0. Therefore, −P ∈N ( f ).
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Remark 3 For every bundle f ∈ RS
++, if V is locally Lipschitz and nice at f , then N ( f ) ⊆

⋃
λ≥0λ

�− ∂ V ( f )
�
. Thus, for any such f , if R ∈ N ( f ) \ {0S}, there is λ > 0 and Q ∈ ∂ V ( f ) such

that R =−λQ .

Proof: Let W = −V , and note that U ( f ) = {g ∈ RS
+ : W (g ) ≤W ( f )}. By Proposition 2.3.1 in

Clarke (1983), ∂W ( f ) = −∂ V ( f ). Thus, if V is nice at f , so is W ; moreover, by Corollary 1 to

Theorem 2.4.7 in Clarke (1983), N ( f )⊂⋃λ≥0λ∂W ( f ) =
⋃
λ≥0λ

�−V ( f )
�
, as claimed.

Hence, if R ∈N ( f ), there is Q ∈ ∂ V ( f ) and λ> 0 such that R =−λQ .

The following result restates the definition of π( f ) for f ∈RS
++.

Lemma 14 Assume that V is strongly monotonic and continuous. For every f ∈RS
++, π( f ) =

{P ∈∆(S ) : ∀g ∈RS
+, P ( f )≥ P (g ) =⇒V ( f )≥V (g )}.

Proof: Denote the set on the rhs of the Remark by π̂( f ). Suppose that P ∈ π( f ). We show

that, for every g ∈ RS
+, V (g ) > V ( f ) implies P (g ) > P ( f ), so P ∈ π̂( f ). Fix g and suppose

V (g )>V ( f ). Since P ∈π( f ), P (g )≥ P ( f ). By contradiction, suppose P (g ) = P ( f ). Then, there

must be a state s such that g (s )≥ f (s ), thus g (s )> 0, and P ({s })> 0. By continuity of V , there

is ε> 0 such that g (s )−ε> 0 and the bundle g ′ defined by g ′(s ) = g (s )−ε and g ′(s ′) = g (s ′) for

s ′ 6= s satisfies V (g ′) > V ( f ). But P (g ′) = P (g )−P ({s })ε < P (g ) = P ( f ), which contradicts the

assumption that P ∈π( f ). Thus P (g )> P ( f ).

Conversely, suppose that P ∈ π̂( f ). We show that, for every g ∈ RS
+, P ( f ) > P (g ) implies

V ( f ) > V (g ), so P ∈ π( f ). Fix g and suppose that P ( f ) > P (g ). Since P ∈ π̂( f ), V ( f ) ≥ V (g ).

By contradiction, suppose V ( f ) = V (g ). Then there is ε > 0 such that P ( f )> P (g +1Sε); how-

ever, by strong monotonicity V (g +1Sε)>V (g ) =V ( f ), which contradicts the assumption that

P ∈ π̂( f ). Hence, V ( f )>V (g ).

Corollary 15 For every f ∈RS
++ and P ∈π( f ), P ({s })> 0 for all s ∈ S .

Proof: Fix f ∈RS
++, s ∈ S and P ∈π( f ). Define g by g (s ) = f (s )+1 and g (s ′) = f (s ′) for all s ′ 6= s .

If P ({s }) = 0, then P ( f ) = P (g ), and therefore, by Lemma 14, V ( f )≥ V (g ): this contradicts the
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assumption that V is strongly monotonic.

D.3 Preliminaries on strict quasiconcavity and strict pseudoconcavity

Proof of Remark 1: suppose that V is strictly pseudoconcave at f and consider arbitrary g ∈
RS
++,Q ∈ ∂ V ( f ) such that g 6= f and Q (g ) =Q ( f ). If V (g ) ≥ V ( f ), strict pseudoconcavity at f

implies Q (g − f )> 0, contradiction: thus, V (g )<V ( f ), so Eq. (6) holds at f .

Conversely, assume that Eq. (6) holds at f , and consider g ∈RS
++\{ f },Q ∈ ∂ V ( f ) such that

V (g )≥V ( f ). Suppose thatQ (g− f )≤ 0. There are two cases. IfQ (1S ) = 0, then by monotonicity

Q = 0S . Therefore, Q (g ) =Q ( f ) and so Eq. (6) implies V (g ) < V ( f ), contradiction. If instead

Q (1S ) 6= 0, so Q (1S )> 0 by monotonicity, let g ′ = g +1SQ ( f − g )/Q (1S )≥ g ; this is well-defined

because Q (1S )> 0. Then Q (g ′) =Q (g )+Q ( f −g )/Q (1S )·Q (1S ) =Q ( f ), so by Eq. (6) V (g ′)<V ( f ).

But g ′ ≥ g and monotonicity imply V (g )<V ( f ), contradiction. Thus, Q (g − f )> 0.

Finally, suppose that V is strictly pseudoconcave at f . Let g = f +1Sε for ε> 0. By mono-

tonicity, V (g )≥V ( f ). By strict pseudoconcavity, if 0S ∈ ∂ V ( f ), then 0S · (g − f )> 0, contradic-

tion. Thus, V is nice at f .

The following result clarifies the relationship between the sets C ( f ) andπ( f ), for f ∈RS
+, in

particular under the assumptions of strict quasiconcavity and strict pseudoconcavity. Propo-

sition 8 in Section 5 follows from it as an immediate corollary. In addition, we introduce the

set of “strict” supporting probabilities; this plays a role in the proof of Proposition 2, as well as

in Proposition 18 of Appendix D.4 below. For every bundle f , let

πs ( f ) = {P ∈∆(S ) :∀g ∈RS
+ \ { f }, V (g )≥V ( f ) =⇒ P (g )> P ( f )}. (16)

Thus, for every g ∈ RS
+ such that V (g ) ≥ V ( f ), probabilities P ∈ π( f ) satisfy P · g ≥ P · f ;

however, probabilities P ∈ πs ( f ) satisfy the stronger condition P · g > P · f . It follows that

πs ( f ) ⊆ π( f ), but the inclusion may be strict for more general preferences (consider the case

of risk-neutral EU preferences).

We also introduce terminology to refer to the condition in Eq. (7) in Proposition 2. Say that

V is strictly quasiconcave at f ∈RS
++ if, for every g ∈RS

+ \ { f } such that V (g ) ≥ V ( f ), there is
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λ̄ ∈ (0, 1) such that V (λg +(1−λ) f )>V ( f ) for all λ ∈ (0, λ̄)—that is, if. Eq. (7) holds for g . This

condition is of course implied by strict quasiconcavity.

Proposition 16 Assume that V is locally Lipschitz and monotonic.32 Fix f ∈RS
++.

1. for every f ∈RS
++, πs ( f )⊆π( f ); if V is strictly quasiconcave at f , then πs ( f ) =π( f ).

2. for every f ∈RS
++, if V is nice at f , then π( f )⊆C ( f );

3. if V is strictly pseudoconcave at f , then V is nice at f , and C ( f )⊆πs ( f );

4. conversely, if V is nice at f , and C ( f )⊆πs ( f ), then V is strictly pseudoconcave at f .

Thus, V is strictly pseudoconcave at f if and only if it is nice at f and C ( f ) =πs ( f ) =π( f ).

Proof of Proposition 16: (1) fix f ∈ RS
++. The statement that πs ( f ) ⊆ π( f ) is immediate

from the definitions. Now suppose that V is strictly quasiconcave at f . Fix P ∈ π( f ) and

g ∈ RS
++ \ { f } such that V (g ) ≥ V ( f ). Since P ∈ π( f ), P (g ) ≥ P ( f ). By contradiction, suppose

that P (g ) = P ( f ). We consider two cases.

First, if V (g ) > V ( f ), then by continuity of V there is α ∈ (0, 1) such that V (αg ) > V ( f ).

However, since f ∈RS
++, P (g ) = P ( f )> 0 and so P (αg ) =αP (g )< P (g ) = P ( f ). This contradicts

the fact that P ∈π( f ).
Second, if V (g ) = V ( f ), then by strict quasiconcavity of V at f , there is λ ∈ (0, 1) such

that g ′ = λg + (1−λ) f satisfies V (g ′) > V ( f ). Moreover, P (g ′) = λP (g ) + (1−λ)P ( f ) = P ( f )

because P (g ) = P ( f ). But then, applying the argument in the preceding paragraph to g ′ yields

a contradiction.

(2): fix f ∈RS
++ and consider P ∈ π( f ). By Remark 2, −P ∈N ( f ). By Remark 3, if V is nice

at f , then there are λ > 0 and Q ∈ ∂ V ( f ) such that −P = λ(−Q ), i.e., P = λQ . Furthermore,

1= P (S ) =λQ (S ), so λ=Q (S )−1 and P = Q
Q (S ) ∈C ( f ), as required.

(3): that V is nice at f was shown in Remark 1. Let P ∈ C ( f ) and consider g ∈ RS
+ \ { f }

such that V (g ) ≥ V ( f ). By strict pseudoconcavity, this implies that, for every Q ∈ ∂ V ( f ),

Q (g − f ) > 0, i.e., Q (g ) > Q ( f ). In particular, since P = Q/Q (S ) for some Q ∈ ∂ V ( f ) with

Q (S )> 0 (by monotonicity, Q 6= 0 implies Q > 0), P (g )> P ( f ). Thus, P ∈πs ( f ).

32Monotonicity is only used in the proof of parts 3 and 4, and hence in the last statement.
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(4): consider g ∈ RS
+ such that V (g ) ≥ V ( f ) and Q ∈ ∂ V ( f ). Since V is nice at f and

V is monotonic, Q (S ) > 0 and so Q/Q (S ) ∈ C ( f ). By assumption, also Q/Q (S ) ∈ πs ( f ), and

therefore V (g )≥V ( f ) implies Q (g )/Q (S )>Q ( f )/Q (S ), i.e., Q (g )>Q ( f ), or Q (g − f )> 0. Since

Q ∈ ∂ V ( f )was arbitrary, V is strictly pseudoconcave at f .

Finally, assume that V is strictly pseudoconcave at f . By part 3, V is nice at f , and C ( f )⊆
πs ( f ); by the first part of 1, πs ( f )⊆π( f ); and by part 2, since V is nice at f , π( f )⊆C ( f ); there-

fore, πs ( f ) = π( f ) = C ( f ). Conversely, assume that V is nice at f and πs ( f ) = π( f ) = C ( f ):

then by part 4, V is strictly pseudoconcave at f .

Proof of Proposition 2:

(1): We first show that V is ∂ -quasiconcave (Definition 4).

Fix f ∈RS
++ and g ∈RS

+ such that V (g )≥V ( f ). Also fix ε> 0 and let gε = g +1Sε. By strong

monotonicity, V (gε) > V (g ) ≥ V ( f ). Consider sequences (c k ) ⊂ RS
+ and (t k ) ⊂ R++ such that

c k → f and t k ↓ 0. Note that

t k [gε− f ] + c k = t k [gε− f + c k ] + (1− t k )c k

and, since c k → f ∈RS
++, eventually gε− f + c k ∈RS

++; furthermore, by continuity V (gε− f +

c k ) → V (gε) and V (c k ) → V ( f ). Therefore, for k sufficiently large, V (gε − f + c k ) > V (c k ).

Then, by (strict) quasiconcavity, for all such k ,

V (t k [gε− f ] + c k ) =V (t k [gε− f + c k ] + (1− t k )c k )≥V (c k ).

It follows that

V `( f ; gε− f ) = lim inf
c→ f ,t ↓0

V (t [gε− f ] + c )−V (c )
t

≥ 0.

Finally, since this holds for all ε > 0, by continuity of V `( f ; ·), V `( f ; g − f ) ≥ 0 as well. Since

V `( f ; g − f ) =minQ∈∂ V ( f )Q (g − f ), it follows that Q (g )≥Q ( f ) for all Q ∈ ∂ V ( f ).

We now show that this implies that C ( f )⊆π( f ). Since, for all g ∈RS
+, V (g )≥ V ( f ) implies

Q (g ) ≥ Q ( f ) for all Q ∈ ∂ V ( f ), this is true in particular for Q ∈ ∂ V ( f ) such that Q (S ) > 0.

Therefore, if P ∈C ( f ), then P (g )≥ P ( f ). Hence, P ∈π( f ), as claimed.
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To complete the proof, Proposition 16 part 1 implies that, if V is strictly quasiconcave, then

πs ( f ) =π( f ) for all f ∈RS
++. Conclude that C ( f )⊆πs ( f ) for all such f . By Proposition 16 part

4, if in addition V is nice at f , then it is strictly pseudoconcave at f .

(2): Suppose that V satisfies strict pseudoconcavity at f . Since V is locally Lipschitz, there

is λ̂ ∈ (0, 1) such that, for allλ ∈ (0, λ̂),λg +(1−λ) f lies in a neighborhood of f where V satisfies

a Lipschitz condition of rank L . Then, by (Clarke, 1983, Proposition 2.1.2), for every suchλ and

every Qλ ∈ ∂ V (λg + (1−λ) f ), ‖Qλ‖ ≤ L .

We claim that there is λ̄ ∈ (0, λ̂) such that, for all λ ∈ (0, λ̄) and all Qλ ∈ ∂ V (λg + (1−λ) f ),
Qλ(g − f )> 0. Suppose not: then, for every k ≥ 1, there are λk ∈ (0, 1

k ) and Qk ∈ ∂ V (λk g + (1−
λk ) f ) such that Qk (g − f )≤ 0. Since (Qk ) lies in a compact set, it has a convergent subsequence,

(Qk (`)) with limit Q . Furthermore, λk (`)g + (1−λk (`)) f → f . By Clarke (1983, Proposition 2.1.5)

Q ∈ ∂ V ( f ). Furthermore, by continuity of expectations, Q (g ) ≤ Q ( f ). This contradicts the

assumption that V satisfies strict pseudoconcavity at f .

By the Mean Value Theorem (Clarke, 1983, Theorem 2.3.7), for every λ ∈ (0, λ̄) there is λ′ ∈
(0,λ) and Q ∈ ∂ V (λ′g +(1−λ′) f ) such that V (λg +(1−λ) f )−V ( f ) =Q (λg +(1−λ) f )−Q ( f ) =

λ[Q (g )−Q ( f )]. By the claim just proved, the last term is strictly positive. Therefore, V (λg +

(1−λ) f )>V ( f ).

(3): Suppose that V is continuously differentiable on a neighborhoodU of f , with∇V ( f ) 6=
0. It is enough to show that Eq. (7) implies that V is strictly pseudoconcave at f . The argument

is similar to that for part 1, but since we can use directional derivatives, the details are straight-

forward.33 We first show that V is ∂ -quasiconcave at f . Fix g ∈RS
+\{ f }with V (g )≥V ( f ). The

derivative of V at f in the direction g − f is

V ′( f ; g − f ) = lim
t→0

V (t (g − f ) + f )−V ( f )
t

= lim
t→0

V (t g + (1− t ) f )−V ( f )
t

≥ 0,

where the inequality follows because, by Eq. (7), for t small V (t g + (1− t ) f ) > V ( f ). Since V

is continuously differentiable at f , ∂ V ( f ) = {∇V ( f )} and 0 ≤ V ′( f ; g − f ) = ∇V ( f ) · (g − f ).

Thus, V is ∂ -quasiconcave at f .

33Note also that, in part 1, global quasiconcavity—rather than just Eq. (7)—is required precisely because the

definition of the Clarke directional derivative requires considering points in a neighborhood of f that are not

necessarily on the segment joining f and g .

39



To conclude the proof, as in the argument for part 1, since∇V ( f ) 6= 0,∇V ( f )/(∇V ( f )·1S ) ∈
π( f ); and since Eq. (7) implies that V is strictly quasiconcave at f , π( f ) = πs ( f ). But then

V (g )≥V ( f ) implies∇V ( f ) · (g − f )> 0, so V is strictly pseudoconcave at f .

D.4 Results in Section 5

The key step in the proof of Proposition 5 is contained in the following result.

Lemma 17 Assume that each Vi is monotonic. If ( fi )i∈N is a Pareto-efficient allocation, then

there exists a price vector p ∈RS
+ \ {0} such that −p ∈Ni ( fi ) for all i ∈N .

Proof: Apply Prop. 2.1 (a) and (e) and Theorem 2.1 in Bonnisseau and Cornet (1988) to get

−p ∈⋂i∈N Ni ( fi ). We only need to show that p is non-negative. By monotonicity, RS
+ ⊂ Ti ( fi ):

to see this, note that, if v ∈RS
+, then for any sequence ( f k , t k ) such that f k ¼i fi , f k → fi , and

t ↓ 0, the constant sequence v k = v satisfies f k + t k v k ≥ f k ¼i fi for all k .

Now consider v ∈ RS
+ s.t. vs = 0 iff ps ≥ 0, and vs = 1 otherwise. If ps < 0 for some s , then

p ·v < 0, i.e. −p ·v > 0, which contradicts the fact that v ∈ Ti ( fi ) and−p ∈Ni ( fi ) for all i . Thus,

p ≥ 0.

Proof of Proposition 5 and Corollary 6: Lemma 17 yields p ∈RS
+\{0S} such that−p ∈Ni ( fi )

for all i ; by Remark 3, −p ∈⋃λ>0λ
�− ∂ Vi ( f )

�
for all i ∈ N . Thus, p = λiQi for every i , where

λi > 0 and Qi ∈ ∂ Vi ( f ); then Qi (S ) =
∑

s ps

λi
, and therefore Qi

Qi (S )
= λ−1

i p

λ−1
i

∑
s ps
= p∑

s ps
≡ P ; hence,

P ∈⋂i Ci ( f ).

The next Remark follows from standard arguments; we include the proof for completeness.

Remark 4 Assume that each Vi is continuous and strongly monotonic. If a feasible allocation

( f1, . . . , fN ) is not Pareto-efficient, then it is Pareto-dominated by a Pareto-efficient allocation.
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Proof: By assumption, there exists a feasible allocation (g1, . . . , gN ) that Pareto-dominates

( f1, . . . , fN ). Assume wlog that g1 �1 f1. Consider the following problem: maximize V1(h1)

subject to (h1, . . . , hN ) being feasible and hi ¼i g i for all i = 2, . . . , N . Notice that the allo-

cation (g1, . . . , gN ) satisfies these constraints. By standard arguments (e.g. Mas-Colell et al.,

1995, §16.F), since preferences are continuous and strongly monotonic, a solution (h ∗1 , . . . , h ∗N )

to this problem exists and is Pareto-efficient. Furthermore, for every i > 1, h ∗i ¼i g i ¼i fi ,

and h ∗1 ¼i g1 �1 f1; that is, (h ∗1 , . . . , h ∗N ) is a Pareto-efficient allocation that Pareto-dominates

( f1, . . . , fN ).

We now prove Proposition 7. To do so, we state and prove a slightly more general result.

By Proposition 16, if V is locally Lipschitz and monotonic, and in addition SPC holds, then

C (1S x ) = πs (1S x ) for all x ≥ 0. It follows that we can replace the conditon
⋂

i Ci (1s xi ) 6= ;
in Proposition 7 with

⋂
i π

s
i (1S xi ). It turns out that this is the key condition for betting to be

inefficient. (Furthermore, local Lipschitzianity can be relaxed to continuity.) We then have:

Proposition 18 Assume that, for every i ∈ N , Vi is continuous and strongly monotonic. As-

sume further that, for every feasible, full-insurance allocation (1S x1, . . . , 1S xN ), it is the case

that
⋂

i π
s
i (1S xi ) 6= ;. Then every Pareto-efficient allocation provides full insurance. Moreover,

such an allocation is a competitive equilibrium allocation (with transfers).

Proof: Assume that
⋂

i π
s
i (1S xi ) 6= ; for every feasible, full-insurance allocation (1S x1, . . . , 1S xN ),

with xi ≥ 0 for all i ∈N .

We first show that every Pareto-efficient allocation must provide full insurance. To do so,

consider a feasible allocation ( f1, . . . , fN ). We show that, if this allocation does not provide full

insurance, there is a full-insurance allocation that Pareto-dominates it.

For every i ∈ N , let ci be the certainty equivalent of fi : that is, Vi (1S ci ) = Vi ( fi ). There are

two cases to consider.

Case 1:
∑

i ci ≥ x̄ > 0. Define a new allocation (1S x1, . . . , 1S xN ) as follows: for every i ∈ N ,

let xi =
x̄∑
j c j

ci . Then
∑

i xi =
x̄∑
j c j

∑
i ci = x̄ , i.e., (1S x1, . . . , 1S xN ) is feasible. Since ( f1, . . . , fN )

is not a full-insurance allocation, there is at least one agent i for whom fi is non-constant;

wlog let that be agent 1. By strong monotonicity, V1(1S c1) = V1( f1)> V1(0S ); since V1 is strongly
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monotonic, c1 > 0, and therefore, x1 =
x̄∑
j c j

c1 > 0. By assumption, there is P ∈⋂i π
s
i (1S xi ); it is

immediate from the definitions thatπs
i (1S xi )⊆πi (1S xi ), so P ∈πi (1S xi ). By Corollary 15, since

in particular P ∈π1(1S x1) and x1 > 0, P is strictly positive.

For every i ∈N , by construction Vi ( fi ) = Vi (1S ci ) ≥ Vi (1S xi ). Since P ∈ πs
i (1S xi ) ⊆ πi (1S xi ),

for all i , P ( fi )≥ xi . For i = 1, f1 is non-constant and hence distinct from 1S x1, P ( f1)> x1.

Conclude that
∑

i P ( fi ) >
∑

i xi = x̄ . However,
∑

i P ( fi ) = P (
∑

i fi ) = P (1S x̄ ) = x̄ , because

( f1, . . . , fN ) is feasible: contradiction. Thus, this case cannot occur.

Case 2:
∑

i ci < x̄ . Letε= x̄−∑i ci

N : then, the full-insurance allocation
�
1S (c1+ε), . . . , 1S (cN+ε)

�

is feasible and Pareto-dominates ( f1, . . . , fN ) by strong monotonicity, as claimed.

Conversely, consider a feasible, full-insurance allocation (1S y1, . . . , 1S yN ), and suppose that

it is not Pareto-efficient. Then, by Remark 4, it is Pareto-dominated by a Pareto-efficient al-

location; by the result just proved, under the maintained assumptions, this allocation must

be a full-insurance allocation, say (1S x1, . . . , 1S xN ). Since preferences are strongly monotonic,

this implies that xi ≥ yi for all i , and the inequality is strict for at least one i . But then
∑

i xi >∑
i yi = x̄ , i.e., (1S x1, . . . , 1S xN ) is not feasible: contradiction. Thus, every full-insurance allo-

cation is Pareto-efficient.

Finally, let (1S x1, . . . , 1S xN ) be a full-insurance, hence Pareto-efficient allocation. Fix P ∈
⋂

i π
s
i (1S xi ). Since

∑
i xi = x̄ > 0, there must be some i ∈N for whom xi > 0; since P ∈πs

i (1S xi ),

by Corollary 15 and the fact that πs
i (1S xi )⊆πi (1S xi ), P is strictly positive.

Now suppose that, for some i ∈ N and g ∈ RS
+, g �i 1S xi . Since P ∈ πs

i (1S xi ), P (g ) > xi .

Equivalently, P (g )≤ xi implies 1S xi ¼i g . We can then let t = P (1S xi )−P (ωi ) = xi −P (ωi ): we

get
∑

i t =
∑

i xi −
∑

i P (ωi ) = x̄ −P (
∑

iωi ) = x̄ −P (1S x̄ ) = 0. Hence t1, . . . , tN define feasible

transfers. Since preferences are strongly monotonic (hence local non-satiated), consumers

will exhaust their budget P (ωi )+ ti = xi , and the argument just given shows that they will de-

mand 1S x1, . . . , 1S xN .

We provide this result not so much for the sake of generality, but because it helps highlight

the precise role of Condition SPC in our analysis.

If SPC does not hold, then the condition in Proposition 18, while sufficient, is not necessary

for betting to be Pareto-inefficient. Example 2 in Appendix A demonstrates this (see footnote
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29). On the other hand, as noted in Section 5, the condition that
⋂

i Ci (1S xi ) 6= ; is necessary for

the full-insurance allocation (1S x1, . . . , 1S xN ) to be Pareto-efficient (Proposition 5), but it is not

sufficient (Example 1). This points to a gap between Propositions 5 and 18. SPC closes this

gap, because it ensures that the strict supporting probabilities πs
i (1S xi ) and the normalized

Clarke subdifferential Ci (1S xi ) coincide for every xi > 0: see Proposition 16.

Finally, we point out one subtlety in the proof of Proposition 18. Consider the following

intuition, which is based on “risk aversion” (see the discussion following Remark 1) and is also

related to the approach taken by RSS. Fix a non-constant allocation ( f1, . . . , fN ). Suppose that

there exists a common probability P such that every agent i strictly prefers the expectation P · fi

to her bundle fi . Then the full-insurance allocation (P · f1, . . . , P · fN ) is feasible, and Pareto-

dominates ( f1, . . . , fN ). The problem is that this approach leads to a circularity. On one hand,

for any probability P , one can of course define the constant, feasible allocation (P · f1, . . . , P · fN ).

However, it is not the case, in general, that P ∈⋂i Ci (1S (P · fi )) [which, by SPC, would imply

that indeed, (P · f1, . . . , P · fN ) Pareto-dominates ( f1, . . . , fN )]. On the other hand, for every full-

insurance allocation (1S x1, . . . , 1S xN ), by assumption there exists P ∈⋂i Ci (1S xi ). However, it

is not the case in general that xi = P · fi for every i . Our second key insight is that one can also

construct a dominating full-insurance allocation by rescaling the certainty equivalents of the

bundles f1, . . . , fN . This avoids any circularity.

D.5 Results in Appendix C and Proof of Proposition 9

Throughout this section, we assume that I is normalized, strongly monotonic, and locally

Lipschitz, and that u is strictly increasing, strictly concave and twice differentiable.

The normalized Clarke subdifferential of I at h ∈RS
+ is

C u (h ) =
§

Q u

Q u (S )
: Q u ∈ ∂ I (u ◦h ), Q u 6= 0S

ª
. (17)

Remark 5 For every i ∈N , the Clarke subdifferential at f ∈RS
++ of V = I ◦u is

∂ V ( f ) =

�
Q ∈RS : ∀h ∈RS , Q (h ) =

∑
s

Q u (s )u ′( f (s ))h (s ) for some Q u ∈ ∂ I (u ◦ f )

�
.

Proof: Let U = u (R+). The map F : RS
+ → US defined by F ( f ) = (u ( f1), . . . , u ( fS )) is strictly

differentiable (pp. 30-31 Clarke, 1983) and, furthermore, it maps every neighborhood of f
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to a neighborhood of F ( f ).34 Hence, since V = I ◦ F , by Theorem 2.3.10 in Clarke ∂ V ( f ) =

∂ I (u ◦ f ) ◦Ds F ( f ); that is, more explicitly, every Q ∈ ∂ V ( f ) is defined by

∀h ∈RS , Q (h ) =
∑

s

Q u (s )u ′( fs )hs

for some Q u ∈ ∂ I (u ◦ f ).

We define a set of probabilities that is related to π(·), but employs the decomposition of V

in terms of I and u .

πc( f ) = {P ∈∆(S ) : ∀g ∈RS
+, I (u ◦ g )≥ I (u ◦ f ) =⇒ P (u ◦ g )≥ P (u ◦ f )}. (18)

Recall that one can interpret P ∈π( f ) as a risk-neutral SEU preference whose better-than set

at f contains the better-than set of ¼ at f . Similarly, P ∈ πc( f ) identifies an SEU preference,

with risk attitudes described by u , whose better-than set at f contains that of ¼ at f .

The following result is a consequence of the concavity of u .

Remark 6 For all x ∈R++, πc(1S x )⊆π(1S x ).

Proof: Fix P ∈ πc(1S x ) and suppose that g ∈ RS
+ satisfies V (g ) ≥ V (1S x ). Then I (u ◦ g ) ≥

I (u (x )) = u (x ), and since P ∈ πc(1S x ), P (u ◦ g ) ≥ P (1S u (x )) = u (x ). Since u is (strictly) con-

cave, u (P (g )) ≥ P (u ◦ g ), so u (P (g )) ≥ u (x ). Since u is strictly increasing, P (g ) ≥ x . Thus,

P ∈π(1S x ).

This is our “portmanteau” theorem.

Proposition 19 For every x > 0:

1. I is nice at 1S u (x ) if and only if V is nice at 1S x .

2. C u (1S x ) =C (1S x )

3. πc(1S x )⊆πs (1S x )

34To see this, fix a strictly positive bundle f and consider the set {g ∈RS
+ : fs −ε < g s < fs +ε∀s ∈ S}, which is

open. The image of this set via F is {v ∈US : u ( fs −ε)< vs < u ( fs +ε)∀s ∈ S}, because u is continuous and strictly

increasing. This set is also open.
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4. if I is ∂ -quasiconcave at 1S u (x ), then C (1S x )⊆πc(1S x )

Furthermore, Core I =
⋂

x>0π
c(1S x ).

Corollary 20 Assume that I is nice and ∂ -quasiconcave at 1S u (x ) for every x > 0. Then, for

every such x > 0, V is nice at 1S x , and π(1S x ) = πc(1S x ) = πs (1S x ) = C (1S x ). Furthermore, V

satisfies SPC.

Proof: (1): by Remark 5,

∂ V (1S x ) =
�

Q ∈RS : ∀h ∈RS , Q (h ) = u ′(x )Q u (h ) for some Q u ∈ ∂ I (u ◦ f )
	

.

Since u ′(x )> 0 by assumption, 0S ∈ ∂ V (1S x ) iff 0S ∈ ∂ I (1S u (x )).

(2): Again from Remark 5,

C (1S x ) =
§

Q

Q (S )
: Q ∈ ∂ V (1S x ), Q 6= 0S

ª
=
§

u ′(x )Q u

u ′(x )Q u (S )
: Q u ∈ ∂ I (1S u (x )), Q u 6= 0S

ª
=C u (1S x ),

where by part 1, Q u = 0S iff 0S ∈ ∂ I (1S u (x )).

(3): by Remark 6, πc(1S x )⊆π(1S x ). Also recall that, since I is strongly monotonic and u is

strictly increasing, V = I ◦u is strongly monotonic. Finally, since I and u are both continuous,

so is V .

Fix P ∈πc(1S x ). Consider g ∈RS
+ such that g 6= 1S x and V (g )≥V (1S x ).

Suppose first that g is constant, i.e., g = 1S y for some y ≥ 0. Since V (1S y ) =V (g )≥V (1S x ),

y ≥ x > 0 by strong monotonicity of V = I ◦ u . Since 1S y = g 6= 1S x , y > x . Therefore,

P (g ) = y > x .

Now suppose that g is non-constant. As noted above, P ∈ πc(1S x ) implies P ∈ π(1S x ).

Since V = I ◦u is strongly monotonic and continuous, by Corollary 15 P � 0. Then, since g is

non-constant and u is strictly concave, u (P (g )) > P (u ◦ g ). To see this, suppose that s , s ′ ∈ S

are such that g (s ) 6= g (s ′). Then, since P (s )> 0 and P (s ′)> 0,

∑
t ∈{s ,s ′}

P (t )
P ({s , s ′})u (g (t ))< u

� ∑
t ∈{s ,s ′}

P (t )
P ({s , s ′})g (t )

�
,
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and therefore

P (u ◦ g ) =
∑
t ∈S

P (t )u (g (t )) =

=[1−P ({s , s ′}]
∑

t ∈S\{s ,s ′}

P (t )
1−P ({s , s ′})u (g (t )) +P ({s , s ′})

∑
t ∈{s ,s ′}

P (t )
P ({s , s ′})u (g (t ))<

<[1−P ({s , s ′}]u
� ∑

t ∈S\{s ,s ′}

P (t )
1−P ({s , s ′})g (t )

�
+P ({s , s ′})u

� ∑
t ∈{s ,s ′}

P (t )
P ({s , s ′})g (t )

�
≤

≤u

�∑
t ∈S

P (t )g (t )

�
= u (P (g )).

To conclude the argument, P ∈πc(1S x ) and V (g )≥V (1S x ) imply P (u ◦g )≥ u (x ); but since

u (P (g ))> P (u ◦ g ) and u is strictly increasing, P (g )> x .

Since g was chosen arbitrarily, P ∈πs (1S x ).

(4): fix P ∈ C (1S x ). By part 2, P ∈ C u (1S x ), so there exists Q u ∈ ∂ I (1S u (x )) such that

P =Q u/Q u (S ). Consider f ∈ RS
+ such that I (u ◦ f ) ≥ u (x ). Since I satisfies ∂ -quasiconcavity

at 1S u (x ), in particular Q u (u ◦ f − 1S u (x )) ≥ 0. This implies that P (u ◦ f ) ≥ u (x ). Since f was

arbitrary, P ∈πc(1S x ).

For the last statement, fix P ∈Core I and x > 0. Consider f ∈RS
+ such that V ( f )≥ V (1S x ),

i.e., since V = I ◦u and I is normalized, I (u ◦ f )≥ u (x ). Since P ∈Core I , P (u ◦ f )≥ I (u ◦ f ).

Therefore, P (u ◦ f )≥ u (x ). Since f was arbitrary, P ∈πc(1S x ).

Conversely, suppose that P ∈⋂x>0π
c(1S x ). Fix f ∈ RS

+. If f = 0S , then P (u ◦ f ) = u (0) =

I (u ◦ f ), where the second equality follows because I is normalized. If instead f 6= 0S , let c be

the certainty equivalent of f : that is, I (u ◦ f ) = u (c ). By strong monotonicity, c > 0. Therefore,

P ∈ πc(1S c ). Then, I (u ◦ f ) = u (c ) implies that P (u ◦ f ) ≥ u (c ). But then P (u ◦ f ) ≥ u (c ) =

I (u ◦ f ), so P ∈Core I .

Turn now to the Corollary. By assumption, I is nice and ∂ -quasiconcave at every 1S u (x ),

x > 0. By part 1, V is nice at 1S x , x > 0. Moreover, for every such x > 0, by parts 3 and

4, C (1S x ) ⊆ πc(1S x ) ⊆ πs (1S x ); by Proposition 16 part 4, V is strictly pseudoconcave at 1S x .

Therefore, V satisfies SPC. Furthermore, by Proposition 16 parts 1 and 2, πs (1S x ) ⊆ π(1S x ) ⊆
C (1S x ). Therefore, since C (1S x )⊆πc(1S x ), all these sets are equal.
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Proof of Proposition 12: since u is strictly increasing and I is strongly monotonic, V is

strongly monotonic. Since u is concave and strictly increasing, it is locally Lipschitz (cf. Clarke,

1983, Prop. 2.2.6). Since I is locally Lipschitz, V = I ◦u is also locally Lipschitz (cf. Clarke, 1983,

p. 42). Therefore, Assumption 1 holds. Moreover, since I is nice at every 1S u (x ), x > 0, Propo-

sition 19 part 1 implies that V is nice at every 1S x , for x > 0. Finally, by Corollary 20, since I

satisfies DQC, it is ∂ -quasiconcave at every 1S u (x ), x > 0; thus, V is strictly pseudoconcave at

every 1S x , x > 0, i.e., SPC holds.

Proof of Corollary 13. Note: Part (1) follows from a result in Penot and Quang (1997);

however, since their assumptions are formulated somewhat differently from ours, invoking

their result requires some work. We provide a direct proof.

It is convenient to let U= u (R+) = {r : ∃x ≥ 0, r = u (x )}. Fix γ ∈ int(U) and a ∈US such that

I (a )≥ γ. For both conditions, we use the properties of the Clarke lower derivative in Eq. (15);

in particular, it is enough to show that I `(1Sγ; a −1Sγ)≥ 0.

(1): fix ε > 0 such that a + 1Sε ∈ US (this must exist, because U = u (R+) does not contain

its supremum). By strong monotonicity, I (a + 1Sε) > γ. Consider sequences (c k ) ⊂ US and

(t k )⊂R++ such that c k → 1Sγ and t k ↓ 0. Note that

t k [(a +1Sε)−1Sγ] + c k = t k [(a +1Sε)−1Sγ+ c k ] + (1− t k )c k

and, since c k → 1Sγ, eventually (a+1Sε)−1Sγ+c k ∈US ; furthermore, by continuity I (a+1Sε−
1Sγ+ c k )→ I (a + 1Sε) and I (c k )→ I (1Sγ) = γ. Therefore, for k sufficiently large, I (a + 1Sε−
1Sγ+ c k )> I (c k ). Then, by quasiconcavity, for all such k ,

I (t k [(a +1Sε)−1Sγ] + c k ) = I (t k [(a +1Sε)−1Sγ+ c k ] + (1− t k )c k )≥ I (c k ).

It follows that

I `(1Sγ; (a +1Sε)−1Sγ) = lim inf
c→1Sγ,t ↓0

I (t [(a +1Sε)−1Sγ] + c )− I (c )
t

≥ 0.

Finally, by continuity of I `(1Sγ; ·), I `(1Sγ; a −1Sγ)≥ 0 as well.
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(2): if I is regular, I `(1Sγ; a − 1S x ) = −I ◦(1Sγ; 1Sγ− a ) = −I ′(1Sγ; 1Sγ− a ); furthermore, if

I (a )≥ I (1Sγ) = γ, by normalization, for any P ∈Core I 6= ;,

−I `(1Sγ; a −1Sγ) = I ′(1Sγ; 1Sγ−a ) = lim
t ↓0

I (1Sγ+ t [1Sγ−a ])− I (1Sγ)
t

=

= lim
t ↓0

I (1Sγ+ t [1Sγ−a ])−γ
t

≤ lim
t ↓0

P (1Sγ+ t [1Sγ−a ])−γ
t

=

= lim
t ↓0
γ+ t γ− t P (a )−γ

t
= γ−P (a )≤ I (a )−P (a )≤ 0,

as required.

Proof of Proposition 9: observe first that, for allφ ∈RJ ,

∇I (a )≡
�
∂ I (a )
∂ a (s )

�

s∈S

=


P ({s })


1+

∑
0≤ j<J

∂ A(P (ζ0a ), . . . , P (ζJ−1a ))
∂ φ j

ζ j (s )






s∈S

. (19)

Thus, the last condition in the Proposition is simply the requirement that all partial derivatives

be strictly positive almost everywhere on u (R+)S . Thus, I is strongly monotonic.

Next, we show that∇A(0J ) = 0J . Fix 0≤ j < J . Since A is continuously differentiable at 0J ,

satisfies A(0J ) = 0 and is symmetric about 0J ,

∇A(0J )·1 j = lim
t ↓0

A(0J + t 1 j )−A(0 j )

t
= lim

t ↓0
A(t 1 j )

t
= lim

t ↓0
A(t (−1 j ))

t
= lim

t ↓0
A(0J + t (−1 j ))−A(0J )

t
=∇A(0J )·(−1 j ),

which clearly requires that ∇A · 1 j =
∂ A(0J )
∂ φ j

= 0, as claimed. Since P (ζ j 1S x ) = x P (ζ j ) = 0,

it follows that ∇I (1S x ) = P for all x > 0. Hence I is nice at certainty, and C u (1S x ) = {P }; by

Proposition 19 part 2, also C (1S x ) = {P }.
Since A ≤ 0, it is immediate that P ∈ Core I ; furthermore, I is smooth, hence regular.

Therefore, I and u satisfy Assumption 2; furthermore, it satisfies condition 2 in Corollary 13,

so SPC holds.

Finally, by Corollary 13 part 2, I satisfies DQC, so by Corollary 20, π(1S x ) = πc (1S x ) =

C (1S x ) = {P }, and so, by Proposition 19, Core I = {P } as well.
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