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We present a model for the Lagrangian dynamics of inertial particles in a compressible flow, where fluid
velocity gradients are modeled by a telegraph noise. The model allows for an analytic investigation of the role
of time correlation of the flow in the aggregation-disorder transition of inertial particles. The dependence on the
Stokes number St and the Kubo number Ku of the Lyapunov exponent of particle trajectories reveals the
presence of a region in parameter space �St, Ku�, where the leading Lyapunov exponent changes sign, thus
signaling the transition. The asymptotics of short- and long-correlated flows are discussed, as well as the
fluid-tracer limit.
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I. INTRODUCTION

The spontaneous formation of clusters of particles sus-
pended in chaotic flows may originate from two different
physical processes: compressibility of the fluid flow and par-
ticle inertia. In the first case particles are trapped in regions
of ongoing compression, while in the second case inertia
causes their ejection from vortical regions. The underlying
link between these two phenomena is manifested in the limit
of weak inertia, in which particle dynamics in incompress-
ible flows can be approximated by that of tracers in a weakly
compressible velocity field �1,2�.

Clustering processes have been extensively studied, both
in the case of compressible flows �3–6� and inertial particles
�2,7–9�. Fractal dimension of the clusters, obtained from the
ratios of Lyapunov exponents of particle trajectories, has re-
vealed a powerful tool to quantify the intensity of the clus-
tering �3,7�, and has motivated further studies of Lyapunov
exponents of inertial particles �9,10�.

Aggregation is an extreme form of clustering, which oc-
curs when the trajectories of different particles tend to point-
like clusters. In this situation the senior Lyapunov exponent
of particle trajectories become negative, signaling that
nearby particles do not separate exponentially as expected in
chaotic flows, but their paths eventually coalesce. This phe-
nomenon has been described for fluid tracers in compressible
flows �11,12�, as well as for light particles in incompressible
flows �7�.

Surprisingly, it has been shown that in compressible
flows, where fluid trajectories coalesce, large enough inertia
can induce a transition from the strong clustering regime into
a weak clustering one, where particle trajectories remain cha-
otic and the senior Lyapunov exponent is positive �13–16�.
Analytic results on this aggregation-disorder transition have
been obtained under the assumption that the carrier flow is
short correlated in time.

It is therefore natural to ask how time correlations of real
turbulent flows can influence this phenomena. As pointed out
by recent numerical studies of fluid tracers in compressible
flows �6�, time correlations are responsible for an increase in
the level of compressibility required for the transition to the
strong-clustering regime. In the case of inertial particles it

has been found �10� that time correlations cause an increase
of the �positive� Lyapunov exponent �i.e., make particle flow
more chaotic� already at weak inertia, which cannot be pre-
dicted in the framework of short-correlated flows �9,17–19�.

Here we discuss a simple one-dimensional, time-
correlated model flow, recently introduced in �20�, which al-
lows one to obtain a deeper insight on the interplay between
inertia and compressibility, and to investigate analytically the
dependence on Stokes and Kubo numbers of the Lyapunov
exponent of particle trajectories.

II. MODEL

The dynamics of two small inertial particles, whose den-
sity is much larger than the fluid density, is dominated by the
viscous drag. Hence, the equation for their separation R�t�
=X1�t�−X2�t� and relative velocity V reads �21�

Ṙ = V, V̇ = −
1

�
�V − �U�X1,X2,t�� , �1�

where � is the Stokes time of the particles, and �U is the
difference of fluid velocities at particle positions.

To investigate the behavior of the Lyapunov exponent one
has to consider separations smaller than the viscous length
scale of the flow. At these scales the fluid velocity difference
can be written in terms of the velocity gradients Sij =� jUi as
�Ui=SijRj. The Lyapunov exponent � is determined by the
contributions of the local gradients Sij�t� experienced by the
two nearby trajectories. Note that the statistics of velocity
gradients in the reference frame of an inertial particle differs
from the Eulerian statistics due to preferential concentration.

Let us now consider an idealized one-dimensional flow, in
which the fluid velocity gradient in the reference frame of a
particle is modeled by a telegraph noise s�t�, i.e., a noise that
switches randomly between two fixed values ±s. Stokes
number can be defined in term of the fluid gradient intensity
as St=s�. Equations �1� reduce to

Ṙ = V, V̇ = −
V

�
+

s�t�
�

R . �2�

When s�t�= +s the system is expanding, and evolves to-
wards the asymptote V=�R, where
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� =
1

2�
�− 1 + �1 + 4s�� . �3�

The particles separate exponentially with smaller rate than
fluid trajectories ��s. When s�t�=−s the system is contract-
ing, and two different scenarios are observed, according to
the relative intensity of fluid gradients and inertial drag. For
small Stokes numbers St�1/4 the system evolves toward
the asymptote V=�R, where

� =
1

2�
�− 1 + �1 − 4s�� for s� � 1/4. �4�

Particles slow down less efficiently than the fluid, and hence
their separation goes to zero with a faster exponential rate
����s. For large Stokes number St�1/4 the system has two
complex conjugate eigenvalues

� =
1

2�
�− 1 ± i�4s� − 1� for s� � 1/4, �5�

and the solution decays exponentially with a clockwise spiral
motion in phase space �R ,V�. This means that particles can
cross the R=0 axis, i.e., collide, with nonzero relative veloc-
ity, giving origin to a shock �22�. Notice that the solution is
properly defined also for R�0. The change of the sign of R
can be interpreted as the fast particle overcoming the slow
one.

Shocks start to appear for the critical value St*=1/4. The
presence of such critical Stokes number is characteristic of
flows where the fluid velocity gradients are bounded, and its
value is determined by the intensity of the strongest negative
gradient �here −s�. Conversely, if the statistics of the fluid
velocity gradient is unbounded, shocks can appear for arbi-
trarily small Stokes number, but they are exponentially sup-
pressed in the limit St→0 �18,22,23�.

The transition rates 	1 from −s to s and 	2 from s to −s
determine the fraction of time spent by the particle pair in
regions of ongoing compression and expansion �respectively,
	2 / �	1+	2� and 	1 / �	1+	2��. The mean value of the noise
s�t� is

s0 � �s�t�	 = − s�	/	 , �6�

where 	=	1+	2 and �	=	2−	1. Noise fluctuations s̃�t�
�s�t�−s0 are exponentially correlated:

�s̃�t�s̃�t��	 =
4s2	1	2

	2 exp�− 	�t − t��� . �7�

The ratio between the correlation time of the flow 1/	 and
the Lagrangian separation time 1/s defines the Kubo number
Ku=s	−1.

Notice that in potential flows both fluid tracers and iner-
tial particles spend more time in regions of a local compres-
sion than in expanding regions, and hence �	�0. The actual
value of �	 can be determined by assuming statistical homo-
geneity and isotropy of the flow. Thanks to these symmetries,
the mean position of a particle is solely determined by its
initial position �X�t�	=X0 and hence the distance R is statis-
tically conserved.

The peculiar nature of the telegraph noise, namely the fact
that its square is deterministic, allows one to obtain closed
equations for �R�t�	. Averaging over different realizations of
the noise, and using the derivative formula �24�

d

dt
�
tFt�
�	 = 

t

d

dt
Ft�
�� − 	�
tFt�
�	 , �8�

which hold for a generic noise with zero mean and correla-
tion �
t
t�	�exp�−	�t− t���, one obtains the linear system

d

dt
y =

1

�
My , �9�

where

y = 
�R	
��V	
��s̃R	
�2�s̃V	

� ,

M = 
0 1 0 0

s0� − 1 1 0

0 0 − 	� 1

�s2 − s0
2��2 0 − s0� − �1 + 	��

� . �10�

This linear system allows for a constant solution �R	=R0

when s0	�1+	��+s2=0, which together with Eq. �6� gives

�	 =
s

1 + 	�
. �11�

Notice that inertia reduces the trapping of the particle in
compressing regions. This effect is encoded in the behavior
of the parameter �	, which is a decreasing function of
Stokes time �, and vanishes in the limit �→�.

The positivity of 	1 requires �	�	, and gives an upper
bound for the Kubo number achievable in the system:

Ku � Ku* =
2 St

�1 + 4 St − 1
. �12�

For longer correlation time, particles are irreversibly cap-
tured by contracting regions. In the limit of fluid tracers �
→0 the constraint becomes Ku�1. The accessible region in
�St, Ku� parameter space is shown in Fig. 1.

III. STATISTICS OF PARTICLE-VELOCITY GRADIENTS

From the system �2� one can obtain a closed equation for
the particle-velocity gradient =V /R,

̇ = − 2 − �−1� − s�t�� . �13�

The Lyapunov exponent of particle trajectories can be ob-
tained from Eq. �13� as an ensemble average �	 over differ-
ent realizations of the noise. Equations for the stationary dis-
tribution of x=+1/ �2�� are easily obtained with the same
procedure adopted to derive Eqs. �9� and �10�,

�� 1

4�2 − x2 +
s0

�
�p�

x

+ qx = 0, �14�
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�� 1

4�2 − x2 −
s0

�
�q�

x

+ � s2 − s0
2

�2 �px + 	q = 0, �15�

where q�x�=�s̃p�x , s̃�ds̃ /� and p�x , s̃� is the joint stationary
probability density function �PDF� of x and s̃. From the first
equation one obtains q=−�C+ �1/4�2−x2+s0 /��p�, where C
is the mean flux of x, and finally

� s2

�2 − � 1

4�2 − x2�2�px + ��4x − 	�� 1

4�2 − x2� − 	
s0

�
�p

+ C�2x − 	� = 0. �16�

The asymptotic behavior p�C /x2 �C�0� for large �x�
gives the probability of strong particle velocity gradients,
and is therefore related to the probability of shocks. Different
solutions are found in the small-Stokes-number and large-
Stokes-number regime.

A. Small Stokes number

When St�St*, the unique positive integrable solution of
Eq. �16� is obtained under condition of zero flux �C=0�,

p = C1
�w − x�m−1�x − w̃�m̃−1

�w + x�m+1�x + w̃�m̃+1 , x � �w̃,w� , �17�

and zero otherwise, where

w = �1 + 4s�/2�, m = �	 + �	�/4w ,

w̃ = �1 − 4s�/2�, m̃ = �	 − �	�/4w̃ . �18�

The solution is localized in the compact interval �w̃ ,w�.
Its shape is determined by the values of m and m̃. For m̃
�1 �low frequency� the PDF is peaked around the two bor-
der values. For m�1� m̃ �intermediate frequency� it van-
ishes at w̃, and finally when m�1 �high frequency� it van-

ishes both at w̃ and w �see Fig. 2�. Indeed, when St�St*, the
solution of the linear system for �R ,V� oscillates between
two asymptotes V= �w−1/2��R and V= �w̃−1/2��R accord-
ing to the sign of the noise. If the noise frequency is low the
system has enough time to become close to the two asymp-
totes and the PDF is peaked around them. Conversely, when
the sign of the noise switches frequently, the system does not
have enough time to reach the asymptotes and oscillates rap-
idly around the mean value.

B. Large Stokes number

When St�St* the solution of Eq. �16� consists of two
different parts,

p�x� = Cp1�x� + C2p2�x� . �19�

The first one is the solution of Eq. �16� with C=1,

p1 =
�w − x�m−1

�w + x�m+1�x2 + w̃2�
en�arctan�x/w̃��

� �
−w

x

dy
�w + y�m+1�	 − 2y�
�y − w�m−1�w2 − y2�

e−n�arctan�y/w̃��, �20�

while the second one is the right tail of the solution of the
homogeneous �fluxless� equation

p2 =
�w − x�m−1

�w + x�m+1�x2 + w̃2�
en�arctan�x/w̃��Iw,��x� . �21�

Here Iw,��x� is the characteristic function �indicator� of
the interval �w ,��, and

w = �4s� + 1/2�, m = �	 + �	�/4w ,

w̃ = �4s� − 1/2�, n = �	 − �	�/2w̃ . �22�

Conditions for determining C and C2 are

� p�x�dx = 1, � q�x�dx = 0. �23�

These conditions guarantee the continuity of the PDF in the
limit St→St* �see the Appendix�. The PDF obtained in the

FIG. 1. Parameter space �St, Ku�. Shape transitions in the prob-
ability density function �PDF� of x occur for St=St*=1/4 �vertical
solid line�, m̃=1 �dashed line�, and m=1 �dash-dotted line�. Labels
refers to the PDFs shown in Figs. 2 and 3. The gray region is not
accessible by the model because Ku does not fulfill condition �12�.
Crosses represent the boundary of the chaotic region.
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FIG. 2. PDF of x in the small Stokes regime �St=1/8� for dif-
ferent value of the Kubo number: Ku=1/8�a�, Ku=1/16�b�, and
Ku=1/24�c�.
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regime St�St* is extended over all real x, with power-law
tails p�C /x2 for large �x� that are due to shocks, which
occur for large negative values of s�t�. For short-correlated
noise �m�1�, the PDF is characterized by an asymmetric
core localized between −w and w. When m�1 a singular
peak arises at x=w �see Fig. 3�. This behavior is easily un-
derstood in term of the solution of the linear system for
�R ,V�. When s�t�= +s the solution converges toward the as-
ymptote V=�R= �w−1/2��R. This produces the peak at x
=w, provided that the correlation time of the noise is long
enough �m�1� to become close to the asymptote. The large
Stokes number regime is hence characterized by an infinite
series of shocks alternated to “quiet” phases in which the
particle-velocity gradient relaxes toward �.

The schematic in Fig. 1 summarizes the different regions
in the parameter space �St, Ku� where shape transitions oc-
curs in the PDF of x.

IV. LYAPUNOV EXPONENTS

The Lyapunov exponent of inertial-particle trajectories
can be written in terms of the mean value x̄ as �= x̄−1/2�.
For St�St* the mean value x̄ can be written as

x̄ = w̃
�w − w̃�m̃
�m + m̃�

�
F1�m̃ + 1,m + 1,m̃ + 1,m̃ + m + 1,u,v�

F1�m̃ + ,m + 1,m̃ + 1,m̃ + m,u,v�
,

�24�

where

u =
w̃ − w

w̃ + w
, v =

w̃ − w

2w̃
, �25�

and F1 is the hypergeometric function of two variables �25�.
The behavior of the Lyapunov exponent as a function of the
Stokes and Kubo numbers is shown in Fig. 4. The Lyapunov
exponent is negative for small Stokes, and decreases ap-
proximatively as �s−1�−Ku at increasing Ku numbers. In
the limit St→0 it recovers the actual value for fluid tracers
�20�,

�0 � lim
�→0

� = − s2/	 . �26�

Notice that fluid tracers are always in the aggregation regime
within this model, as signaled by the negative value of �0. A
sharp negative minimum �=−2s is found for St=1/4 at
Ku= ��2+1� /2. It corresponds to the maximum aggregation
of the particle. As the correlation time of the flow decreases,
the minimum becomes less pronounced, and it moves to
larger Stokes numbers. A region of positive Lyapunov expo-
nents is present in the parameter space for St�4.3. The iso-
line of vanishing Lyapunov exponent which border this re-
gion represent the transition from the strong clustering
regime ���0� to the chaotic regime ���0�. Indeed, Fig. 5
shows that, as Stokes number increases, the interval of Kubo
numbers appears where the Lyapunov exponent grows, and
eventually becomes positive. This can be understood as fol-
lows: to achieve an effective mixing the correlation time of
the fluid gradients must be long enough to provide substan-
tial stretching of particle trajectories, but not too long, to
avoid particle segregation in compressing regions. Therefore
the chaotic region is confined in a window of Ku numbers
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FIG. 3. PDF of x in the large Stokes regime �St=1� for different
values of Kubo number, Ku=0.1�d�, Ku=1�e�.
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Stokes and Kubo numbers. The isolines are spaced every 0.02 s
�dotted and solid lines�. The boundary of the chaotic region ��
�0� is represented by the dot-dashed line.
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between a lower and an upper bound determined by stretch-
ing efficiency and particle trapping respectively.

Let us now consider the behavior of the Lyapunov mo-
ments �n, defined as �Rn	�exp��nt�. The evolution of �Rn	,
for n positive integer, is determined by a closed system of the
2�n+1� equation,

d

dt
�Rn−iVi	 = �n − i��Rn−i−1Vi+1	 −

i

�
�Rn−iVi	

+
i

�
�s̃ + s0��Rn−i+1Vi−1	 , �27�

d

dt
�s̃Rn−iVi	 = �n − i��s̃Rn−i−1Vi+1	 − � i

�
+ 	��s̃Rn−iVi	

−
i

�
s0�s̃Rn−i+1Vi−1	 , �28�

where i=0,1 , . . . ,n. The nth Lyapunov moment �n is the
largest solution of the 2�n+1�th equation

det�A C

D B
� = 0; �29�

A and B are tridiagonal matrices with the elements

Ai,i = �n + i/�, i = 1,n ,

Ai,i−1 = − is0/�, i = 2,n ,

Ai,i+1 = i − n, i = 1,n − 1,

Bi,i = �n + 	 + i/�, i = 1,n ,

Bi,i−1 = is0/�, i = 2,n ,

Bi,i+1 = i − n, i = 1,n − 1, �30�

and C and D are subdiagonal matrices with the elements
Ci,i−1=−i /� for i=2,n and Di,i−1= i�s0

2−s2� /� for i=2,n. In
the limit St→0 one recovers the Lyapunov moments of fluid
tracers �20�,

�n =��	

2
�2

+ s2�n2 − n� −
	

2
. �31�

Notice that for fluid tracers the sign of the separation R is
preserved, and hence the exponents �n coincide with the ex-
ponents �̃n defined by ��R�n	�exp��̃nt�. The asymptotic lin-
ear behavior of �n for large n is the hallmark of the presence
of an upper bound for velocity gradients.

A. Short-correlated flows

Let us now examine the limit of short-correlated flow.
The limit 	→� must be taken keeping constant s2 /	=D, in
order to recover �-correlated noise fluctuations �s�t�s�t��	
=2D��t− t��. In other words, while Kubo number Ku=s /	
tends to zero, Stokes number St=s� must grow, so that the
product

Ku St = s2/	� = D� , �32�

remains constant. In this sense the short-correlated limit for
inertial particles correspond always to the large-inertia case.
In the �-correlated limit the relevant time scale associated to
fluid velocity gradients is given by the Lyapunov exponent of
fluid tracers �0=−s2 /	=−D. This is confirmed by the col-
lapse of particle Lyapunov exponents in the short-correlated
limit once their intensity and Stokes times are rescaled with
��0� �see Fig. 6�. A noticeable minimum is observed for
��0��=Ku St�0.05 and a transition to chaos, i.e., from nega-
tive to positive �, occurs for Ku St�1.6. These features are
in qualitative agreement with previous analytic and theoreti-
cal results obtained in the framework of �-correlated flows
�14,18�. Notice that in those studies Gaussian statistics is
assumed for velocity gradients, at variance with our model in
which only the two values ±s are allowed. Therefore quan-
titative details such as the exact position of the minimum can
be different.

We remark that in the short-correlated asymptotics, the
fluid-tracers limit becomes singular. Indeed one has

lim
	→�

s0 = lim
	→�

−
s2

	�1 + 	��
= �− D � = 0,

0 � � 0,
� �33�

which signals that fluid tracers are still preferentially at-
tracted by regions of ongoing compression, while inertial
particles with arbitrary finite � are not. Notice that in the
limit 	→� fluid velocity gradients becomes unbound be-
cause s→�, and for fluid tracers we recover the quadratic
behavior of Lyapunov moments �n=D�n2−n�.

B. Long-correlated flows

Time correlation of fluid gradient is bounded by the con-
dition �12�. When Ku=Ku* the transition rate 	1 from −s to
s vanishes, while the transition rate 	2 from s to −s reaches
its maximum 	*= ��1+4s�−1� / �2��. Particles initially
seeded in expanding regions are gradually captured by con-
tracting ones, where they remain trapped forever. Therefore
the population of expanding regions decreases exponentially
as
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FIG. 6. Lyapunov exponent � in the short-correlated limit.
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P�t� � exp�− 	*t� . �34�

Moments of particle separations will hence evolve asymp-
totically according to

��R�n	 � en�tP�t� + „1 − P�t�…en Re���t f„Im���t… , �35�

where � is given by Eq. �5� and f�t� is 2� periodic function.
Notice that 	*=� and therefore for n=1 the decreasing frac-
tion of particle in expanding regions is exactly balanced by
the exponential growth of their separation. From Eqs. �34�
and �35� one obtains the Lyapunov moments

�̃n = ��n − 1� for n � „� − Re���…−1,

�̃n = Re��� for n � �� − Re����−1. �36�

In the limit of fluid tracers one obtains

�̃n = s�n − 1� for n � 1/2,

�̃n = − sn for n � 1/2, �37�

in agreement with Eq. �31�.
Finally, the Lyapunov exponent along the critical line

Ku=Ku* is �= ����̃n /���n=0=Re���. In Fig. 7 we compare its
behavior with that of the Lyapunov exponent along the line
Ku=1. For small Stokes number both of them recover the
fluid-tracers limit �→�0=−s, but with different power-law
behavior. On the line Ku=Ku* we have ��−�0 �s−1�St,
while for Ku=1 we have ��−�0�s−1�St2 �see lower inset of
Fig. 7�. For large Stokes number Lyapunov vanishes as
�s−1�−St−1 on the line Ku=Ku* and as �s−1�St−2/3 for
Ku=1 �see upper inset of Fig. 7�. In between these two as-
ymptotics a sharp minimum appears for St=St*.

Notice that the asymptotic decay St−2/3, here shown for
long-correlated flows, have been already predicted and ob-
served also for �-correlated flows �17,19�. The agreement
between these results confirms that in the large Stokes

number asymptotics the role of time correlation becomes
negligible and particles behave as if suspended in
�-correlated-in-time flows.

V. CONCLUSIONS

We discussed the Lagrangian dynamics of inertial par-
ticles in a simple time-correlated compressible flow, in which
fluid velocity gradients in the reference frame of the particle
are modeled by a one-dimensional telegraph noise. In spite
of its simplicity, the model allows one to take into account
consistently the different Lagrangian weights of regions of
ongoing compression and expansion, and it reproduces the
phenomenon of trapping of particles in compressing regions
for long-correlated flows.

The peculiar nature of the telegraph noise allows one to
investigate analytically the effects of time correlation of ve-
locity gradients on the chaoticity of particle trajectories, and
to study the dependence on Stokes and Kubo numbers of
Lyapunov exponents. We discussed both the asymptotics of
long- and short-correlated flows, as well as the fluid-tracers
limit.

For large Stokes number, a regime characterized by the
formation of shocks, we found a chaotic region in parameter
space �St, Ku�, where the leading Lyapunov exponent be-
comes positive. Inertia is therefore responsible for a transi-
tion from a strong clustering regime, originated by the com-
pressible nature of the flow, to a chaotic regime. The latter is
observed in a range of Kubo numbers such that the time
correlation of fluid gradients is long enough to provide sub-
stantial stretching, but not too long to cause particles trapped
in compressing regions.

This simple model clearly does not allow one to repro-
duce all the complex phenomena which occur in a realistic
flow. In particular it does not include the effects of preferen-
tial concentration in hyperbolic regions, which are respon-
sible for the increase of chaoticity of inertial particle trajec-
tories in turbulent flows �10�. A two-dimensional extension
of the model would be required for investigating these ef-
fects. Further, we remind the reader that the Lyapunov sta-
tistics is able to describe the clustering of inertial particles at
the dissipative scales of turbulent flows, but does not allow
one to characterize the structures which are observed in par-
ticle distribution at scales within the turbulent inertial range
�26�.

Note that the substitution R=� exp�−t /2�� turns Eq. �2�
into the Schrödinger equation, �̈−s� /�=� /4�2, with space
replacing time. The telegraph noise model for the
Schrödinger equation was used by Bendesrkii and Pastur
�27�, who applied the methods of �28� to evaluate the density
of states.
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APPENDIX

To prove the continuity of the PDF for St=St* we first
notice that the limit St→St* is equivalent to w̃→0.

The limit w̃→0 of the solution �17� in the small-Stokes
number regime is p�x�=C1f�x�I0,w�x�, where

f�x� =
�w − x�m−1

�w + x�m+1x2e−�	−�	�/2x, �A1�

and I0,w�x� is the characteristic function of the interval �0,w�.
To study the limit of the solution �19�, let us consider the

limits of p1�x� and p2�x� when w̃→0. The latter is easily
obtained as

p2�x� � e�	−�	��/4w̃f�x� . �A2�

Now let us rewrite p1�x� as

p1 =
�w − x�m−1

�w + x�m+1�x2 + w̃2�
e−n�arctan�w̃/x��

� �
−w

x �w + y�m+1�	 − 2y�dy

�y − w�m−1�w2 − y2�
en�arctan�w̃/y��. �A3�

As w̃→0, then p1�x�=O�1� if x�0 and

p1�x� � 2e�	−�	��/4w̃w̃2f�x� , �A4�

for x�0. To obtain the last asymptotic one takes into ac-
count that the main contribution in the integral in Eq. �A3� is
brought by the right small vicinity of y=0, say �0,s�, and
apply

�
0

s

exp�− arctan�y/��/��dy � �
0

s

exp�− y/�2�dy � �2

�A5�

for all s�0 and small �.
The continuity of the solution of Eq. �16� in the limit w̃

→0 is therefore guaranteed by the conditions

C =
C1

2w̃2e�	−�	��/4w̃ , C2 = 2Cw̃2. �A6�

This conditions are indeed equivalent to the normalizations
conditions

� p�x�dx = 1, � q�x�dx = 0, �A7�

where q=−�C+ �1/4�2+s0 /�−x2�p�.
To show this we notice that Eq. �16� can be written as

�� s2

�2 − � 1

4�2 − x2�2�p + Cx2�
x

+ 	q = 0. �A8�

It follows that

�
−x

x

q�y�dy = −
1

	
� s2

�2 − � 1

4�2 − x2�2��p�x� − p�− x�� .

�A9�

Thus, the second condition in Eq. �A7� is equivalent to

lim
x→�

x4�p�x� − p�− x�� = 0. �A10�

According to Eq. �19� p�x� is written as the sum of p1 and p2,
whose asymptotic behavior is

p1�x� �
1

x2 +
P1

+

x4 , x → �, p1�x� �
1

x2 +
P1

−

x4 , x → − � ,

�A11�

and

p2�x� �
P2

+

x4 , x → �, p2�x� �
P2

−

x4 , x → − � .

�A12�

Notice that P2
−=0, P2

+=e�	−�	��/4w̃. Thus Eq. �A10� becomes

C2 =
C�P1

+ − P1
−�

P2
+ . �A13�

In the limit w̃→0,

P1
− = o�P1

+�, P1
+ � 2w̃2P2

+, �A14�

and we obtain

C2 � 2w̃2C , �A15�

which implies the continuity of the PDF. Normalization of
p�x� in the limit w̃→0 is equivalent to the first condition in
Eq. �A6�.
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