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Summary 56 

One of the main issues in genomic selection is the huge unbalance between number of 57 

markers and phenotypes available. In this work, principal component analysis is used to reduce the 58 

number of predictors for calculating direct genomic breeding values (DGV) for production and 59 

functional traits. 2,093 Italian Holstein bulls were genotyped with the 54K Illumina beadchip and 60 

39,555 SNP markers were retained after data editing. Principal Components (PC) were extracted 61 

from SNP matrix and 15,207 PC explaining 99% of the original variance were retained and used as 62 

predictors. Bulls born before 2001 were included in the reference population, younger animals  in 63 

the test population. A BLUP model was used to estimate the effect of principal component on 64 

Deregressed Proof (DRPF) for 35 traits and results were compared to those obtained by using SNP 65 

genotypes as predictors either with BLUP or Bayes_A models. Correlations between DGV and 66 

DRPF did not substantially differ among the three methods except for milk fat content. The lowest 67 

prediction bias was obtained for the method based on the use of principal component. Regression 68 

coefficients of DRPF on DGV highlighted a relevant difference between methods being lower than 69 

one for the approach based on the use of PC and higher than one for the other two methods. The use 70 

of PC as predictors resulted in a high reduction of number of predictors (about 38%) and of 71 

computational time that was about the 9% of the time needed to estimate SNP effects with the other 72 

two methods. Accuracies of genomic predictions were in most of cases slightly higher than those of 73 

the traditional pedigree index. 74 

75 
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Introduction 76 

Genomic Selection (GS) allows for an early prediction of the genetic merit of selection candidates 77 

by combining genotypes of biallelic SNP markers and phenotypes (Meuwissen et al. 2001). In GS 78 

programs, the effects of a large number of SNP on the considered trait is estimated from a reference 79 

(REF) population and then used to predict Direct Genomic Values (DGV) in a test (TEST) 80 

population where only marker information is available (Meuwissen et al. 2001). 81 

The switch from traditional to GS breeding programmes should be justified by a higher 82 

reliability of DGV predictions compared to parent average (PA). Actually, DGV accuracy is 83 

primarily influenced by the REF population size and, to a lesser extent, by the estimation method. 84 

Early simulation studies highlighted that a few thousands of animals are needed in order to obtain 85 

DGV accuracies of 0.7 (Hayes et al. 2009b) and that about 30,000 unrelated individuals should be 86 

considered as REF to estimate DGV with the 800K chip (Meuwissen 2009). Such figures are rather 87 

difficult to achieve in practice, even in the case of major cosmopolite breeds and large international 88 

GS projects. Even in the USA, where the Holstein population is larger than in other countries, the 89 

REF population size in December 2010 was 16,293 (Wiggans 2011). Actually most studies on 90 

Holstein cattle have dealt with REF populations of about one (Berry 2009) or few thousands of 91 

animals (VanRaden et al. 2009; Habier et al. 2010; Liu 2011; Schenkel 2009; Su et al. 2010).  92 

The increase of REF population size just by new genotyping is still rather expensive. This 93 

situation will be further  exacerbated by the use of denser SNP platforms (i.e. 800K) or the whole 94 

genome sequence. Cooperation across countries represents a effective way to enlarge the size of 95 

reference population. Some experience has already been done. For example, United States, Canada, 96 

Italy and Great Britain shared their data (Olson 2011; VanRaden et al. 2011) and in Europe the 97 

EuroGenomics project allowed Germany, France, The Netherlands and Denmark, Finalnd and 98 

Sweden to join their datasets and obtain a REF population of about 18,000 bulls {Lund, 2011 99 
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#7516}  . Similar experiences have occurred also in other breeds, as the Brown Swiss with the 100 

Intergenomics project (B. Zumbach et al. 2010). 101 

Apart from the mathematical  algorithms, the difference between methods used to predict 102 

DGV  is mainly in the assumption on marker effect distribution. The BLUP approach fits an equal 103 

contribution of each SNP to the genetic variance of the trait (Meuwissen et al. 2001). It is 104 

equivalent to the use of an animal model with the additive genetic effect structured by the genomic 105 

relationship matrix {Hayes, 2009 #389}. On the other hand, Bayesian methods allow genetic 106 

variance to differ across chromosome segments, assuming that few SNPs have a large effect and 107 

many SNPs have a small effect on  the trait, respectively (Hayes et al. 2009a; Meuwissen et al. 108 

2001; Su et al. 2010). Both approaches may implement a mixed inheritance by including a 109 

polygenic effect structured by pedigree relationship matrix to explain a part of the genetic variance 110 

(Habier et al. 2010; Berry 2009). In early studies based on simulated data, Bayesian methods 111 

usually outperformed BLUP (Meuwissen et al. 2001; Clark et al. 2011). On real data, such 112 

differences are no longer detectable except for traits for   few genes with a larger effect has been 113 

detected (Hayes et al. 2009a; VanRaden et al. 2009).  114 

A further issue on GS is represented by the adoption of techniques for reducing the huge 115 

unbalance between the number of phenotypes and genotypes available. It represents a basic 116 

requirement in the implementation of GS program in populations of limited size. However, 117 

reduction of predictor dimensionality may also be useful for large populations, as the Holstein 118 

breed, with the perspective of using a 800K SNP chip or the complete sequence in the near future. 119 

SNP pre-selection based on the relevance to the trait or the use of dimension reduction multivariate 120 

methods as principal component analysis (PCA) (Solberg et al. 2009; Macciotta et al. 2010; 121 

Vazquez et al. 2011, Pintus et al., 2012) and partial lest squares regression (Moser et al. 2009; 122 

Vazquez et al. 2011) represent the two main strategies adopted to address this issue   ). Compared to 123 
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SNP pre-selection, PCA reduction does not discard any SNP and the reduced panel of predictors is 124 

independent from the trait considered. 125 

In this work, DGV of different production and functional traits for a sample of Italian 126 

Holstein bulls obtained by joining data generated  in two GS research projects  were predicted by 127 

using different types of predictors, i.e. the SNP genotypes or the scores of a reduced number of 128 

principal components. Moreover, also the assumptions on predictor effect are compared by using a 129 

Bayesian or a BLUP method. 130 

 131 

Materials and methods 132 

Data 133 

Genotypes of 2,093 Italian Holstein bulls were generated in two Italian research projects: the 134 

SELMOL and the PROZOO. Birth years of the bulls ranged from 1979 to 2007, with an average 135 

number of 72 animals per year. Bulls born before or after 2001 were included in the REF and TEST 136 

populations, respectively. Distribution of REF and TEST bulls across birth years is illustrated in 137 

Figure 1  138 

Animals were genotyped using the BovineSNP50 BeadChip (Illumina, San Diego, CA).  139 

Data editing procedure has been performed. SNP were discarded based on missing data (>0.025), 140 

minor allele frequency <0.05), existence of Mendelian inheritance conflicts, absence of 141 

heterozygous genotypic class, deviance from Hardy-Weimberg equilibrium (<0.01 bonferroni 142 

corrected). (Wiggans et al. 2009). Markers retained after edits were 39,555. Missing SNP alleles 143 

were replaced by the most frequent allele at that specific locus. A total of 86 bulls were discarded: 144 

48 samples were replicates or had inconsistent mendelian inheritance information, whereas 38 145 

samples had low overall call rate (>1000 missing SNPs). 146 
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Phenotypes were Deregressed EBV (DRPF) provided by the Italian Holstein Association 147 

ANAFI. Thirty-five productive and functional traits have been considered (Table 1). Not all 148 

phenotypes were available for all bulls, thus small differences in sizes of REF and TEST 149 

populations across traits occurred. On average, sizes of REF and TEST populations were of 1,314 150 

and 624 bulls, respectively, . For each traits, heritability, number of REF and TEST bulls and 151 

average reliability of DRPF are reported in table xx 152 

 153 

Methods 154 

Methodologies used to calculate DGV differed in the dimensionality of predictors (SNP 155 

genotypes vs. PC scores) and in the assumptions on marker effect distributions (BLUP vs 156 

Bayes_A). 157 

Reduction of predictor dimensionality by Principal Component Analysis 158 

PCA were used to extract latent variables from the SNP matrix (n x m) (where n=total 159 

number of animals, and m=number of SNPs retained after edits). Genotypes were coded as -160 

1/  and 1/  for two different homozygotes and 0 for heterozygotes, 161 

respectively, where pi is the frequency of one of the two allele at locus i.{Luan, 2009 #230}. 162 

Principal components were extracted separately for each chromosome for computational reasons. 163 

Previous studies based on simulated data reported the same DGV accuracy for PCA carried out on 164 

the entire genome or separately per chromosome (Macciotta et al. 2010). The number of 165 

components to retain was based on the amount of original variance explained, calculated as sum of 166 

eigenvalues. In particular, five thresholds with regard to the amount of  variance explained were 167 

considered with a corresponding number of extracted variables ranging from about 2,600 to 15,200 168 
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(Figure 2). Component  scores for each animal were used as predictors in the further steps of DGV 169 

calculation and validation.  170 

 171 

BLUP 172 

The effect of predictors, either SNP (SNP_BLUP) or principal component scores 173 

(PC_BLUP), on phenotypes of the REF bulls was estimated with the following mixed linear model 174 

y = 1 µ + Zg + e  [1] 175 

where y is the vector of Deregressed EBV, 1 is a vector of ones, µ is the general mean respectively, 176 

Z is the matrix of SNP genotypes or PC scores, g is the vector of their effects treated as random, 177 

and e is the vector of random residuals. Covariance matrices of random effects (G) and residuals 178 

(R) were modelled as diagonal I gi   and I e
 respectively, where  is  e

gi
 (where gi

 = a
n PC) 179 

assuming an equal contribution of each predictor to the additive genetic variance. Additive genetic 180 

a
 and residual e

 variances for all traits were provided by the Holstein association. BLUP 181 

solutions were estimated using Henderson’s normal equations (Henderson 1985) and mixed model 182 

equations were solved using a Gauss-Seidel residual update (GSRU) iterative algorithm (Legarra 183 

and Mistzal, 2008) 184 

 185 

BAYES_A 186 

A Bayes A method (BAYES_A) that assumes that most of markers have very small effects 187 

(e.g. markers not linked to any QTL) and only few have large effects was fitted to the REF data set 188 

with the same structure used in model [1]. Prior distributions and parameters where chosen 189 

according to Meuwissen et al. (2001). Twenty thousand iterations were performed, the first 10,000 190 
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were taken as burn in and thus discarded, and all the others were kept.  A residual updating 191 

algorithm was used to solve the model (Legarra et al. 2008). 192 

 193 

DGV estimation 194 

DGVs in the TEST population were calculated using the general mean ( ̂ ) and the vector 195 

( ĝ ) of the solution of predictors effects estimated with BLUP or BAYES_A in the previous step as: 196 


=

+=

m

i

iik

1

k
ˆ'ˆDGV gz  197 

where z is the vector of PC scores or marker genotypes and m is the number of PC or 198 

markers used in the analysis.  199 

The accuracy of direct genomic values DGV was assessed in TEST individuals by calculating 200 

Pearson correlations between DRPF and DGV. Bias were assessed by examining regression of 201 

DRPF on predicted DGV. Goodness of prediction was evaluated also by calculating the mean 202 

squared error of prediction (MSEP) and by its partition in different sources of variation related to 203 

systematic and random errors (Tedeschi 2006). Moreover, the accuracy of genomic predictions was 204 

compared to the realized accuracies of 2005 pedigree indexes (PI) of TEST individuals for some 205 

traits. PI from 2005 were chosen because nearly all animals in the TEST population did not have 206 

daughter records at that time. 207 

 208 

Results 209 

The effect of different thresholds of explained variance used in PC extraction on the DGV 210 

accuracy for seven traits in TEST bulls is reported in Figure 2. Basically, correlations between 211 
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DGV and DRPF exhibit a slight linear increase with increasing amounts of extracted components. 212 

This behavior can be observed for almost all traits except fat percentage. Thus the value of 213 

explained variance further considered in the study was 99%, with a corresponding number of 214 

15,199 extracted components. 215 

Pearson correlations between predicted DGV and DRPF in TEST bulls for the different 216 

estimation methods are reported in Table 1. Values were low to moderate and different among traits 217 

and, to a lesser extent, among methods. Smallest accuracies were obtained for reproduction traits, 218 

especially calving ease, for which the correlation was 0.05. Milk composition traits, as protein and 219 

also somatic cell count showed highest values, ranging from 0.40 up to 0.64. Also some 220 

conformation traits as type, udder score and rump angle showed accuracies around 0.50. Yield traits 221 

had intermediate values of correlations (about 0.40-0.45). 222 

Slight differences in rDGV,DRPF between methods were observed (Table 1). In general, 223 

accuracies of PC_BLUP and BAYES_A (for 21 and 12 traits out of 35, respectively) were slightly 224 

higher than those of BLUP method that uses SNP genotypes as predictors. On average, the 225 

maximum and the minimum value of accuracy for each trait differed  about 0.04. A relevant 226 

exception is represented by fat percentage where BAYES_A markedly outperformed the other 227 

methods, yielding an accuracy greater than about 0.25 and 0.15 compared to the other approaches. 228 

Such a better performance  was also observed for fat yieldeven though of a reduced magnitude. . 229 

Comparison between accuracies of genomic predictions and of pedigree indexes shows a slight 230 

superiority for most of traits for genomic predictions  231 

Table 2 shows the coefficient of determination (R2), mean squared error of prediction and its 232 

decomposition of DGV calculated with the three methods for some selected traits: protein yield, fat 233 

percentage, somatic cell count, longevity, fertility, stature and udder support. The PC_BLUP 234 
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method showed the lowest values of MSEP across all the considered traits. Moreover, as far as the 235 

decomposition of the MSEP was concerned, for almost all traits this approach was characterized by 236 

the lowest incidence of components related to prediction bias, i.e. mean bias (on average 13% of the 237 

MSEP) and inequality of variances (22%), and  highest for incomplete covariation (66%) and 238 

random error (85%), i.e. the sources of random variation. SNP_BLUP and BAYES_A had basically 239 

the same composition of the MSEP. Less defined is the pattern across traits. Protein yield, for 240 

example, had the highest value for mean bias but the lowest for inequality of variance. In any case, 241 

fat percentage and somatic cell count showed the largest incidence of random variation.  242 

Regression coefficients (bDGV,DRPF) of DGV on DRPF are shown in Figure 3. A relevant 243 

difference between methods can be observed. Values are lower than one in almost all traits for the 244 

PC_BLUP method (on average 0.74±0.21), indicating that positive values of DGV overpredict 245 

DRPF and vice versa for negative DGV values. On the contrary, all methods that use directly SNP 246 

genotypes showed (bDGV,DRPF) almost always greater than one (except for calving ease): 1.23±0.35,  247 

1.22±0.37, for SNP_BLUP and BAYES_A, respectively. Moreover, among all methods, the 248 

PC_BLUP showed the lowest degree of accuracy (Figure 3). A definite pattern across traits could 249 

not be identified, except for the very low values for calving ease and the rather high (>1.30) for 250 

some conformation traits. 251 

Discussion 252 

As expected, due to the limited size of the reference population, prediction accuracies for 253 

direct genomic values were low to moderate. For example, squared correlations reported for US 254 

Holstein (VanRaden et al. 2009)  obtained by used a REF population of 3,576 bulls are on average 255 

0.2 higher than those reported in the present work for a set of 23 common traits. Similar differences 256 

have been observed with reliabilities reported by Su et al. (2010) on a 3,330 Danish Holsteins. In 257 

VanRaden et al. (2009), the R2 for Net merit has been calculated also with REF population sizes of 258 
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1,151 and 2,130. Values were similar to those here reported, i.e. 0.12 and 0.17 vs 0.16, respectively. 259 

Accuracies obtained in the present work were similar to those reported by Moser et al. (2010) with 260 

a REF population of 1,847 bulls. All the above mentioned figures confirm the importance of the 261 

reference animals for the realized accuracy of genomic predictions. In any case accuracies of DGV 262 

in this study were equal or in many cases higher than realized accuracies of traditional pedigree 263 

indexes.  264 

The reduction of predictor dimensionality from 39555 to 15207 by principal component 265 

analysis did not reduce accuracy of DGV predictions compared to methods that use directly all SNP 266 

genotypes available. In most of cases the PC-BLUP approach gave the best accuracies even if 267 

differences from the other methods were rather small. Such results confirm previous reports on 268 

simulated (Solberg et al. 2009; Macciotta et al. 2010) and real data (Long et al., 2011; Pintus et al., 269 

2012). The reduction performed in this study was of a lower magnitude compared to some of the 270 

above mentioned research, and the number of PC to be retained was not fixed a priori but based on 271 

the test of different thresholds of explained variance (the number of PC variables were about 38% 272 

of the original variables). However, the effect on computation demand was evident. The average 273 

computation time using GSRU for the PC-BLUP method was about 1,21 min (from 1.14 to 2.81 274 

depending on the trait) 2 hours (from 50 min to 4 h depending on the trait), whereas 1 h 36 min 275 

(from 59 min to 2 h)whereas 18 hours (from 9 h to 29 h) were needed on average with the SNP-276 

BLUP and BAYES_A approaches using a Linux server with 4 x 4 quad core processors and 128 Gb 277 

RAM. 278 

DGV predictions obtained with the PC-BLUP methods were characterized by the lowest 279 

bias. This result has been also confirmed by the decomposition of the mean squared error of 280 

prediction, that highlighted a less bias for the PC-based method compared to the other approaches 281 

Moreover, the comparison between the two BLUP-based methods showed slightly better accuracies 282 
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for the PC_BLUP than for the SNP_BLUP (magnitude of difference was always lower than 283 

8%).These results may be ascribed to better numerical properties of the extracted variables 284 

compared to the direct use of SNP genotypes. Actually principal components are uncorrelated and 285 

this feature prevents problems of multicollinearity that are likely to occur because of linkage 286 

disequilibrium between loci when dense marker genotypes are used as predictors (Long et al. 2011).  287 

As far as the effect of the assumption on marker effect distribution is concerned, BAYES_A 288 

yielded substantially the same accuracies as BLUP methods for almost all traits. These figures do 289 

not agree with simulation studies were Bayesian methods performed better than BLUP methods 290 

(Meuwissen et al. 2001; Habier et al. 2007). On the other hand, they are similar to those obtained 291 

from real data (Moser et al. 2009 ;Su et al. 2010; VanRaden et al. 2009). A relevant exception is the 292 

genomic predictions of fat percentage. For this trait, the accuracy of the BAYES_A method was 293 

markedly higher (>30%) than in BLUP methods. A possible explanation can be found in the genetic 294 

structure of the trait. It is well known that fat content is largely influenced by single genes with 295 

major effect, DGAT1 (Grisart et al. 2004). Previous studies reported that methods that assume 296 

heterogeneity of variance across chromosome segments usually perform better than those that 297 

assume an equal contribution of all markers to the genetic variation in case of traits influenced by 298 

few genes.(VanRaden et al. 2009; Hayes et al. 2010).  299 

Some differences across traits were evidenced, although no definite trend between categories 300 

(e.g. yield, conformation, udder, etc.) was observed. Highest values were observed for milk 301 

composition, for some conformation and yield traits. Lowest values were found for calving ease, 302 

fertility and most  conformation traits. Such different behavior between traits is in agreement with 303 

reports on North American (Schenkel 2009; VanRaden et al. 2009; Olson 2011) and German (Liu 304 

2011) Holsteins. These figures seems to be related, even if roughly, to the heritability of the trait 305 

even if some exception have been observed, as somatic cell count. Liu et al. (2011), partially 306 
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explained the  lower genomic accuracies for traits with low heritability as a consequence of the 307 

lower accuracies of their conventional EBV in the REF population.  308 

 309 

Conclusions 310 

In this work direct genomic breeding values of Italian Holstein bulls for productive and 311 

functional traits have been calculated using different methods and  types of predictors. Realized 312 

accuracies of genomic predictions are low to moderate, conforming the  importance of the size of 313 

the REF populations. However, DGV accuracies were similar or, in many cases, slightly higher than 314 

those of pedigree indexes. The use of dimension reduction techniques did not result in a decrease of 315 

accuracy of genomic prediction compared to methods that uses all SNP available. Assumptions on 316 

distribution of marker effect had a relevant influence in the efficiency of the genomic selection for 317 

traits that are known to be affected by a limited number of genes with a large effect. 318 
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Table 1. Pearson correlations between predicted DGV and DRPF, for different estimation methods, for the 402 

test animals. 403 

 Methods 

Trait SNP-BLUP PC-BLUP Bayes_A PI 

PFT 0.42 0.42 0.39 0.41 

Milk Yield 0.43 0.43 0.46 0.45 

Fat Yield 0.41 0.42 0.49 0.34 

Protein Yield 0.39 0.39 0.38 0.40 

Fat % 0.44 0.47 0.64 0.45 

Protein % 0.51 0.53 0.55 0.50 

SCC 0.54 0.54 0.52  

Longevity 0.34 0.35 0.31  

Fertility 0.27 0.28 0.28  

Type 0.51 0.51 0.51 0.43 

Overall Conformation Score 0.43 0.42 0.40  

Overall Udder Score 0.48 0.49 0.46 0.41 

Overall Feet & Leg Score 0.35 0.35 0.36  

Stature 0.47 0.48 0.46 0.50 

Strength 0.36 0.37 0.35 0.13 

Body Depth 0.39 0.41 0.37 0.46 

Angularity 0.45 0.44 0.44 0.41 

Rump Angle 0.52 0.53 0.49 0.43 

Rump Width 0.44 0.42 0.43 0.54 

Rear leg side view 0.35 0.35 0.34 0.39 

Foot Angle 0.38 0.38 0.37 0.35 

Rear leg rear view 0.33 0.32 0.34  

Locomotion 0.45 0.44 0.45  

Fore Udder Attachment 0.45 0.45 0.44 0.38 

Rear Udder Attachment Height 0.46 0.46 0.44 0.39 

Rear Udder Attachment Width 0.26 0.25 0.26 0.30 

Udder Cleft 0.41 0.41 0.41 0.41 

Udder Depth 0.43 0.45 0.42 0.37 

Front Teat Placement 0.42 0.41 0.41 0.26 

Teat Length 0.33 0.34 0.32 0.20 

Rear Teat Placement 0.36 0.35 0.36  

Direct Calving Ease 0.05 0.05 0.05  

Maternal Calving Ease 0.04 0.04 0.05  

Production Persistency 0.29 0.30 0.30  

Maturity rate 0.34 0.34 0.34  

Average across traits (n=35) 0.39 0.39 0.39  

Average across traits (PA n=24) 0.42 0.43 0.43 0.39 
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Table 2. Mean squared error of prediction (MSEP) and its decomposition (%), and coefficient of 406 
determination (r2) of Deregressed Proof on direct Genomic Breeding values for some traits in the 407 
PREDICTION animals using different estimation method. 408 

Protein Yield r2 MSEP 
mean 
bias 

unequal 
variances 

incomplete 
(co)variation 

Systema
tic bias 

Random 
errors 

PC-BLUP 0.15 312.20 0.24 0.10 0.66 0.06 0.70 

SNP-BLUP 0.15 327.31 0.31 0.15 0.54 0.02 0.67 

Bayes_A 0.14 356.88 0.36 0.19 0.45 0.01 0.63 

Fat %               

PC-BLUP 0.22 0.04 0.00 0.26 0.74 0.01 0.99 

SNP-BLUP 0.19 0.04 0.00 0.38 0.62 0.00 1.00 

Bayes_A 0.42 0.03 0.00 0.20 0.80 0.00 1.00 

Somatic Cell Count               

PC-BLUP 0.29 25.34 0.01 0.29 0.70 0.00 1.00 

SNP-BLUP 0.29 25.75 0.00 0.42 0.57 0.01 0.99 

Bayes_A 0.29 26.49 0.00 0.54 0.46 0.04 0.96 

Longevity               

PC-BLUP 0.12 63.37 0.22 0.18 0.60 0.03 0.75 

SNP-BLUP 0.11 61.55 0.21 0.29 0.49 0.01 0.78 

Bayes_A 0.09 61.46 0.19 0.53 0.28 0.01 0.80 

Fertility               

PC-BLUP 0.08 81.05 0.09 0.24 0.67 0.04 0.87 

SNP-BLUP 0.07 80.04 0.11 0.36 0.54 0.01 0.88 

Bayes_A 0.07 82.37 0.14 0.49 0.37 0.00 0.86 

Stature               

PC-BLUP 0.23 1.58 0.21 0.27 0.52 0.00 0.79 

SNP-BLUP 0.22 1.74 0.27 0.36 0.38 0.01 0.73 

Bayes_A 0.20 1.98 0.32 0.41 0.27 0.02 0.66 

Udder support               

PC-BLUP 0.17 1.80 0.11 0.21 0.69 0.02 0.87 

SNP-BLUP 0.17 1.83 0.14 0.32 0.54 0.00 0.86 

Bayes_A 0.16 2.00 0.21 0.43 0.37 0.01 0.79 
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Figure 1. Distribution of number of bulls per birth year in the reference and test population. 411 

Figure 2. Pearson correlations between predicted direct genomic breeding values and deregressed proof, for 412 
the PC-BLUP method using a different number of Principal components (PC) explaining the given proportion 413 
of the variance, for the PREDICTION animals. 414 

Figure 3. Regression coefficients (bDRPF,DGV) of Deregressed Proof on direct Genomic Breeding Values 415 
estimated with PC-BLUP, SNP-BLUP and BAYES_A methods, and on Parent Average for all traits 416 
considered in test animals 417 
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FIGURE 3 432 
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