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Preasymptotic transport of a scalar quantity passively advected by a velocity field formed by a large-scale
component superimposed on a small-scale fluctuation is investigated both analytically and by means of nu-
merical simulations. Exploiting the multiple-scale expansion one arrives at a Fokker-Planck equation which
describes the preasymptotic scalar dynamics. This equation is associated with a Langevin equation involving a
multiplicative noise and an effectiveompressibledrift. For the general case, no explicit expression for either
the affective drift on the effective diffusivityactually a tensorial fieldcan be obtained. We discuss an
approximation under which an explicit expression for the diffusivétyd thus for the driftcan be obtained. Its
expression permits us to highlight the important fact that the diffusivity explicitly depends on the large-scale
advecting velocity. Finally, the robustness of the aforementioned approximation is checked numerically by
means of direct numerical simulations.
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I. INTRODUCTION of the slow variablesx by an effective equation where the

Many problems, from biology to geophysics, include afast variables/ do not appear.
variety of degrees of freedom with very different time scales UP to now, different methods have been proposed. Among
[1]. As important examples of systems with multiple time ("€ _many, we can mention the Mori-Zwanzig formalism
scales we can mention protein foiding and the climate. Whild4:5], invariant manifolds, averaging method§], condi-
the time scale for the vibration of covalent bonds istional expectation§7], and Langevin equatior{,9]. _
O(10°%5 5), the folding time for proteins may be of the order __ Following the seminal works on Brownian motion
of secondg?2]. In an analogous way, climate dynamics in- [10_,1]], it seems rather n_atu.ral .to mimic the dyngmlcs of fast
volves processes with characteristic times ranging from day¥ariablesy through a white-in-time process, which amounts
(atmosphereto 10— 10 yr (deep ocean and ice shields]. to desc_rlblng the slovy variables in terms of a suitable '
Even modem supercomputers are not able to simulate at{2N9evin equation. This approach is at the basis of the semi-
the relevant scales involved in such difficult problems. Con.n@l paper of Hasselmann in climate modeling in terms of
sequently, scientists concerned with multiple-time-scale sysStochastic equatiorfs]. y
tems must develop suitable techniques for the treatment of Under rather general conditiorig2], one has the result
the “slow dynamics” in terms of effective equatiofid. This ~ that in the limit of smalle the slow dynamics is ruled by a
is a very old problem: an early example of such techniques i5@"9€Vin equation with multiplicative noise:
the averaging method in mechanics. Starting from a system

of 2N ordinary differential equations written in the angle- dx =f1(X) + 0 (X) 7, (3)
action variables, where the angle, 6, ... ,6y) are “fast” dt
and the actions(ly,ly, ... Iy) are “slow,” the averaging \;nere 5 is a white-noise vector, i.e., the components are

method gives the leading order behavior of the actions by agy 5 ,ssian processes such tha{(t))=0, (7(t) 7:(t')) =8 &t
effective  equation for the averaged  quantiies /)", y(x) is a tensorial field ! !

(<|1|z’<|2i]’ <k| N>)f0bt|?med by averaglng _or;l the anllglﬁs. This class of problems attracts a great deal of attention in
or the sake of seli-consistency, we briefly recall the geny, 5y field of physics, including, e.g., statistical physics. We

eral problclam. Lec; Lés limit ;urszlveﬁ to Isystsms with ?(Ty WOj;st mention the celebrated renormalization group which can
times scales and denote Ryandy the slow degrees of free- o goon 59 5 technique to explicitly determfgg(x) and

dpm and the fast Ones, respectwgly. The .t|me. evolution ISo-(x) in Hamiltonian system§13]. There are rather general
given by a set of ordinary differential equations:

results[14,15 that give explicit expression for the coeffi-
dx cients in Eq.(3) in terms of expectations over the fast pro-
at =f(x.y), (D) cess generated by E€) with slow x fixed. On the other

hand there are technical difficulties in the practical use of
dy 1 such results, and therefore approximations based on physical
at = ;g(x,y), 2 ideas(such those in4-8)) are required; for a recent review

see[16]. Another interesting approach is to use the theoreti-

wheree<1 is the ratio between the fast and slow character<al results iff14,15 to built and test a numerical strategy for
istic time scales. The main goal is to approximate the motioreffective computation with Eq(3) [17,18.
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The aim of this paper is the investigation of a specificexpression foD;;(x,t). Other than for applicative purposes,
class of problems with many active, coupled degrees of freethe advantage of this expression is that it permits us to high-
dom. To be more specific, we focus our attention on theight the important result the;;(x,t) explicitly depends on
large-scale transport of a scalar fiedtk,t) advected by an the large-scale advectidd. This is unlike the common way
incompressible velocity field consisting in the superpositionof thinking of an eddy-diffusivity contribution as the result
of a large-scale, slowly varying, component and a small-of interactions involving only the small scales. Finally, we
scale, rapidly varying, fluctuation; namely, will show the results of direct numerical simulation in order

_ to assess the robustness of the approximation and thus of the

Aox,D) +o(x,0) - V 6(x,1) = DoABX, 1) (4) underlying physical mechanisms at the basis of the depen-

with dence ofDj;;(x,t) on the large-scale velocity field.
_ In more detail, the paper is organized as follow. In Sec. Il
v(x, ) =U1 +eulx), ®) we will show how to derive Eq(7) exploiting the multiple-

where the typical length scale &f andu areL and ¢, re-  scale strategysee, e.g.[19-23). The latter is a renormal-
spectively, and//L < 1. The parametes controls the relative ized perturbation method which requires one to héve
strength of the velocity components. It is worth recalling that<1. In general, the determination of the effective parameters
Eq. (4) is nothing but the Fokker-Planck equation associate¢an be performed only numericaligee, e.g.[19,22). If, in

with the Langevin equation addition to€/L <1, we also assume<1, an explicit ex-
pression foDj;;(x,t) can be derived. Some important conclu-

ax@® = v(x,1) + 12Dy 7. g)  sions can be drawn. Apart from therivial) case of shear
d ’ flow, Djj(x,t) cannot be constant; the components of the dif-

Our main aim here is to consider an effective large-scaldUSiVity tensor depend on the large-scale velocity as well as

transport equation for the large-scale scalar fgldvarying on the sr_nall scalgs. This latter point seems to be relevant for
on scales of the order af, in which the dynamical effects of 9€OPhysical applications where such dependence on large-

the smallest scales appear via a renormalieethancedif- scale flow is often not considered. . .
fusivity. Such an equation reafls9) In Sec. Il we will computeDj;(x,t) .pertu_rbatlvely ine.
Only the leadingO(e), term of the series will be calculated
O (X, 1) +U(X,1) - @6.(x,1) = a[Dj;(x,0)3,6.(x,0)]  (7)  analytically. This term is exact in some particular cases. Al-
though also for the higher-order terms analytical expressions

or, in the equivalent form, . ) . ;
can be given, their complexity does not permit us to extract

a6, (x,t) + @ - [UE(x, 1) 6. (x,t)] = ai&j[Dﬁ(x,t) OL(x,t)], relevant information.
Numerical simulations performed on the exact E4)
(8) ; . N
show that the approximate first-order solution is in very good
where agreement with numerical simulations also foand{/L not
E _ too small, say 0.2—-0.4. In addition we propose an empirical
Uit = [Ui(x0) + 905 (x, 0], ©) “recipe” to obtain a constant eddy diffusivity for preasymp-
totic transport. This is shown in Sec. IV.
E_ BJ+_DJL (10) In Sec. V we will discuss how, at least in principle, in the
! 2 presence of velocity fields(x,t) containing contributions at

many different scales, the multiple-scale approach can be
iterated, in such a way that a renormalization group proce-

nor defined as positive. Its symmetric pawhich is also dure naturally emerges with the result that an effective equa-
defined as positivecontributes to the diffusion process while y emerg S i =q
tion for asymptotic scales which involves an effective diffu-

h th mmetric and the antisymmetri rts enter, in gen-. . . ) P,
2?; itn?hsey eﬁeiﬁivceidc\j/éc?i (;dn tlse,{ocity?wchipc?l ttiri SteOI.,Jt toge sivity DF can be obtained. Because of technical difficulties,

be compressible. As we will show, we have identified a Suf_the explicit detailed computation of the iteration procedure
ficient condition which rules out the antisymmetric contribu- appeEars quite cumbersome. Nevertheless, for the dependence
tion of Dji(x,t) in UE(x,1). In this caseDE(x,t) is the only of D" on the velocity field, one can derivend generalize
reIevant(IiJn g;eneral unl;néwhfield of the”prc;blem. some results previously obtained in a phenomenological way.

) . . : Finally, Sec. VI is reserved for final conclusions and open
The Eulerian view for the large-scale dynamics given by roblems
Eq. (8) is equivalent to the Lagrangian descripti@vritten in P '
the 1t6 formalism
dx(t)
dt

We anticipate thaD;;(x,t) is in general neither symmetric

II. MULTIPLE-SCALE ANALYSIS

UE(x,t) + V2D55(x,1) 7. (11 Multiple-scale analysis applied to transport phenomena
(see, e.g., Ref21)) constitutes a powerful tool to extract the
Unfortunately, although we know the equation for the equations ruling the large-scale dynamics from first prin-
preasymptotic dynamics of a scalar field, no explicit expres<iples, i.e., the equations describing the entire set of spatial
sion for Djj(x,t) is available in general. We will discuss in and temporal degrees of freedom.
the paper how to proceed perturbativelysifithe parameter From a general point of view, the large-scale equations
defined in Eq(5)] in order to obtain an approximate explicit involve renormalized parameters which can usually be deter-
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mined by solving an auxiliary differential problem that re- Suppose we have a large-scale initial condition foat
quires the knowledge of the fully resolved fields. This is, fortime t=0 behaving on wave numbers ©f ¢) and, moreover,
instance, the case analyzed in R&X3] where it is shown wv=u (i.e., the case discussed in REZ0]). Due to the advec-
that the large-scale dynamics of a scalar field, in the presena#n termu-V in Eq. (4), scalar components with wave num-
of scale separation with respect to {lsenall-scalgadvecting  bers ofO(1+¢) are excited at larger times. The latter scalar
velocity field, is governed by an effective equation that iscomponents can interact, again due to the actiom o,
always diffusive. The diffusion coefficietiéctually a tensor  with those ofu to generate, at successive times, large-scale
turns out to be larger than the bafmoleculay diffusion  components o). This is the basic mechanism giving rise to
coefficient: unsolved turbulent motion enhances the largethe renormalization of the bare diffusion coefficient via in-
scale transportsee Ref[20]). teraction involving small scales.

The latter result has been generalized in R&®] where Let us now repeat the argument in the presenceJof
the preasymptotic passive scalar dynamics has been anghich varies on the scale of wave numbersQ@fe). The
lyzed. There, the assumption of dealing with a small-scalenteractions we have described above continue to work with
advecting velocity field has been relaxed and the possiblghe main difference that new contributions to the wave num-
dependence of velocity on scales comparable with those @fers ofO(1+€) now come from interactions dd(e) modes
the scalar has been taken into account. As a result, we wif U andO(1) modes ofé. The latter modes being involved
show here that the large-scafgreasymptotitequation does i the renormalization process, one can conclude that
not have a Fokker-Planck structure although it involves gays a role in such renormalization. Whether or not this is

renormalized diffusivityactually a tensorial field The latter  yeq]ly the case requires a formal analysis, which is the sub-
is varying on scales comparable with those of the large-scal@ct of the next section.

components of the advecting velocity. As a consequence, no
Lagrangian description is associated with such a Eulerian

equation. B. Formal analysis for the preasymptotic scalar transport
Following Ref. [19], let us decomposayr as v(X,t)
A. Preasymptotic dynamics of a passive scalar: =U(x,t)+u(x,t) whereU(x,t) andu(x,t) are assumed to be
Heuristic considerations periodic in boxes of side®©(e!) and O(1), respectively.

) _ . ) . (The technique we are going to describe can be extended
The starting point of our analysis is the equation rulingyyit, some modifications to handle the case of a random,
the evolution of a passive scalar fiettfx,t) in an incom- homogeneous, and stationary velocity figld.
pressible velocity field: Our focus is on the large-scale dynamics of the field
A(x,t) on spatial scales dD(e%). In the spirit of multiple-
scale analysis, we introduce a setsbdw variablesX =ex,

If one is interested in studying the scalar dynamics in theT: €t, and 7=t in addition to thefast variables(x,t). The

deep infrared limif(i.e., very large scalg¢ghe proper choice scaling of the t!meg aan is. suggeste_d by physical_ reasons:
for v is as in Ref[20]: a small-scale field varying on scales we are_zsearc_hlng for diffusive behavior on large time scales
well separated from those at which the scalar dynamics igf O.(E ) takl_ng !nto accou_nt the gffects played _bly the ad-
observed. vection contnpuyon occurring on tlm(_a scales@fe ™). _
More frequently, in real application®.g., in geophysids The prescription of the technique is to treat the variables

one could be interested in studying the scalar dynamics oftS independent. It then follows that

large scales where the advecting velocity is,. hqwever, ;till G d+ eV, G o+ ed.+ Edr, (13)

relevant(i.e., at such wave numbers the velocity is apprecia-

bly nonzerg. Following Ref.[19], the simplest way to treat a

si?/nilar situation is to %ecorrEpo]seas the?sum oﬂz( ,t) and u—ux,p, U—UXT), (14)

U(x,t). The former is assumed to vary on what we callwhered andV denote the derivatives with respect to fast and

“small scales'[i.e., wave numbers aD(1)] while the latter  slow space variables, respectively. The solution is sought as

evolves on “large scales” having wave number$¢é), the  a perturbative series

same at which we aim at investigating the scalar dynamics. O EXT:7) = 00+ D + 20D+ -, (15)
Naive arguments would suggest a simfaong) conclu-

sion: U(x,t) gives the advection contribution in the large- where the functiong’™ depend,a priori, on both fast and

scale equation fo® while the renormalized diffusion coeffi- slow variables. By inserting Eq$15) and (13) into Eq. (4)

cient emerges from small-scale interactions betw@&andu. and equating terms having equal powersejrwe obtain a

A detailed analysis actually shows that this conclusion ishierarchy of equations in which both fast and slow variables

wrong: the large-scale velocity(x,t) is not responsible for appear. The solutions of interest to us are those having the

only the large-scale advection; it also enters in the renormalsame periodicities as the velocity fieldx,t).

ized diffusivity. By averaging such equations over the small-scale period-
Before proceeding with a formal derivation where thisicity (here denoted by:)), a set of equations involving only

effect clearly emerges, let us give a heuristic argument irthe large-scale fields¢i.e., depending orX, T, and 7) are

favor of such a mechanism. easily obtained. Obviously, such equations must be solved

G0(x,0) +v - V 0(x,1) = DA (X, 1). (12)
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recursively, because of the fact that solutions of a given order UiE(x,t) = [Ui(x,t) + &jDﬁ(x,t) + &,-D{?(x,t)] (26)

appear as coefficients in the equations at the higher orders. ) ) )
Let us show in detail this point. is an effective compressible advecting velodid#]. Advec-

It is not difficult to verify that the equations at ordeand Fion by compressible velocities have been investigated, e.g.,
€ read[19] in Refs.[25,26].

20D 4 (- N = D-RoD = _ (v - 0 _ 45 9O
O(E)'atg( (v-d)d DO&G( - V)o 907, C. Formal analysis for the asymptotic scalar transport

16 N . .

(16) Our aim is now to investigate transport on scales much

larger than the typical length of the field, i.e., on scales

0(62)(910(2) + (U . 8)0(2) - Dot?ze(z) Egl_ P g

=-0:609 - (v - V)Y + DyV26? Homogenization leads to a purely diffusive dynamics

9. V)b e which involves a set of new slow variable¥=¢'X and 7

+2Do(d- V)07 = 9,67 (17) =¢€'2T describing the large-scale fielt) =(6, ). Averages are

The linearity of Eq(17) permits us to search for a solution in now over the cell of sizé.:

the form

FUCEX T = (0N T+ X EX T - VIYX TN, there are two different ways to arrive at the large-scale
(18) equation(27). The first way is to apply the homogenization

technigue from Eq(23) while the second possibility is to

Ttart directly from Eq(4). Let us consider the first option. In

this case, the asymptotic eddy-diffusivity tengf will then

result from the combined effects of the advection given by

0169 + (U - V)<0(l>>+C7T<0(1)>:Vi(DijVj9(O))a (19)  the large-scale flowdJ(X,T) and the diffusion at scalé

which also depend on space and time throlghx, T),

where #9 depends only on the large-scale variables as i
Ref.[20]. Plugging Eq(18) into the solvability condition for
Eq. (17), one obtains the equation

where
Uixp +(Uixi>  (Dikdxin + {Dikdixiy
D;i(X,T) = Do~ (Ux;) (20) I
is a second-order tensorial field agéx,t; X, T) has a van- (Dyi) +(Dy)
ishing average over the periodicities and satisfies the follow- e (28
ing equation: 2

where the vector fielgy is here a solution of the auxiliary
equation

dxc+ (U - ) x— d(Djjdixi) = —Ux+dDy. (29

dxj + [(u+U) - 9]xj — Dox; = — u;. (21

Note that, wherJ is not a pure mean flow but depends on
X andT, Eq. (21) must be solved for each value ¥f (and

eventuallyT). N - If one follows the second way to obtain the large-scale
From Eq.(19) and from the solvability condition of Eq. equation(27), the (exac} value of the eddy-diffusivity tensor
(16), D4# depends on both the molecular diffusivity and the ad-
tion by the total velocity field=U+u:
469 +(U - V(6% =0, (22) vection by the total velocity field u
. . . . Lex_ wix;) + jxi)
one obtains the equation for the large-scale figldlefined Dij~"=¢&;Do~ . (30)
as 6, =(09)+e(gV): 2
Here, the auxiliary fieldy is the solution of the followin
&tHL + (U . 0) 0|_ = &I(DIJ (9] 0|_), (23) equation: ry dX g

where the usual variablest are used.

The important point to note is th&; is in general neither
symmetric nor defined positive. On the contrary, it is easy tolhe latter procedure gives the exact value of the eddy-
show [19] that DEE(D”+D“)/2 is (obviously symmetric  diffusivity tensorD*X but requires the detailed knowledge
and defined positive. Its expression can immediately be obof the velocity field at both large and small scales. On the

dx + @ - @)x ~ DoPx =-v. (31)

tained from Eq(21) in term of only the auxiliary field: other hand, the expression obtained from &@) (which, in
c general, does not coincide with“®) is based on only the
Dij = Do(dpXidpx;) - (24)  large-scale velocity, and the effects of the small-scale flow

are included in the eddy diffusivitd; (X, T).
A clear indication thaD*®*+ D* can be obtained by not-
ing that the eddy-diffusivity tensdD;; does not depend on
a0+ @ - (UEG) = &if9j(D59L), (25) the rc_elatlve posmorﬂ.g., .possnble _spatlal shiftbetween the
two fieldsU andu. This is an obvious consequence of scale
where separation which washes out all detailed differences between

In terms of Df and Dj}=(D;-Dj)/2, the preasymptotic
equation(23) takes the form
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the two fields. Therefore, the effects of relative shifts be- In the following we will show how the presence of an
tweenU and u which are taken into account in the exact intense large-scale flow permits one to overcome this limit.
eddy-diffusivity tensoD*®* are missed by the approximate Indeed, if the strength of the large-scale flawis much
expression foD*. A comparison between the expressions forlarger than that of the small-scale velocity field one can
the asymptotic diffusivities obtained by following the two seek the solution of the auxiliary equation as a perturbative
different homogenization procedures allows one to quantifyseries in the small parameteru/U:
the error of the approximate strategy. . _© ), 2.2

It is worth mentioning a particular case in which both XOGEXT) =)0+ oDt o2x(@ 4 oo (37)
procedures lead to the same results. This is the case when there the functiong™ depend on both fast and slow vari-
velocity field v is given by the sum of two parallel steady ables. By inserting Eq37) into Eq.(21) and equating terms

shears, having equal powers i@, we obtain a hierarchy of equa-
p(:X) =U(X) + U(X), @
with ax'?+ (U - 9)x'? - Dp*x¥ =0, (39)
u(x) = (u(y),0), U(X)=(U(Y),0), (33 ax'M+ (U - 9)x'Y - Dp*xV = -u, (39)
whereU andu vary on scales of the order &f and ¢, re-
spectively.

A first homogenization on the small scalédeads to an ax™ + (U - d)x™ - Dox™ = - (u- ™. (40)
eddy diffusivity (we use the equivalent notatiols,,=D; ) o )
andDy,=D;,) The zeroth-order equation has the trivial solution

P x?=x9(X,T), which clearly does not contribufesee Eq.
1 ( |0]*dk . (20)] to D;i(X,T), while the higher-order equations can be
= — —_— = L= ] ’ 1
Dooc=Do+ 2] DK’ Dy=Bo, D=0 D i#]. easily solved in Fourier space. At first ordersirthe solution
(34) reads
One can now repeat the same homogenization procedure at YOk, w;X,T) =- ~ Uk, =, (42)
large scaled., obtaining i(w+U k) +kDg
N 1 |U|2dk . 1 |G|2dk+ 1 |fJ|2dk which, exploiting Eq(20), leads to the following expr2e53|on:
- 5| P 2 Yot 5 ' R Ui(-g,— w)T;(q, D
x0T ) Dy 2) D 2] D D,(X.T) = Dosy + f g doo] R qU w) 2J(q Zg]zq 0
(35) (0+U-a"+dDp
which coincides with the exact coefficient obtained from the L ImGi(-g,- 0)b(q o) +U-g) | | O(&3).
homogenization carried out from E€t) which involves the (0+U-q)?%+ q4D(2)
total velocity fieldv=U+u: (42)
Cex 1 (JO]2+|aPdk Equation (42) permits one to highlight some important
Dyx =Do+ 2 D K2 . (36) points. The eddy diffusivity is not simply determined by the
0 small-scale flow: it actually has an explicit dependence on
the large-scale velocity components. A rough estimation of
Il. AN APPROXIMATE EXPRESSION FOR THE the eddy diffusivity based on the sole small-scale field can
EDDY-DIFFUSIVITY FIELD lead to completely wrong results when a large-scale flow is

) ) present. Moreover, the variation in space and time of the

In the previous section we have shown how to reduce thgelocity field U(X, T) induces an implicit dependence on the
computation of the eddy-diffusivity tens@¥;(x,t) to the so-  glow variablesX,T in the eddy diffusivity, which thus be-
lution of an auxiliary equation. It is, however, worth noting comes a tensorial field. We stress the fact that such a depen-
that the parametric dependence on the large-scale variablggnce onX,T is not a consequence of the approximation
X, T in the auxiliary fieldx(x,t; X, T) in Eq. (21) imposes a  (42), the same property holds if one use the exact
rather severe limit to the practical use of EQ3). If the The physical origin of this effect is the strong sweeping
large-scale velocityJ depends on space and time, one hascaused by the large-scale velocity field, which changes the
indeed to solve an auxiliary equation id+1) dimensions.  effective correlation times of the small-scale flow. Therefore,

Therefore, except for very few cases in which one carthe frequencies that appear in Eq41) experiences a Dop-
obtain an analytic solution fox(x,t; X, T), e.g., in the case pler shift corresponding to the inverse of the sweeping time
of orthogonal sheartsee Sec. Il B, Eq. (20) does not pro- U-k. Only when the temporal variation of the small-scale
vide a practical tool for evaluating the eddy diffusivity of flow is much faster than the large-scale sweeping, i.e., when
generic flows. The computational cost required for the soluthe power spectrum of the small-scale flow is peaked at very
tion of the auxiliary equation can indeed be heavier than thahigh frequenciesw> U -k, one obtains a constant tensor
required for the solution of the complete equation. which does not depend du:
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Re0:(- q,— )G (0, w)]g°D 0R(qw)=0 0O gandword'(qw) =0 0O gandw.
D;;(X,T) = Dyd; +f : 5 °
w”+ "Dy (48)

Im[3(- g, w)0j(q, ) o 3 Conditions(48) amount to saying that if the small-scale ve-
+ w2+ q4D(2) dg dw + O(&”). locities have defined parity with respect to space and time
inversion, then only the symmetric part Bf; controls the
(43) preasymptotic scalar dynamics.

As we have already shown in Sec. Il B, both the symmet-  To conclude, it is worth observing that the formuk®)

ric and the antisymmetric parts Bf; contribute to the effec- €an be generalized to random small-scale velocity mim-
tive advecting velocity icking turbulent small-scale fluctuations. In this case

U(-q,-0)0j(q,w) in (42 must be replaced by
UF(x,t) = Uj(x,t) + ;D (x,t) + 4 Df(X,1). (44)  (Oi(-9,-w)U;(q, w)) where the angular brackets denote the

" . , L , average with respect to small-scale velocity statistics. If one
Exploiting the explicit expression fdp;; it is easy to derive  yeais with stationary, homogeneous and isotropic fluctua-
a suffici/?nt condition u_nder w_h_idbi‘:‘ is id_en_tically zerc{anéj tions the spectral tens«ﬁﬁi(—q,—w)ﬁj(q,w» is invariant un-
FhUS&iDiJ(X’t)zo]' Ifthis co_nd|t|0n Is satisfied, t_hen only; .derq— —qg andw— —w with the immediate consequence that
is relevant for the dynamics at preasymptotic scales. This
seems interesting for applications in view of the fact that, in <0f*(q,w)ﬁ}(q,w)> - <C|i'(q,w)0f‘(q,w)> =0, (49
three dimensions, only six, rather than nine, fidliti&€ com-
ponents ofDF) must be taken into account.

Formally, the analytic result obtained for the eddy diffu-
S|V|ty iS Valid Only in the I|m|tS€/L< 1 andU/U< 1. There' B. The case of 0rthogona| shears
fore we must expect some discrepancies between the actual . ) o .
results for¢/L~1 andu/U~1 and those obtained exploit- Al_thOUQh Eq.(42) is just a flrst-order approximation, It
ing the multiple-scale method. Actually, we will show in Sec. provides a concrete tool to estimate the eddy diffusivity, and

IV that good results are obtained even if the ratio betweerlt can be shown that for the particular case of orthogonal

the characteristic scales of the flows;¢/L, and amplitudes, shgars_ it recovers the exact solutid®]. Indeed, if the ve-
e=u/U, are not too small. locity field is the sum of two orthogonal shears

v(X,t; X, T) =u(x,t) + UX,T) (50)

a condition that generalizdd7).

A. A sufficient condition for the effective advecting velocity with

As a starting point let us rewrité in term of its real and
u(x,t) = (u(y,z1),0,0, U(X,T)=(0,U(X,ZT),0)

imaginary parts,i;=0F+\-10!, and plug it into Eq.(42)

which takes the form (5
92D, it follows from Eq. (21) that the unique nonvanishing com-
D;;(X,T) =Dg4, +f > 1> ponent of the auxiliary field is the one in the direction of the
(0+U-0q)"+q"Dp small-scale velocity, and it is constant along that direction.
X [GiR(q,w)GJR(q,w) + O}(q,w)ﬁ}(q,w)] Therefore the small-scale velocity field does not give contri-
R N N R butions in the advective term of ER1) which can exactly
+[07(q, 0)U;(g, @) = G(9, 0)3(q, @) ] be solved in Fourier space to obtain
w+U-q ,\
X dq dw + O(£3). o _( - 0(k, w) )
2 2 =
((1)+U q) +q4DO X(k'lleIT) |((,()+U 'k)+k2D01010 . (52)
(45)
From the above expression one immediately realizes that
the antisymmetric part ob; (X, T) is IV. NUMERICAL RESULTS AND “EMPIRICAL RECIPES”
J FOR THE PREASYMPTOTIC TRANSPORT
Di/?(x,'r) = J [OiR(q,w)O'-(q,w) - Gi'(q,w)ﬁR(q,w)] In the previous section we have discussed a perturbative
] . solution and its possible limitations wherdU and ¢/L are

not very small. Let us now present some numerical results
49 do. (46) and an empirical “recipe” for a constafite., without space
Do and time dependeng@reasymptotic eddy diffusivity.

w+U-q
(w+U-q)*+q

The condition for the latter to be zero is
N N N N A. Numerical results
GR(0,0)0(0, @) = 3(q,©)07(q, ) = 0, (47) , ,
As an example of small-scale incompressible flows we

from which sufficient conditions for its validity are immedi- consider a steady cellular floj\20,22,27 defined by the
ately obtained: stream functiony= ¢y, sin(kx)sin(ky) with y=u/k:
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u = (4, — dyap) = (u sin(kx)cogky), — u cogkx)sin(ky)). 0.024 L
(53

Its characteristic length scale is given Iy 27/k and its
amplitude isu. 0.02
In the absence of large-scale velocity fields and for large 5 g g1g

x

Péclet numberéPe=uf/Dy), it is possible to show by means | %
of simple physical argumen{28] that this periodic array of © 0.016
small vortices give rise to an enhancement of the effective
diffusivity DE~ Dy\Pe. A precise estimation of this constant

eddy diffusivity can be obtained by the numerical solution of 0.012

Eqg. (21), with U=0.

0.022

0.014

The modifications induced on the eddy diffusivity by the 0.01 ' : —
presence of a large-scale flow 0 w2 T;/ 3n/2 2n
U=(U(XY,T),V(X,Y,T)) (54

FIG. 1. The eddy diffusivit)DEX(y) resulting from a small-scale
with characteristic length scale={/e and strengthJ=u/e cellular flow superimposed on a large-scale shear irxttiieection.

can be estimated from E¢42). Thanks to the simplicity of The approximation58) (solid line) recovers quite well the exact
our small-scale flow, the integral in E2) reduces to the multiple-scale solution(dashed ling except for narrow regions
sum of contributions of four modesk, k), and trivial cal-  where the large-scale flow vanishgs=n) and the actual diffusiv-

culations lead to ity recovers the constant estimation based on only the small-scale
cellular flow (dash-dotted line The parameter values até=1, L
E_ 1, 1 =27, u/lU=1/4, £/L=1/8, Dy=0.01. Units are made dimension-
D =Dgsiy1+-u .
!y ) 4" | (U+V)?+(2kDp)? less according to Eq60).
1 , - .
+ > 2]} +0(e). (55 In all figures and tables we show quantities made dimen-
(U = V)= + (2kDo) sionless in the form

For such a system the antisymmetric pfji is identically
zero. X s —

Let us now focus on two idealized large-scale flows, Lo
which are representative of two broad classes of realistic

L whereUy=U andLy=L/27.
situations: a steady shear Once the first-order approximatios8) and (59) for the

U = (U sin(Ky),0) (56)  eddy diffusivity have been plugged into the preasymptotic
large-scale equation, we compute the asymptotic eddy diffu-
sivity at very large scales.
U = (U sin(Kx)cogKy), - U cogKx)sin(Ky)).  (57) Numerical integration of the auxiliary equatiq@9) is
. . ) . ) advanced in time until the asymptotic eddy diffusivity given
Their characteristic length scale lis=27/K and U is their 1, 0 (28) converges to its constant value. The latter is then
amplitude. For the case of the large-scale shear, (89.  ;ompared with the values given by homogenization of Eq.

D
t-t—2 D——1), (60

and a large-scale replica of the cellular flow

reduces to (4) for different phase shifts betweeh and u.
. ( u? ) 5 The observed variability db“**for different phase shifts
Di=Dgydi|1+— +0 58 i i i inle-
ij = Dodj 2 U2 sirf(y) + (2kDy)? (%) (58)  provides an estimation of the accuracy of the multiple-scale

results. Indeed, as already noted, the two successive homog-
while in the case of the large-scale cellular flow one gets enizations do not capture any effect induced by the phase

shift.
DE= Dogij{lJrluz{ — 1 5 Here, we consider the two extreme possibilitigs the
: 4" [ U?sirf[K(x +y)] + (2kDo) zeros of the large-scale flow coincide with the nodes of the

1 small-scale cellular floicase(a)]; (ii) the zeros of the large-
+ UZsir? 2] +0(%. (59 scale flow are located on the bulges of the small-scale cellu-
SInTK(x = y)] + (2kDo) lar flow [case(b)].

In Fig. 1 we compare the exact multiple-scale solution for In_addition, we compute the constant eddy diffusivity
Dfx(y) in the case of the large-scale shear flow with the apDF:Da‘”— of the velocity field containing the small-scale cel-
proximation(58) and the constant estimation based on onlylular flow only. This leads to a rather crude approximation
the small-scale cellular flow, respectively. In most of the do-for the asymptotic eddy diffusivitp“" (in the following, we
main the first-order approximation recovers quite well thewill refer to it as the “naive approximation”
exact solution, with the exception of narrow regions where For the large-scale shear, the asymptotic diffusion tensor
the large-scale flow vanishes and the actual diffusivity isD* is diagonal and strongly anisotropic. In Fig. 2 we show

mainly determined by the cellular flow. its componeanx in the direction parallel to the large-scale

011113-7



MAZZINO, MUSACCHIO, AND VULPIANI PHYSICAL REVIEW E 71, 011113(2005

50 T T T T T TABLE I. Asymptotic eddy diffusivity resulting from the effects
15 | ] of large-scale shear flofJ=1, L=27), small-scale cellular flow,
a0 | and molecular diffusivityD,=0.01.D%¢%[caseda) and(b)] are the
actual values obtained from direct homogenization of the whole
velocity fieldv=U+u. an ‘N are obtained from the homog-
35 locity fieldv=U+u. DX andD~" btained from the h
30 enization of the preasymptotic equation where the preasymptotic
D§ o5 | eddy diffusivities are approximated by expressid@) and by re-
o0 | taining only the small-scale cellular flow, respectively. Units are
made dimensionless according to EGQ).
15+ /.
10/ ] ¢IL ulu DL-ex D~ DEn
51 1/4 1/4 D,,=41.69, 34.5 36.7 18.7
0 1 1 1 1 1 - ) b)
0 100 200 300 400 500 600 D,,=0.01129, 0.0122”  0.0119  0.0267
t 1/8 1/4 D, =41.5%, 40.5? 39.6 28.3
FIG. 2. Time evolution of the asymptotic eddy diffusivity in the Dyy:0'0112a>' 0.0113" 0.0115 0.0178

direction of the large-scale shear up to its convergence to its con-
stant value. The scale separation between the large-scale shear and

the small-scale cellular flows &/ L=1/4, theratio of amplitudes is ~ Scale separatiofi/L=1/8 theapproximate solution gives re-
u/U=1/4, and the mlecular diffusivity is fixed to the valu®,  Sults within the 2% of the actual values, while the “naive
=102 The first-order approximation ie=u/U (solid line) pro-  approximation” still gives an error of about 30féee Table
vides a good estimation on the actual values, which depend on the.

relative phase shift between the two fields: cémeis denoted by In the case of the large-scale cellular fl¢see Fig. 3 the

the dashed line, cagb) is denoted by the dotted line. For compari- asymptotic eddy diffusivity is isotropic, and the first-order
son we also show the results obtained from the “naive estimation’;’ipproximation is even more robust, providing good estima-
(dash-dotted lingin which the effects of the large-scale flow have tions also fore=¢/L=1/4 ande=u/U=1/2 (see Table I\.
?ee)n neglected. Units are made dimensionless according to Eqhe errors of the “naive approximation” are of the order of
60). 100%.

shear flow. The scale separation{sL=1/4, theratio of
amplitudes isu/U=1/4, and thanolecular diffusion is fixed
to the valueD,=1072. We discuss now an empirical “recipe” to obtain a constant
In the direction of the shear the effect of the small-scaleli-€., having no variation in space and in tiezldy diffusiv-
flow is to reduce the asymptotic diffusion coefficient, which ity to describe preasymptotic scales. The question is thus on

B. An empirical “recipe”

for the pure large-scale shear flow would be given by whether it is possible to mimic the preasymptotic transport
1 U2
D% =Dy + Z—>— =50.01. 61) 04
2K“Dq 0.35

Such reduction is due to interference mechanisms between 0.3
small-scale and large-scale moti#9]. 0.25
With our parameters the actual reduction is of the order of

20-30%, depending on the phase shift betwdeandu. The a 0-2
first-order approximation42) for the eddy diffusivity pro- 0.15
vides a good estimation giving a reduction @f, of about 01 b VW A\~

28% (see Table ). On the contrary the “naive approxima-

tion” gives a reduction fonX of about 60%, which is deeply 0.05
wrong. 0 \/
In the transverse direction, the bare molecular diffusivity -0.05 . . . . .
D, is increased by the presence of the small-scale flow. The 0 10 20 30 40 50 60
“naive approximation” overestimates this effect, giving an t

enhancement of about 170%D§, while approximation(42)

- : FIG. 3. The same as in Fig. 2 for the case of the large-scale
I]?ZTZ(;aOt/?er good agreement with the actual value of abou(t:ellular flow (¢/L=1/4,u/U=1/4,Dy=10"). Time evolution of

: e :
It is worth stressing that the large errors given by thethe asymptotic eddy diffusivityD~ is well approximated by the

. e 4 “first-ord imatiott42) (solid line), while the “nai tima-
“naive approximation” rather than being consequences of fi irst-order approximatiota2) (solid ling), while the "naive estima

. | . inlv d he f h h jion” (dash-dottefildoes not match the actual values which depend
nite scale separation are mainly due to the fact that the e on the relative phase shifts between the two fields: ¢asdashed

fects of the large-scale flow have been neglected in the COnge- case(b) dotted line. Units are made dimensionless according
stant eddy diffusivityDﬁ(X,T)=D5,j. Indeed, with a larger to Eq.(60).
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TABLE Il. The same as in Table | for the large-scale cellular V. MULTIPLE-SCALE EXPANSION AND
flow. RENORMALIZATION GROUP
¢/L u/U uLex DL DL In previous sections we studied the problem of large-scale
transport in field varying on two separated scales that we
1/4 1/2 0.11%, 0.123 0.135 0.209 called large and small scales, respectively.
1/4 1/4 0.10%, 0.112Y 0.113 0.175 In practical applications, one has to deal with advecting

velocity fields having almost a continuum of active scales. In
this latter case, we can write

by means of an average diffusion tensﬁ),’?'a, which still N
takes into account the effects of the large-scale fldvout — _

o L u(x,t) = 2, up(x,t) = ug(x,t) + du(x,t), 64
does not depend on the position. In general it is not clear 9 ZO (X0 = Uo(x, 1) o (64

which is the correct way for averagirig;(X,T) to obtain a ) o

constant, but still anisotropic diffusion tensor. Here, we pro-Vhere the Fourier trinsforrpl af,(x,1) is picked on wave
pose a possible “recipe” which is inspired by the multiple-numbers arouné,~I,*=2",". Denoting withE(k) the en-
scale approach. The idea consists in applying the homogen®'dy spectrum, one has

zation technique just on the diffusive term of the pre- Ky

+1
asymptotic equation, obtainirlgﬁ'a in the same way as for %<|un(x,t)|2> = J E(k)dk. (65)
DCZ Kn
a_ (Didxj) + Dixdixiy . (Dij) +(Dj) We are now ready to address the following question:
Dy®= 5 + 2 , (62)  what is the effect ofdu(x,t) on the effective asymptotic

eddy diffusivity? In other words, we aim at obtaining an
where the vector fielgy is a solution of the auxiliary equa- effective large-scale equation and determining the depen-
tion dence ofUF and DE on éu(x,t) andD,, respectively.
_ A natural way to answer our question is to exploit the
axi+ (U - ) x = d(Djj 9 xi) = dD. 63 renormalization group point of view. The basic idea proceeds
Although the recipg62), (63) cannot be rigorously proved, it through these steps.
is possible to give a rough argument in favor of it. Equations (1) Starting from the original equatiof®), one considers
(62) and(63) can be seen as the analogs of E88) and(29)  the field
in which only the eddy-diffusivity contributions to the N-1
asymptotic diffusion tensor have been retained. _

The above discussed preaveraged constant diffusion ten- Un-1(0 = 2 uy(x,0)
sor is potentially interesting in applications, where it is al-
most impossible to deal with space-dependent eddy diffusivids the one at large scales amgx,t) as the contribution at
ties. Let us stress the fact th@ﬁya in Eq. (62) is constant, small scales. Recalling the results of the multiple-scale ex-
but it takes into account the effects of the large-scale flow tdansion reported in Sec. Il, we can write the effective equa-
provide a correct estimation of an effective diffusion tensortion for the field including the contribution up to the scale

Numerical simulations of the preasymptotic equaiip® N-1,i.e.,
in which Dij(X,T) is replgced b_y the constant tgnsﬂ)ﬁa _ 0+ UE—l' Vo=V (Dﬁ_lv 0, 67)
confirms that this averaging recipe leads to considerable im-
provements with respect to the “naive approximation” ob-where Uﬁ_l and Dﬁ_l are determined by the multiple-scale
tained without considering the effects of the large-scale flowanalysis of Secs. Il and IIl. It is rather obvious that it is

Table Il shows the results in the case of the large-scal@lmost impossible to repeat in full detail the multiple-scale
shear flow, where this averaging leads to a rather good agrocedure. On the other hand, if one is interested only in the
proximationD*2 for the asymptotic eddy diffusivity; similar order of magnitude, interesting results can be obtained by
results hold for the case of large-scale cellular flow. neglecting the dependence »nin this spirit we obtain

Dod|unHKG

(66)
n=0

TABLE Ill. The same as in Table |. The asymptotic eddy diffu- DE_, = D, + const (68)
. La: . . . N-1 0 Dk22+kU 2
sivity D2 is obtained from the homogenization of the preasymp- (Doki)“ + ( N| N—1|)
totic equation where the preasymptotic eddy diffusivity is approxi-and
mated by the constant value given by EGR).
UN-1= Una(X, 1) + 8Up-, (69)
¢/L u/u DEex Dfa DEN . _ o o
where 6Uy_; is the compressible contribution originating
/4 1/4 Di=41.6%, 34.8 42.1 18.7 from the dependence @%_; on x.
D,y=0.0112%, 0.0122°  0.0118  0.0267 (2) As a second step, one now has to iterate the previous
1/8 1/4 Dy =41.5%, 40.5? 43.6 28.3 procedure. In order to simplify the computation, as before we

D.,=0.0112% 0.0113" 00115 0.0178 do not take into account either the dependencﬁn‘1 onXx
Y or the compressible correction &f_,. We have just to re-
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placeDg with DE_;, Uy_; With Uy_,, ky with ky_y, and so on.
When doing so, we arrive at

E <U - 2>k2
DE 1+C0nSL -1 | N l| N-1

DE
N2 (D1 kz 1)+ (Kyog|Up-1])?

(70)

and similarly forUg_,, and so on, foN-3, N-4, etc.

The effective asymptotic eddy diffusivitpF is obtained
by iterating the recursive relatiq@0). Two interesting limits
have been identified.

(i) The dominant term in the denominator of E@O) is
(DE_,K&_))? and the recursive formula becomes

2
rconsflild.

lk

(ii) The dominant term in the denominator of E@O) is
(kn-1]Un-1))? and we thus have

DR-2= DR (71)

DE_, ~ D (1 + consw) (72)

|Un-af?

The relation(71) coincides with the result obtained by Mof-
fatt [30]. Iterating(71) one easily obtains

DE ~ \/f k™2E(k)dK,

(73)

PHYSICAL REVIEW E 71, 011113(2005

and an effective advecting velocity. Although explicit expres-
sions for such effective fields cannot be determined in gen-
eral, nevertheless it is apparent that the eddy diffusivity does
depend on the large-scale advecting velocity. This is in con-
trast with the usual point of view which sees the eddy diffu-
sivity as the cumulative result of interactions involving only
the small scales. This aspect can be rather relevant in a geo-
physical contex{31].

(2) If one makes the additional assumption that small-
scale fluctuations are sufficiently weaker than the large-scale
fluctuations(i.e., u/U< 1), an approximate explicit expres-
sion for the eddy-diffusivity tensorial field can be obtained.
This expression makes explicit the dependence of the eddy
diffusivity on the large-scale velocity, which, in turn, carries
a spatiotemporal dependence on large scales.

(3) If the small-scale velocity has defined parity under
spatial and temporal inversion, only the symmetric part of
D;; is relevant for the preasymptotic dynamics. The same
conclusion holds ifu is a small-scale stationary, homoge-
neous, and isotropic turbulent field.

(4) We have tested numerically the validity of our ap-
proximated expression for the eddy diffusivity for values of
u/U and €/L not necessarily much less than unity. As ex-
pected, the range of reliability of our approximation extends
to finite values of the above ratios. This seems an important
conclusion for applications in the realm of geophysics and
oceanography.

(5) Exploiting the explicit formula for the eddy diffusiv-
ity, we have presented a generalization of our results to situ-
ations with a continuum of active scales. This procedure

i.e., an eddy diffusivity which does not depend on the mo-gives rise to a sort of renormalization group through which it

lecular diffusivity D
On the contrary, exploiting the fact tthlzuo from
(72) one has

DE D (1+ (Ju n|2>>
~ Dy consE o D. (74)

Juol?

In summary, from the iteration of the recursive r(r®) one
can obtain at least two fixed points.
asymptotic eddy diffusivity is determined only from the ve-
locity field and it does not depend dp,. This allows for

values ofDE much larger thamD,. In the second limit, one

has a small variation of the asymptotic eddy diffusivity

which remains of the same order Bg.

VI. CONCLUSIONS

In the first case the

is possible to extract two completely different regimes of
transport.

We would like to conclude with a short discussion on the
applicability of our results and, more generally, of multiple-
scale techniques to geophysical problems. As far as the first
point is concerned, a paradigmatic example of a possible
application is provided by the investigation of pollutant dis-
persion in the planetary boundary layer. The latter is a thin
(~21000 m) atmospheric layer near the ground, where the
airflow is strongly driven by sink and source forcing terms
arising from the bottom boundary, e.g., due to the orography.
The decomposition of the velocity field asu+U, u being
a fluctuating random component, whose statistical properties
are prescribed antd a slowly varying part, is a standard
decomposition. By way of example, the slow componént
describes synoptic variations while the fast component
modelizes, for instance, orographic excitations.

Let us now point out some important limitations in the

We have investigated both analytically and numericallyapplicability of the multiple-scale analysis to geophysical
the preasymptotic transport of a passive scalar field on largproblems. A first obvious limit comes from the separation

scales, say, of ordér. The velocity field advecting the scalar
is formed by a large-scale compon&hvarying on scales of
order ofL and by a small-scale fluctuatian which varies on
scales of order of much smaller thah.. The presence of a
small paramete€/L naturally allows a perturbative analysis:
the so-called multiple-scale strategy.

The following results must be emphasized.

between the characteristic scales of the flow. The multiple-
scale approach is strictly valid only in the case of large sepa-
ration, while the typical separation of scales and amplitudes
in realistic geophysical flows is not very large. Actually, this
does not seem a severe restriction, since the results obtained
in the limit of infinite separation provide rather good ap-
proximations also valid for moderate separati¢sse, e.g.,

(1) Preasymptotic scalar transport is ruled by a Fokkerthe numerical results of Sec. )V

Planck equation involving an effective eddy-diffusivity field

Moreover, the multiple-scale approach requires a detailed
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knowledge of the Eulerian velocity field, which is not always ACKNOWLEDGMENTS

available experimentally. It thus seems to us that an attempt

to build a preasymptotic equation for the transport, using This work was supported by Cofin “Sistemi Complessi e
only Lagrangian experimental data, should be a further imProblemi a Molti Corpi.” Numerical simulations have been
portant step toward a satisfactory understanding of how tperformed at CINECA (INFM parallel computing
modelize large-scale transport in geophysical flows. initiative).
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