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Abstract

Among the behavioral traits shared by some nonhuman primate species and humans there is sing-

ing. Unfortunately, our understanding of animals’ rhythmic abilities is still in its infancy. Indris are

the only lemurs who sing and live in monogamous pairs, usually forming a group with their off-

spring. All adult members of a group usually participate in choruses that are emitted regularly and

play a role in advertising territorial occupancy and intergroup spacing. Males and females emit

phrases that have similar frequency ranges but may differ in their temporal structure. We exam-

ined whether the individuals’ contribution to the song may change according to chorus size, the

total duration of the song or the duration of the individual contribution using the inter-onset inter-

vals within a phrase and between phrases. We found that the rhythmic structure of indri’s songs

depends on factors that are different for males and females. We showed that females have signifi-

cantly higher variation in the rhythm of their contribution to the song and that, changes according

to chorus size. Our findings indicate that female indris sustain a higher cost of singing than males

when the number of singers increases. These results suggest that cross-species investigations will

be crucial to understanding the evolutionary frame in which such sexually dimorphic traits

occurred.
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The ability to coordinate vocal emissions is universal in humans

(Stivers et al. 2009; Henry et al. 2015). Usage of strikingly diverse

languages commonly present turn-taking, which also sets early in

ontogeny (Stivers et al. 2009; Casillas et al. 2016). This evidence

raises the question whether the ability to coordinate our utterances

has evolved under particular pressures or it was already present in

the last common ancestor we had with other species (Levinson

2016). Studies on birds, insects, amphibians, and mammals showed

that also animals produce vocal signals in which different individu-

als emit in a coordinated manner. The common feature in animal’s

choruses is the temporal organization of participants’ contribution

to favor or avoid overlap (Ravignani et al. 2014). This mechanism
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has evolved independently in species in which the mutual influence

in the timing of signals involves an interaction among emitters

driven by a complex short-scale timing behavior (Geissmann 2002;

Takahashi et al. 2013). For instance, duetting between the sexes in

the broad-winged bush katydid Scudderia pistillata showed rhyth-

mic and synchronization abilities. In this species, the number of ticks

female produce, as well as the timing of her response, depends on

the number of pulses generated by the male (Villarreal and Gilbert

2013). Studies on tropical songbirds suggested that the evolution of

coordinated resource-defense signals may be driven by ecological

conditions that favored sedentary lifestyles and social stability

(Logue and Hall 2014). In fact, males and females of duetting spe-

cies usually establish long-lasting bonds, live in forested habitats,

and show a territorial behavior (Thorpe 1963).

The characteristics of duetting bird species may partially overlap

those showed by primates that produce songs. There is evidence of

vocal turn-taking or alternating duetting in nocturnal and diurnal

lemurs (Méndez-Cárdenas and Zimmermann 2009), marmosets

(Takahashi et al. 2013), and Campbell monkeys Cercopithecus

campbelli (Lemasson et al. 2011). A critical example of coordination

during vocal displays is singing, which is infrequent in primates, and

it was observed only in tarsiers, gibbons, indris, and titi monkeys

(the so-called “singing primates”; Haimoff 1983). In these species,

males and females forming a mating pair or extended family group,

engage in coordinated duets or choruses where temporal features

play a central role to convey information to conspecifics

(Brockelman and Schilling 1984; Merker 1999). Researchers sug-

gested that singing has evolved independently in these different taxa,

driven by similar selective ecological pressures. Cowlishaw (1992)

indicated that song is associated with group encounters and aggres-

sion at the territorial boundary, supporting the claim that duets and

choruses advertise the presence of pair-bonding mates to threaten

intruders and reduce the cost of territorial confrontation.

Studies on gibbons suggested that duet behavior is achieved by

vocal interactions between mates of the reproductive couple (Maples

et al. 1989; Geissmann 1999, 2000). A crucial point for the under-

standing of the mechanisms involved in determining song structure

is to understand which factors influence male and female contribu-

tion to the song (Geissmann 2002) and to what extent the singing of

a partner influences the other. In particular, a study by Traeholt

et al. (2006) showed that song structure of female pileated gibbons

Hylobates pileatus, significantly affects male utterances. On the con-

trary, the male song of white-cheeked gibbon Nomascus leucogenys,

influences the duration of female song bouts (Deputte 1982). Müller

and Anzenberger (2002) demonstrated that duets of the titi monkeys

Callicebus cupreus are composed of partially overlapping songs, in

which synchrony lies in transitions between phrases. Interestingly,

the authors pointed out that the length of these sections is deter-

mined by the female, which seems to induce the transitions, accord-

ingly to what previously found by Robinson (1979).

The indris, which are the only lemur species that produce songs,

were indicated as good candidates for further investigations of the evo-

lution of rhythmic abilities. Their songs exhibit turn-taking between

individuals of different sexes and a variable degree of overlap between

group members (Gamba et al. 2016). They produce songs that differ

in their acoustic structure between contexts. The songs may serve to

inform the neighboring groups about the occupation of the territory,

to resolve territorial fights during a confrontation between different

groups, and have a cohesion function (Pollock 1986; Torti et al.

2013). The indris’ songs are composed by a long sequence of vocaliza-

tions that usually starts with a harsh emission (“roar”), followed by a

series of slightly frequency modulated units (“long notes”). There is

then a series of units organized in phrases with a descending frequency

pattern (descending phrases [DPs], Thalmann et al. 1993; Sorrentino

et al. 2013) composed of 2–6 units. The indri’s vocal behavior pro-

vides a model system for studying the evolution and production of

complex rhythmic signals that involve input from multiple individuals

(Gamba et al. 2016). Most of the previous research has concentrated

on the function of duets (Geissmann 2002; Clarke et al. 2006), but

few studies have investigated rhythmic and coordination abilities in

non-human primates. Our first aim was to examine rhythmic features

in paired adult indris to understand which factors, and to what extent,

could influence the rhythmic song’s structure and its variation.

We hypothesized that the indris’ song output would show variability

related to different variables, depending on the duration of the song,

the number of singers, and the individual contribution per singer. Our

second aim was to define a possible scenario to understand how the

synchronization of utterances is achieved. The work by Gamba et al.

(2016) showed that the indris’ rhythmic characteristics are highly

sexually dimorphic. They also found an effect of the adult male singing

on the adult female output on most songs. A recent paper by Torti

et al. (2017) showed that the females’ song features are less genetically

constrained than those of males, in fact they found that similarity of

both temporal and frequency parameters of DPs significantly correlate

with genetic distance only for males, whereas for females this results

was limited only for frequency parameters of the DPs composed by

two units. We hypothesized that the coordination in the indris’ song is

achieved by the matching of an individual rhythm to the other’s sing-

ing. We predicted that the female could match male’s singing, showing

a higher degree of rhythmic variation if compared with males.

According to the previous findings, which showed that the number of

singers in a chorus might affect individual singing (Gamba et al.

2016), we also predicted that female’s contribution would change

according to the number of singers.

Materials and Methods

Observations and recordings
We studied 8 groups living in the Maromizaha Forest (18�560490 0S,

48�270530 0E; see Figure 1A). We collected data in the field from

2011 to 2017, for a total of 27 months. We observed one group per

day, approximately from 6 AM to 1 PM. We used natural marks to

identify the indris individually (see Figure 1C). The groups consisted

of 2–5 indris. We used solid state recorders (Sound Devices 702,

Olympus S100 and LS05, and Tascam DR-100, DR-40, and DR-05)

equipped with Sennheiser (ME 66 and ME 67) or AKG Acoustics

(CK 98) shotgun microphones to record the songs. We set the

recorders at a sampling rate of 44.1 kHz, 16 bit during all the

recording sessions. When recording the songs, we were always at a

distance comprised between 2 and 20 m from the indris, with the

microphone orientated toward the focal singing individuals. The

data were recorded without the use of playback stimuli, and nothing

was done to modify the behavior of the indris. When in the field, a

researcher observed a particular individual in a group, and we

attributed each vocalization to a signaler using the focal animal sam-

pling technique (Altmann 1974). We recorded 119 songs uttered by

35 individuals (see Table 1) but focused our analyses on the emis-

sions of the reproductive pairs, consisting in 8 dominant females

and 9 males. We excluded subadults and nonreproductive individu-

als because their contribution could provide the analyses with a po-

tential confounding factor in understanding the indri’s rhythm

characteristics as we know that offspring may sometimes try to
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match parents vocal output during ontogeny (Merker and Cox

1999). We took into account the individual identity of the singer

(“individualID”), its social group (“groupID”) and the song

(“songID”).

Acoustic analyses
Using Praat 6.0.14 (Boersma and Weenink 2016), we edited portions

containing the indris’ songs. We saved each song in a single audio file

(in WAV format). Using field notes and video recording, we selected

and saved the individual contribution for each singer in a Praat

TextGrid. We identified units and silences through visual inspection

of the spectrograms. We then generated textgrids of all the singers in

a song and labeled the units according to their position in a DP

(Gamba et al. 2016). A DP usually begins with a high-frequency note,

followed from 1 to 6 units that start at a progressively lower fre-

quency (Thalmann et al. 1993). For each of the above units and inter-

vals, we extracted the timing of the starting point and duration using

Praat and saved them to a MicrosoftV
C

Excel spreadsheet (Gamba and

Giacoma 2007; Gamba et al. 2012). We extracted the inter-onset

intervals of two following notes within a phrase (wpIOI) and between

two subsequent phrases (bpIOI, see Figure 1D) and used them as a

proxy for the rhythmic structure of phrases and songs (Sasahara et al.

2015). We also calculated the total song duration and the duration of

individual contribution. We rescaled all variables to a logarithmic

scale. To understand whether the singing behavior was influenced by

the number of singers (“NoS” or “chorus size”) in a song, we

calculated the total song duration (“song duration”), the duration of

the individual contribution (“contribution,” see Figure 1B), the cumu-

lative duration of the units uttered by an individual (“phonation”)

and the total number of DPs (“nDPs”) in the song. Finally, we calcu-

lated the coefficient of variation (CV) for the wpIOI and the bpIOI,

both for males and females.

Statistical analyses
We used a first Generalized Linear Mixed Model (GLMM, lme4

package, Bates et al. 2015) in R (R Core Team 2017; version 3.4.3),

to understand how song rhythm was influenced by contribution and

phonation, the number of singers, the total song duration, the num-

ber of DPs uttered, the mean inter-onset interval between notes

(wpIOI), the mean inter-onset interval between phrases (bpIOI), and

the sex of a singer. To analyze the rhythm variation, we ran six mod-

els using wpIOI or bpIOI as the response variable. Two models were

run using the total dataset and contribution, phonation, nDPs as

fixed factors. We also considered the interaction between sex and

number of singers (Sex � NoS), and we used bpIOI or wpIOI as a

covariate (depending on which was the response variable). We used

the individualID, the groupID, and songID as random factors.

We also ran 4 models in which the dataset was consisting of only

males or females, in which we included the same predictors as

above, plus song duration.

We ran 3 more models using the duration of individual contribu-

tion as the response variable, one on the total dataset, one for

Figure 1. (A) Map of the study area in the Maromizaha Forest. Minimum Convex Polygons (MCP) generated with ArcGIS 9.1 (Environmental System Research

Inc.) correspond to 2016 home range of the study groups. Group ID is reported onto each MCP. (B) Spectrogram of the indris’ song generated using Praat. A

reproductive pair is singing in the song. The initial portion is characterized by the emission of roars (shaded in orange), then the contribution of the male is high-

lighted in blue and female’s one in red. Song duration and contribution (for the male) are exemplified. Phonation, which is the cumulative duration of each note, is

not shown. The small black dots indicate the area magnified in 1D. (C) A female indri from the Maromizaha Forest while singing. The natural marks (e.g., fur color

pattern) are crucial for the identification of different individuals. (D) Schematic representation of the spectrogram of the isolated fundamental frequency of three DPs.

The sound spectrogram displays time (s) on the x-axis, frequency (Hz) on the vertical axis. We describe acoustic parameter collection of bpIOI and wpIOI.
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females and one for males. We used phonation, nDPs, bpIOI, wpIOI,

and NoS as fixed factors. The random factors were individualID,

groupID, and songID. When running the model on the total dataset,

we included sex as a predictor, when the sexes were separated we used

song duration as a predictor. We ran the same models using phonation

as the response variable and contribution as a predictor.

For each model, we calculated the P-values for the individual

predictors based on likelihood ratio tests between the full and the re-

spective null model by using the R-function “drop1” (Barr et al.

2013). We used a multiple contrast package (multcomp in R) to per-

form pairwise comparisons for each level of the factors with the

Tukey test (Bretz et al. 2010), for which we then adjusted the P-val-

ues using the Bonferroni correction. We reported estimate, standard

error (SE), z- and P-values for each test. We examined the variance

inflation factors (vif package; Fox and Weisberg 2011) and then

tested the significance of the full model against a null model com-

prising the random factor exclusively, by using a likelihood ratio

test (see Gamba et al. 2016 for details).

We ran another GLMM to confirm whether the wpIOI were

sexually dimorphic and to understand whether the CV of the wpIOI

and bpIOI differed between males and females which were chorus-

ing together. We used the paired t-test to understand whether the

coefficients of variation of wpIOI and bpIOI differed between the

sexes. In the paired t-test only, we considered Groups 3A and 3B as

two different entries (Table 1).

Results

Rhythmic features
The average wpIOI was 2.698 6 0.710 s. Phonation positively influ-

enced the average individual wpIOI, whereas it had a negative effect

on individual bpIOI, showing that for an increase of the wpIOI there

was a decrease of bpIOI. The full model significantly differed from

the null model (v2 ¼ 278.151, df ¼ 7, P<0.001; see Table 2).

Moreover, the nDPs negatively influenced the individual wpIOI.

This result showed that the higher the number of the DPs in the

song, the shorter were the IOIs within a phrase. The model (Table 2)

revealed the tendency of the males to show longer wpIOI than

females. In fact, average female wpIOI was 2.228 6 0.408 s and

3.169 6 0.630 s for males. When we ran models for separated sexes,

they confirmed that phonation had a significant positive effect on

wpIOI and that nDPs had negative effect on the wpIOI (null vs. full,

females: v2¼139.538, df ¼ 7, P<0.001; males: v2 ¼ 140.301,

df ¼ 7, P<0.001). These models also showed a positive correlation

between song duration and wpIOI, but only for females (see

Table 3). A GLMM considering both sexes showed that wpIOI had

a positive effect on bpIOI, whereas phonation showed a negative

correlation with bpIOI. The average bpIOI was 2.219 6 0.330 s and

the full model significantly differed from the null model (v2 ¼ 157,

912, df ¼ 7, P<0.001; Table 2). We also found that the duration of

the bpIOI was positively affected by nDPs. We found no influence

of the interaction between the sexes and the number of singers. The

females’ average bpIOI was 2.037 6 0.204 s, whereas the males’ one

lasted 2.340 6 0.332 s. We found that bpIOI was positively corre-

lated with song duration and nDPs for both sexes, but for males

there was also a positive effect of the wpIOI and a negative effect of

phonation (null vs. full, females: v2 ¼ 91.550, df ¼ 7, P<0.001;

males: v2 ¼ 81.607, df ¼ 7, P<0.001, see Table 3). We summarized

the variation of wpIOI, bpIOI, and phonation and wpIOI, bpIOI,

and contribution, in males and females, according to chorus size in

Figure 2.

We have also found that the CVs of both wpIOI (paired t-test,

t¼5.786, df ¼ 8, P < 0.001) and bpIOI (paired t-test, t¼5.9627, df

¼ 8, P < 0.001) were significantly higher in the females compared

with males (Figure 3).

Contribution
We found that phonation and nDPs affected the contribution of an

individual to the song when considering both the sexes together.

The average song duration was 88.610 6 39.512 s, whereas the dur-

ation of an individual’s contribution was 69.768 6 32.452 s. The

full model significantly differed from the null model (v2¼431.492,

df¼7, P<0.001, see Table 2). We also found a significant effect of

the interaction between sex and number of singers on the duration

of individual contribution. The Tukey test (see Table 4) revealed

that there was a significant difference between sexes in the duration

of the individual contribution, with female indris showing a more

Table 1. Summary of group ID, N of recorded songs per group, in-

dividual ID, and sex of the individuals of the social groups

considered

Group ID N songs Individual Sex

1 23 Jerya M

Bevoloa F

Berthe F

Fotsya M

2 19 Maxa M

Soaa F

Fanihy F

Afo F

Tovo M

3a 11 Mahagagaa M

Menaa F

Tonga F

Faly M

Laro M

3b 3 Ratsya M

Menaa F

Faly M

Zandry F

4 16 Kotoa M

Evaa F

Hendrya M

Gibet M

5 9 Grahama M

Ferna F

Voary M

6 18 Zokibea M

Befotsya F

Hira M

8 9 Jonaha M

Bemasoandroa F

Cesarea M

Mika F

Zafy M

9 11 Emilioa M

Sissiea F

Dosy F

All groups were sampled from 2011 to 2017, except Groups 3a (2015–2017)

and 3b (2011–2014), because the reproductive male changed in 2015.

The members of reproductive pairs are listed first for each group.
a Denotes individuals aged 6 years or more at the time of recordings.
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extended contribution than males when the number of singers in a

chorus arose from 2 to 3 singers. We found that song duration and

phonation had a positive effect on the average contribution for

both the sexes when they were considered separately, but the mod-

els showed that only for male indris the contribution was positively

correlated also with nDPs (null vs. full; females: v2¼282.490,

df¼7, P<0.001; males: v2¼304.266, df¼7, P<0.001, see

Table 5).

Phonation
Contribution, the wpIOI, and nDPs had a positive effect on phon-

ation. We also found that phonation was negatively affected by the

bpIOI. The average phonation of an indri was 28.416 6 11.096 s.

The full model significantly differed from the null model

(v2¼529.037, df¼7, P<0.001, see Table 2). The Tukey test

(Table 4) showed that the females’ phonation decreased when cho-

rus size increased from 2 to 3 singers. We also found that phonation

Table 2. Influence of the fixed factors on contribution, phonation, wpIOI, and bpIOI

Factors Estimate SE df t P Factors Estimate SE df t P

Contribution Phonation

(Intercept) 1.197 0.135 a a a (Intercept) 0.280 0.120 a a a

SexMb,c �0.121 0.038 30.611 �3.161 0.004 SexMb,c 0.133 0.037 17.385 3.610 0.002

3 singersb,c 0.080 0.025 121.147 3.263 0.001 3 singersb,c �0.033 0.017 231.892 �1.923 0.056

4 singersb,c 0.093 0.058 117.284 �1.595 0.113 4 singersb,c �0.023 0.039 228.877 �0.593 0.554

Phonation 0.835 0.062 190.165 13.406 <0.001 Contribution 0.474 0.035 230.439 13.408 <0.001

bpIOI �0.089 0.159 155.135 �0.557 0.578 bpIOI �0.518 0.124 222.756 �4.182 <0.001

wpIOI 0.065 0.119 228.283 0.547 0.585 wpIOI 0.605 0.079 233.753 7.624 <0.001

nDPs 0.118 0.058 227.794 2.040 0.042 nDPs 0.419 0.034 229.963 12.407 <0.001

wpIOI bpIOI

(Intercept) �0.316 0.082 a a a (Intercept) 0.565 0.051 a a a

SexMb,c 0.061 0.017 20.270 3.608 0.002 SexMb,c 0.040 0.026 8.904 1.501 0.168

3 singersb,c 0.022 0.013 113.004 1.693 0.093 3 singersb,c �0.004 0.008 225.495 �0.510 0.610

4 singersb,c 0.035 0.030 107.552 1.154 0.251 4 singersb,c �0.004 0.019 222.023 �0.214 0.831

Contribution 0.010 0.033 174.785 0.306 0.760 Contribution �0.009 0.023 224.506 �0.401 0.689

bpIOI 1.003 0.059 70.350 16.997 <0.001 wpIOI 0.453 0.032 237.055 14.230 <0.001

Phonation 0.299 0.040 94.548 7.496 <0.001 Phonation �0.128 0.031 231.333 �4.139 <0.001

nDPs �0.304 0.024 207.741 �12.697 <0.001 nDPs 0.119 0.020 228.190 6.013 <0.001

Statistically significant values are indicated in bold.
a Not shown as not having a meaningful interpretation.
b Estimate 6 SE refer to the difference of the response between the reported level of this categorical predictor and the reference category of the same predictor.
c These predictors were dummy coded, with the “SexF,” “2 singers” being the reference categories.

Table 3. Influence of the fixed factors on male’s and female’s inter-onset intervals

Females Males

Estimate SE df t P Estimate SE df t P

wpIOI

(Intercept) �0.493 0.113 a a a �0.195 0.139 a a a

3 singersb,c �0.004 0.017 115.460 �0.247 0.805 0.018 0.022 118.615 0.820 0.414

4 singersb,c �0.043 0.036 113.106 �1.172 0.244 0.087 0.051 116.410 1.695 0.093

Song duration 0.127 0.038 113.533 3.362 0.001 �0.020 0.036 116.866 �0.569 0.570

Contribution �0.039 0.047 115.127 �0.835 0.406 �0.133 0.082 118.975 �1.617 0.109

Phonation 0.234 0.058 116.536 4.052 <0.001 0.492 0.079 118.197 6.223 <0.001

bpIOI 0.977 0.092 116.307 10.608 <0.001 1.029 0.082 64.541 12.482 <0.001

nDPs �0.271 0.035 118.642 �7.789 <0.001 �0.325 0.038 118.782 �8.617 <0.001

bpIOI

(Intercept) 0.586 0.069 a a a 0.541 0.087 a a a

3 singersb,c 0.001 0.012 114.010 0.072 0.943 �0.007 0.014 112.982 �0.529 0.598

4 singersb,c 0.025 0.026 112.085 0.980 0.329 �0.057 0.032 110.738 �1.804 0.074

Song duration 0.494 0.047 118.742 10.565 <0.001 0.054 0.023 112.993 2.397 0.018

Contribution �0.044 0.028 112.440 �1.581 0.117 0.000 0.053 112.170 �0.003 0.998

Phonation �0.011 0.033 114.443 �0.341 0.734 �0.196 0.054 112.254 �3.601 <0.001

wpIOI �0.060 0.044 118.794 �1.373 0.172 0.427 0.043 117.899 9.896 <0.001

nDPs 0.083 0.030 118.732 2.804 <0.001 0.145 0.027 111.786 5.295 <0.001

Statistically significant values are indicated in bold.
a Not shown as not having a meaningful interpretation.
b Estimate 6 SE refer to the difference of the response between the reported level of this categorical predictor and the reference category of the same predictor.
c These predictors were dummy coded, with “2 singers” being the reference category.
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that the male’s phonation was significantly longer than those of

females in the songs with 3 singers. Running the models for each

sex, we found that the phonation of both sexes was positively influ-

enced by the contribution, the wpIOI, and the nDPs. We found that

song duration had a negative effect on the females’ phonation, and

that the bpIOI had a negative effect on the males’ phonation (null

vs. full, females: v2¼324.649, df¼7, P<0.001; males: v2¼301,

978, df¼7, P<0.001; see Table 5).

Discussion

We have analyzed how the rhythm of an indri’s song may change de-

pending on the sex of the emitter, the duration of its contribution,

the cumulative duration of its phonation, the duration of the song,

and the number of singers. We took into account 2 proxies of the

rhythmic structure: the inter-onset interval of units within a phrase

and the inter-onset interval between the beginning of the last unit of

and the beginning of the next phrase. For the first time, we provide

a more in-depth analysis of the structural variation of the song con-

sidering both phrase timing and unit timing. We demonstrated that

these descriptors of the rhythmic variation show different trajecto-

ries in males and females.

Similarly to birds, the song of the indris comprises hierarchical

sets of vocal gestures that reflect in a hierarchical organization of

the indris’ song in phrases and units (Yu and Margoliash 1996;

Gamba et al. 2011). This organization suggests that indris are

producing and potentially perceiving their songs at the level of both

phrases and units, in agreement with evidence on gibbons (Terleph

et al. 2018a). In agreement with previous studies, we found that,

overall, the average duration of the wpIOI is positively correlated

with the average duration of pauses between phrases (bpIOI). The

number of DPs in the song was also positively correlated with

bpIOI, suggesting that when the song has a high number of DPs the

silent parts between the DPs are longer. In agreement with the work

of Gamba et al. (2016), our findings showed that the average dur-

ation of wpIOI is strongly influenced by the sex of the emitter, with

males showing significantly longer intervals between the onset of

units than females. We have also found that the rhythmic structure

of phrases is independent of the number of singers but wpIOI

increased with the total song duration in females. Thus, we asked

whether a higher number of singers would lead to other changes in

song structure. We found that those changes correspond to females

emitting longer contribution and diminishing phonation, leaving

male singing invariant. In agreement with studies on the chimpan-

zees’ pant hoots (Fedurek et al. 2017), the decrease of phonation for

females could be due to the need of facing the higher cost of uttering

a more extended contribution.

The singing rhythm, as defined by bpIOI, appeared influenced by

different parameters between the sexes. In fact, in both sexes bpIOI is

influenced by the number of DPs and song duration, but for males it

also depends on phonation and wpIOI. We should expect that adult

males should show a less variable input to the song than those of

Figure 2. Interaction between contribution and phonation with bpIOI and wpIOI during the indris’ song (N¼119). The individual mean durations are

2.698 6 0.705 s for the wpIOI, 2.219 6 0.330 s for the bpIOI, 69.768 6 32.452 s for contribution and 28.416 6 11.096 s for phonation. The interaction is presented

using the 3-dimensional surface (visreg package in R; Breheny and Burchett 2017; females in red A, E, J, C, G, and L; males in blue, B, F, K, D, H, and M).
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females, which instead should react more clearly to the increase in

the number of singers. In fact, we found that the females’ phonation

is influenced by the increase in the number of singers from 2 to 3 and

their phonation has a significant effect on song duration. This event

is not happening in males whose phonation is not influenced by song

duration and the number of singers. This evidence stresses the fact

that changes in group size, which may, of course, result in changes in

chorus size, would impact more on the females’ singing than on

males’ singing as we know that song duration increases with the

number of singers (Gamba et al. 2016). Given the fact that female

contribution is a major determinant of the total song duration

(Giacoma et al. 2010) and they overlapped with several group mem-

bers (Gamba et al. 2016), we can hypothesize that female singing has

a role in regulating the duration of males’ contribution. Thus, we

could ask whether females may have evolved higher flexibility to ac-

commodate more singers in the song. In agreement with Gamba

et al. (2016), we found that wpIOI duration differed significantly be-

tween males and females. We found that the CV of both wpIOI and

bpIOI was significantly higher in females, suggesting that they pos-

sess more flexible rhythmic abilities than males.

Since we know that indris can synchronize their utterance show-

ing nonrandom overlap between singers (Gamba et al. 2016), an

open question is whether the male more than the female or vice

versa is changing the rhythm of its song to synchronize with the

other singer. The results presented in this paper indicated that fe-

male contribution is critical in determining the temporal span of the

song and that their contribution indeed changes more remarkably

according to chorus size. The fact that females are more flexible

than males in their contributions is in agreement with findings on

the white-cheeked gibbons N. leucogenys (Deputte 1982) and indris

(Torti et al. 2017). Deputte (1982) also argues that male singing

may stimulate a longer duration of the female song, but lead to a re-

duction in the number of bouts. Our findings are also in agreement

with the results of recent studies on white-handed gibbons

Hylobates lar, where female contribution varied in length.

However, in the white-handed gibbon male contributions were

more flexible than females’ ones (Terleph et al. 2018b). On the con-

trary, female indris appeared to change the structure of their contri-

bution to the song more consistently than males showing more

flexibility than males in song expression. We observed a mechanism

in the song of the indris that may resemble a turn-taking system

with short turns and rapid responses in which most of the variation

lie not in the internal structure of the phrases but the timing of

phrases. This fact is in agreement with the experimental studies on

cotton-top tamarins (Miller et al. 2003; Egnor and Hauser 2006)

and common marmoset (Roy et al. 2011), which demonstrated that

New World monkeys are capable of adjusting the timing of their

contribution, exhibiting a certain degree of vocal control. These

studies and the data presented in this paper support the hypothesis

that vocal turn-taking has an ancestral origin in the primate order

(Levinson 2016).

Different pieces of evidence support our first prediction that

indri male’s song has a more fixed pattern, whereas females could

adjust their contribution. Whereas wpIOI can be considered as a

proxy for the rhythmic structure of a phrase (Sasahara et al. 2015),

bpIOI can inform about the rhythmic structure of the song.

We found that bpIOI is correlated with the number of phrases and

the duration of the wpIOI in both the sexes, but it was negatively

correlated with phonation only in males. This result confirmed our

second prediction, suggesting that males have a more predictable

rhythmic song pattern than females, who are more flexible and their

contribution may change with the number of singers. In fact, our

works confirmed that female indris show higher coefficients of

wpIOI and bpIOI variation than males. This result is in line of what

previously found by Torti et al. (2017), where males showed acous-

tic and temporal characteristics that were more genetically deter-

mined than female’s ones, which showed a higher degree of

plasticity. Thus, indris showed a pattern in line with the plasticity

shown by female Hylobates agilis (Koda et al. 2013a, 2013b), but in

contrast with what previously found by Traeholt et al. (2006) on

H. pileatus, where the male calling structure seems to be affected by

the female one. Our findings suggest that female indris sustain a

higher cost of singing than males when the number of singers in cho-

rus arises from 2 to 3. When we considered songs emitted by 4 sing-

ers, our results were inconsistent possibly because of the small

sample (N¼5). Songs with a chorus size exceeding 3 indris are rare

(Torti et al. 2018) because groups are usually smaller (Bonadonna

et al. 2017). Large group size may indicate a difficulty to disperse of

the offspring (Reichard and Barelli 2014), but further studies are

needed to clarify this evidence.

In conclusion, we can assume that the rhythmic structure of ind-

ri’s songs depends on factors that are different for males and

females. These differences have sense in the light of the different

roles that sexes may have in achieving coordination in their vocal

output and how do they adjust their singing. Our study demon-

strates that, as suggested by Hall (2009), it is fundamental to distin-

guish the pair level aspects of duets and underlying individual

behavior to understand how duets occur.
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