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Abstract: Patterned illumination through the phase modulation of light is increasingly 

recognized as a powerful tool to investigate biological tissues in combination with two-

photon excitation and light-sensitive molecules. However, to date two-photon patterned 

illumination has only been coupled to traditional microscope objectives, thus limiting the 

applicability of these methods to superficial biological structures. Here, we show that phase 

modulation can be used to efficiently project complex two-photon light patterns, including 

arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. 

Moreover, using this approach in combination with the genetically encoded calcium indicator 

GCaMP6, we validate our system performing scanless functional imaging in rodent 

hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to 

the application of patterned illumination approaches to deep regions of highly scattering 

biological tissues, such as the mammalian brain. 

©2016 Optical Society of America 

OCIS codes: (170.2150) Endoscopic imaging; (180.4315) Nonlinear microscopy; (120.5060) Phase 

modulation; (170.2520) Fluorescence microscopy. 
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1. Introduction 

The development of efficient light-dependent sensors [1] and actuators [2,3] is dramatically 

improving our understanding of brain function by enabling remote monitoring and control of 

the electrical activity in specific subsets of cells. In parallel, new optical approaches have 

been introduced to fully exploit the potential of these novel molecular tools. For example, 

patterned two-photon illumination through the phase modulation of light (from now on called 

patterned illumination) has been used to spatially and dynamically multiplex the laser beam to 

perform scanless imaging in combination with fluorescence activity reporters [4–10]. In 

scanless imaging simultaneous illumination of multiple areas of the sample is performed, 

allowing high-speed recording of functional signals at multiple locations [11]. Moreover, 

patterned illumination has been used to restrict two-photon light to extended shapes [12,13]. 

In combination with light-sensitive optogenetic probes, this has allowed cell-specific 

electrical activation of individual neurons [14–18]. However, since light is scattered by the 

brain tissue and all the aforementioned studies employed standard microscope objectives, the 
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applicability of two-photon patterned illumination is currently limited to the more superficial 

regions of the mammalian brain. To deliver light to deeper structures, small optical probes, 

such as GRIN rods or GRIN microobjectives [19,20], must be used but patterned two-photon 

illumination through these GRIN probes has not been described before. Here, we developed 

an optical system based on phase modulation through a liquid crystal spatial light modulator 

(SLM) and demonstrated efficient patterned two-photon illumination with GRIN lenses-based 

endomicroscopes. Using this approach, we demonstrate efficient recording of GCaMP6 

signals in the scanless configuration from hippocampal CA1 cells located ~1.2 mm deep 

within the mouse brain in vivo. 

2. Experimental set-up 

The main setup is shown in Fig. 1(a). It was based on a commercial two-photon laser 

scanhead (Bruker Corp., Billerica, MA, former Prairie Technologies, Madison, WI) and a 

customized holder for the GRIN rod or the GRIN microobjective which ensured proper 

coupling between the GRIN probe and the used objective for in vitro recordings (Fig. 1(b)). 

In imaging experiments in vivo, the GRIN lens was implanted into the brain tissue (see below 

for details) and a customized mount was used to align the objective with the GRIN lens. A 

pulsed NIR laser beam (λ = 920 nm; pulse width, 140 fs; repetition rate, 80 MHz) was 

generated by a Chameleon Ultra II (Coherent Corp., Santa Clara, CA) and it was modulated 

by a Pockels cell (Conoptics Inc., Danbury, CT). 

 

Fig. 1. a) Schematic of the optical system. LWP, half-lambda waveplate; L1-L2, beam 
expander lenses; SLM, phase only spatial light modulator; L3-L4, relay lenses; GM, galvo-

mirror system; SL, scan lens; TL, tube lens; OBJ, microscope objective; GRIN, GRIN rod or 

GRIN microobjective; DIC, dichroic mirror; PMT, photomultiplier tube; L5-L6, image relay 
lenses; BF, barrier filter; IRF, near-infrared low-pass filter; camera, camera detector. b) 

Customized GRIN mounting system composed of a z translational mount (SM1Z, Thorlabs, 

Newton, NJ) which held the microscope objective. Proper positioning of the GRIN lens in the 
objective focal plane was obtained using a positioner (SPT1, Thorlabs, Newton, NJ). 

A half-lambda waveplate (B.Halle Nachfl. GmbH, Berlin, GE) was used to reorient the 

beam polarization and to get pure phase modulation at the SLM (X10468-07 Hamamatsu 

Photonics, Hamamatsu, JP). A telescope (L1, f = 30 mm and L2, f = 75 mm; lens doublets IR 

coated, Thorlabs, Newton, NJ) was utilized to expand the beam to fill the SLM active 

window. Downstream the SLM, the beam was deflected onto the galvo-mirrors (GM) using a 

telescope (L3, f = 300 mm and L4, f = 150 mm; lens doublets IR coated, Thorlabs, Newton, 

NJ). The beam was then relayed to the back-aperture of the objective by the scan and tube 

lenses and finally focused by the microscope objective onto the back image plane of the 

GRIN lens. We employed two commercially available GRIN-based endomicroscopic lenses: 
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i) a GRIN rod lens (NEM-050-25-10-860-S, Grintech GmbH, Jena, GE), with in-air external 

numerical aperture (NA) of 0.5 at the back side; ii) and a GRIN lens-based microobjective 

(GT-MO-080-018-810, Grintech GmbH, Jena, GE), with in-air external numerical aperture 

(NA) of 0.18 at the back side. The objectives coupling the GRIN lens to the microscope were: 

RMS20X-PF 20x, 0.5 NA (Olympus, Tokyo, JP) or LUCPlanFLN 60x, 0.7 NA (Olympus, 

Tokyo, JP) for the GRIN rod and UPlanFLN 10x 0.3 NA (Olympus, Tokyo, JP) for the GRIN 

microobjective. At the sample side, the maximal NA was 0.5 for the GRIN rod and 0.8 for the 

GRIN microobjective [21]. Both probes were designed to be immersed into water at the 

sample side with a working distance of 250 μm and 200 μm (for the GRIN rod and for the 

GRIN microobjective, respectively). Physical dimensions of the GRIN rod and GRIN 

microobjective (respectively) were: length, 1.86 mm and 7.5 mm; diameter, 0.5 mm and 1.4 

mm. Two optical pathways were used for fluorescence collection. The first was based on 

photomultiplier- (PMT) mediated detection (Hamamatsu, Tokyo, JP). In the second, a 

telescope composed by L5 and L6 (f = 50 mm and f = 45 mm, respectively; doublets with 

VIS coating, Thorlabs, Newton, NJ) was used to relay the imaging plane onto the camera 

sensor (Orca-R2, Hamamatsu Photonics, Tokyo, JP or SciMeasure NeuroCCD-SMQ, 

Redshirt Imaging, Decatur, GA). The camera detection path also comprised a barrier filter 

(BF, ET525/50m, Chroma Technology Corp., Bellows Falls, VT) to reduce the visible 

autofluorescence photons, and a low-pass NIR filter (IRF, E750SP-2p8, Chroma Technology 

Corp., Bellow Falls, VT) to reduce back-reflected excitation photons. Custom software 

developed in LabView (National Instruments Corp., Austin, TX) was used to manage the 

phase retrieval algorithms and to interface the phase modulation with the laser scanning 

system. In most experiments, the optical pathway was designed so that the modulated 

component (first-order) of the laser beam was projected in a plane located ~30 - 50 μm above 

the unmodulated beam (zero-order). This was obtained illuminating the SLM with a slightly 

divergent beam and applying a proper defocus phase profile at the SLM. Under these 

conditions we obtained the collimated first-order component at the desired plane of interest 

and the divergent zero-order component projected on a deeper focal plane. Alternatively in a 

minority of experiments when a non-fluorescent region (e.g., the lumen of a blood vessel) 

was present at the center of the FOV, both the modulated and unmodulated components were 

kept in the same plane. 

3. Results 

To characterize the optical performances of our system, we first measured the point spread 

function (PSF) by imaging the fluorescence generated by sub-resolution fluorescent beads 

(Fig. 2(a), FluoSpheres; emission, 505 nm / 515 nm; diameter, 170 nm, Invitrogen Corp, 

Eugene, OR) in the two-photon scanning configuration using the PMT as detector and the 

projection of a single point. Full-width-half-maximum (FWHM; λexc = 920 nm) values of 

bead dimension showed nearly diffraction-limited resolution, given the degree of laser beam 

expansion at the objective backaperture on our set-up which had a standard configuration 

(FWHMxy = 0.81 ± 0.04 µm, FWHMz = 8.55 ± 0.35 µm, N = 10 for the GRIN rod. Figure 

2(b); FWHMxy = 0.66 ± 0.08 µm, FWHMz = 3.21 ± 0.16 µm, N = 17 for the GRIN 

microbjective, Fig. 2(c)). These values were in good agreement with theoretical predictions 

[22,23] and with what reported elsewhere for other GRIN-based systems without the SLM 

unit [20]. We defined the maximum achievable holographic FOV as the maximal distance at 

which the fluorescence intensity of an illuminated point positioned using phase modulation 

through the SLM reaches 40% of the fluorescence intensity of an equal spot positioned in the 

center of the FOV (similarly to [24]). Values of the maximum achievable holographic FOV in 

the radial direction were: lateral, ~50 µm for the GRIN microobjective and ~140 µm for the 

GRIN rod. To interpret these values it is important to consider that in the optical 

configuration used in this experiment the GRIN microobjective had an effective 

magnification of 48x (4.8x microobjective, 10x coupling objective), whereas the GRIN rod 
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displayed an effective magnification of 20x (1x rod, 20x coupling objective). The GRIN rod 

had thus a FOV that is 2.5 times larger than that of the GRIN microobjective. Moreover, the 

GRIN microobjective shows a steeper dependence of the NA with the radial distance [21] 

which may contribute to the smaller values of FOV observed with the GRIN microobjective. 

In the axial direction, we did not observe a decrease in the intensity below 40% for upward 

movements (from the microendoscope focal plane to the microendoscope frontend), while for 

downward movements the intensity dropped below 40% at ~40 µm for the GRIN 

microobjective and at ~140 µm for the GRIN rod. 

We next measured the intensity profile along the z-axis of our excitation beam during 

simultaneous illumination with arrays of diffraction-limited points (Fig. 2(d)) which may be 

different from the FWHMz of the PSF that we measured above using the projection of a single 

diffraction-limited spot. To this aim we used sub-resolution fluorescent plastic layers [25]. 

 

Fig. 2. a) Schematic of the experimental configuration. Subresolved fluorescent beads and a 
single excitation point, which was scanned using the galvanometric mirrors, were used for the 

measurement of the PSF. b-c) Images of a sub-resolution fluorescent bead in the x, y (left) and 

x, z (right) plane using the scanning system and the PMT as fluorescence detector for the 
GRIN rod (b) and the GRIN microobjective (c). Scale bars in b-c: 1 µm in the x,y projection 

(left image); 5 µm, in the x,z projection (right image). d) Schematic of the experimental 

configuration. A thin fluorescent layer was used as sample and an array of 17 diffraction- 
limited spots was projected on the sample. The camera was used as fluorescence detector. e-f) 

Fluorescence images showing the intensity profiles of a thin fluorescent layer along the z-axis 

for a spot in the central (left) and distal (right) part of the FOV during simultaneous projection 
of multiple spots using the GRIN rod (e) and the GRIN microobjective (f). Scale bars: 5 µm. g-

h) FWHMz values as a function of the radial displacement for recordings performed in the 
optical configuration displayed in e-f for the GRIN rod (g) and the GRIN microobjective (h). 

We generated a randomly distributed array of diffraction-limited spots (number of points 

in the array: 17) which were distributed evenly across the FOV with the SLM and acquired z-

stacks using the camera as fluorescence detector. The intensity profiles along z-axis of one 

spot in the central (along the optical axis) and distal parts of the FOV are shown in Fig. 2(e), 

2(f) for the GRIN rod and GRIN microobjective, respectively. The FWHMz values increased 

with the distance from the optical axis (Fig. 2(g), 2(h)), a result in agreement with the radial 

dependence of the NA in these microendoscopes [21]. 

Using a thick (1.4 mm) fluorescent plastic slide, we also characterized the uniformity of 

illumination, u, across different spots of the array (Fig. 3(a)) or across an extended shape (Fig. 

3(b)-3(c)), with u defined as: 

 1 Iu
I


   (1) 

where σI is the standard deviation of the fluorescence intensity I, and Ī is the fluorescence 

intensity mean value across the points of an array or across an extended shape. The Weighted 
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Gerchberg-Saxton (WGS) algorithm [26] was used to generate the phase modulation that was 

needed for the projection of the array of points. 

 

Fig. 3. a) Fluorescence uniformity for the projection of an array of points onto a thick 
fluorescent slide under the different experimental conditions. ***, p < 0.001; ns, non-

significant, p > 0.05, one-way ANOVA, Bonferroni post hoc test (N = 11).The GRIN 

microobjective was used for experiments displayed in this figure. b) Top: fluorescence image 
acquired with a camera of a two-photon extended shape projected onto a thick fluorescent 

slide. Scale bar: 10 µm. Bottom: intensity profile along the direction indicated by the white 

dashed line in the top panel. c) Fluorescence uniformity for extended shapes illumination under 
the different experimental conditions. p > 0.05, paired Student’s t-test (N = 10). 

To investigate potential non-uniformities introduced by the GRIN lens, we compared the 

uniformity of an arrays of diffraction-limited points projected through the GRIN 

microobjective in the optical configuration shown in Fig. 1, with the uniformity of the same 

pattern of points projected through the microscope objective (Olympus 10x UPlanFLN, 0.3 

NA) alone. For this measurement, the excitation points were generated within about 25 µm 

from the optical axis. Uniformity among the same pattern of points was significantly lower 

when the pattern was projected through the GRIN microobjective (N = 11, GRIN in Fig. 3(a)) 

compared to the objective alone (OBJ in Fig. 3(a)). To compensate for this effect, at the 

beginning of each imaging session we first created a phase map corresponding to an array of 

N points. We measured the fluorescence generated at every site (Im, with 1  m  N) and 

calculated the average fluorescence across sites (Ī) . If ΔIm = |Im - Ī| / Ī > 20%, we corrected 

the weight (wm) used to superimpose the hologram corresponding to the m
th

-site with the 

holograms of the other sites [26] with the scale factor ξm, defined as: 

 
m

m

I
I



    
 

 (2) 

where ρ is a parameter that tunes the strength of the correction and that varied in the interval 

[0.5,2], while ξm was constrained in the range [0.5,4]. We then generated a new phase map 

with wm redefined as: 

 k k

m m mw w  (3) 

where ξm is fixed across the k algorithm iterations (with k  ). If ΔIm > 20% for more than 

one illumination site, the correction procedure was performed simultaneously for all those 

sites for which ΔIm was > 20%. The correction procedure was iterated until the desired 

uniformity across sites was achieved. Using this strategy, we rescued the uniformity level of 

the objective alone (GRIN corrected in Fig. 3(a)). 

We also tested the ability of our patterned illumination system to produce extended shapes 

(Fig. 3(b)) which were generated using the Gerchberg-Saxton algorithm [27]. For a shape 10 

µm in diameter, the average axial resolution was 22 ± 2 µm (mean ± standard deviation; N = 
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10). We compared the uniformity of extended shapes projected through the GRIN 

microobjective (in the optical configuration shown in Fig. 1) with the uniformity of the same 

extended shapes projected through the microscope 10x objective alone. No significant 

difference was observed between uniformity values under the two experimental 

configurations (Fig. 3(c)), suggesting that intensity variations due to speckles within the shape 

[12] could mask potential intensity non-homogeneities introduced by the GRIN 

microobjective itself. 

We next applied our system to project complex patterns of two-photon excitation light 

onto fluorescent neuronal cells. We used patterned illumination with both arrays of points 

(Fig. 4(a)-4(d)) and extended shapes (Fig. 4(e)-4(h)) to test the potential applicability of our 

system to different experimental applications such as scanless functional imaging using arrays 

of points [4,5,28] or two-photon optogenetic manipulation through extended shapes [14,15]. 

For this experiment we used a slice of fixed neural tissue (slice thickness: 80 μm) in which 

neurons expressed the genetically encoded calcium indicator GCaMP6s [29]. GCaMP6s 

expression was obtained injecting mice at postnatal day 35 with an adenoassociated virus 

carrying the GCaMP6s construct under the hSynapsin promoter 

(AAV1.Syn.GCaMP6s.WPRE.SV40, UPenn Virus Core, PA). The fixed tissue was 

positioned on a rigid support that ensured mechanical stability. The sample was then imaged 

with the GRIN microobjective immersed in artificial cerebrospinal fluid solution (no glass 

coverslip on top of the brain slice) without inserting the GRIN probe in the tissue. An image 

was taken in scanning configuration with no phase modulation imposed to the SLM (Fig. 

4(a), 4(e)) at a depth between 30 and 60 μm within the sample. This image was used to 

determine the target regions of interest to be illuminated with complex light patterns either a 

series of six diffraction-limited points (Fig. 4(b)) or two extended shapes (Fig. 4(f)) and 

compute the appropriate phase mask (Fig. 4(c), 4(g)) to be applied to the SLM. Patterned 

illumination was then applied to the sample, resulting in fluorescence excitation only in the 

desired locations (six points, Fig. 4(d) or two extended areas, Fig. 4(h)). Collection of excited 

fluorescence was performed with the camera. 

 

Fig. 4. a-d) Two-photon scanning image of a group of neurons expressing the Green 

Fluorescent Protein- (GFP) based calcium indicator GCaMP6s (a). The desired pattern of 
illumination (six diffraction-limited points, b) was identified based on the location of the cells 

observed in a. The corresponding phase mask (c) was generated and imposed to the SLM. The 

fluorescence image acquired with the camera and obtained applying the phase mask displayed 
in c is shown in d. Scale bar: 40 µm. e-h) Same as in a-d for a different field of view and 

illumination with two extended shapes. Scale bar: 40 µm. 
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We finally applied our system to image functional signals from deep brain regions in the 

scanless configuration in anesthetized mice (C57BL/6J, Charles River, Calco, Italy) in vivo. 

Under isoflurane anesthesia, adult mice were injected with ~0.5 µl of a solution containing a 

combination of two viruses (AAV1.Syn.flex.GCaMP6s.WPRE.SV40 and 

AAV1.CaMKII0.4.Cre.SV40; ratio 1:1). Injection was performed using a glass pipette at 

stereotaxic coordinates corresponding to the hippocampal CA1 area (~50 nL/min; stereotaxic 

coordinates: 1.4 mm posterior to bregma, 1 mm lateral to the sagittal sinus and 1 mm deep 

[30];). After injection a small craniotomy (~600 x 600 µm
2
) was performed over the 

neocortex at stereotaxic coordinates 1.8 mm posterior to bregma and 1.5 mm lateral to the 

sagittal sinus and a thin column of tissue was suctioned with a glass cannula with thin walls 

(cannula outside diameter: 700 μm; Vitrotubs, Vitrocom Inc. Mountain Lakes, NJ). The 

cannula was glued onto a plastic transparent support and moved in the three directions using a 

mechanical manipulator (Stoelting, Wood Dale, IL) guided by stereotaxic coordinates. After 

tissue removal, the GRIN rod was mounted on the same mechanical manipulator used to 

move the cannula and the GRIN rod was inserted in the hole created by tissue aspiration up to 

~0.9 - 1 mm depth [30]. Given the working distance (250 μm) of the GRIN rod used, this 

experimental protocol resulted in imaging at ~1.2 mm depth within the mouse brain. Imaging 

depth was confirmed a posteriori by observing the endoscope track in the fixated brain tissue. 

Because the viral injection was performed just before endoscope insertion, it was not possible 

to image GCaMP fluorescence during endoscope placement and it was thus not feasible to 

choose a particular FOV during the insertion procedure. Once at the desired depth, the GRIN 

rod was secured by acrylic adhesive and dental cement to the skull, following standard 

procedures [20]. Under these experimental conditions the GRIN rod could not be moved in 

the axial direction, as instead was done in [31]. After surgery mice were recovered under a 

heating lamp and then returned to normal housing conditions in the animal facility. Three to 

four weeks after surgery mice were anesthetized with urethane, positioned onto a stereotaxic 

apparatus and the GRIN rod attached to their skull was aligned with the objective of the 

patterned two-photon microscope. All animal procedures were carried out according to the 

guidelines of the European Communities Council Directive and of the National Council on 

Animal Care of the Italian Ministry of Health (protocol #1134/2015-PR). 

 

Fig. 5. a) Two-photon laser scanning image showing GCaMP6 expressing cells in the CA1 

hyppocampus in vivo. Red crosses indicate the neurons that were imaged in the scanless 
configuration and that are numbered from 1 to 10. Scale bar: 100 μm. b) Fluorescence signals 

over time for the neurons displayed in the left panel recorded in scanless modality. 
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We first took a high resolution image using galvanometric mirrors and the PMT to 

identify cells of interest in the hippocampal area (Fig. 5(a)) with no phase modulation 

imposed to the SLM. We then used the scanless imaging configuration [4,5,11] to deliver an 

array of diffraction-limited points (red crosses in Fig. 5(a); laser power: ~20 mW/point), with 

each point targeted to one cell. In this parallel excitation configuration fluorescence was 

collected over time with the camera (acquisition frequency: 40-125 Hz). Temporal series 

were then imported into the open soure ImageJ/Fiji software to identify the regions of interest 

(ROIs). The fluorescence signal of a given ROI was measured by computing the average 

intensity value in the four pixels located at the cented of the ROI. Fluorescence signals were 

analyzed with a custom software and the fluorescence changes were computed as ΔF/ F0 = (Ft 

- F0) / F0, where Ft is the fluorescence value at time t, and F0 is the fluorescence baseline. 

Importantly, functional signals corresponding to activation of groups of hippocampal neurons 

could be clearly recorded under this experimental configuration (Fig. 5(b)). 

4. Conclusions 

In this study, we developed an optical system for patterned two-photon excitation through 

GRIN rods and GRIN microobjectives, and applied it for endomicroscopy applications in 

deep regions of the mouse brain. Complex light patterns could be projected at the sample 

plane, including arrays of points and extended shapes. Using thin fluorescent layers that 

allowed characterization of short working distance objectives as GRIN rods or GRIN-based 

microbjectives, we demonstrated that the z-extension of individual spots that were projected 

in arrays in the scanless configuration resembled the z-dimension of the PSF obtained with 

the two-photon laser scanning system and the projection of a single point. We showed that 

non-homogeneities in the excitation/detection pathways that resulted in variable efficiency in 

fluorescence excitation could be compensated by proper software control of the SLM. 

Moreover, we projected complex two-photon patterns of light onto fluorescent neurons, 

demonstrating that the system that we developed can be applied to the optical investigation of 

brain tissue. Finally, as direct proof of principle, we performed scanless functional imaging of 

hippocampal neural networks expressing the fluorescent calcium indicator GCaMP6 in 

anesthetized mice in vivo. Patterned illumination has been demonstrated in superficial 

cerebellar neurons using a fiberscope and single-photon stimulation [32]. Here, we show 

effective application of phase modulation in GRIN rods and GRIN microbjective using two-

photon excitation for scanless functional imaging in deep (~1.2 mm) brain areas in vivo. An 

advantage of the two-photon scanless imaging configuration is the simultaneous excitation 

and detection of fluorescence in multiple regions of interest. If a fast fluorescence detector is 

used (e.g., a fast camera), high-speed (up to hundreds of Hz) mapping of multiple functional 

signals can be achieved in the scanless approach. This optical design might prove particularly 

important to investigate correlations (e.g., pairwise correlation or network correlation) among 

specific regions of interest within a given FOV. A limitation of scanless functional imaging is 

the crosstalk between the signals simultaneously emitted by adjacent regions of interest. This 

is especially relevant when imaging in highly scattering tissue as the mammalian brain. 

However, it is important to note that in our proof of principle experiment in the mouse 

hippocampus in vivo we used a GRIN rod with a working distance of 250 µm and we 

simultaneously recorded the fluorescence signal of ten different locations that were placed > 

25 μm apart with no evident sign of crosstalk (Fig. 5). 

These results will be fundamental to extend the potential of patterned two-photon 

illumination [11] for the functional investigation of subcortical structures and, more in 

general, all deep brain areas that can be accessed with a GRIN-based endomicroscopic probe. 
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