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Abstract 17 

In this study, the effect of breed composition and predictor dimensionality on the accuracy 18 

of direct genomic values in a multi-breed cattle population was investigated. A total of 19 

3559 bulls of three breeds were genotyped at 54001 Single Nucleotide Polymorphisms: 20 

2093 Holstein (H), 749 Brown Swiss (B) and 717 Simmental (S). Direct genomic values 21 

(DGV) were calculated using a Principal Component approach for either single (SB) or 22 

multiple breed (MB) scenarios. Moreover, DGV were computed using all SNP genotypes 23 

simultaneously with SNPBLUP model as comparison. Seven datasets were used: three 24 

with a single breed each, three with different pairs of breeds (HB, HS and BS), and one 25 

with all the three breeds together (HBS), respectively. Editing was performed separately 26 

for each scenario. Reference populations differed in breed composition, whereas the 27 

validation bulls were the same for all scenarios. The number of SNPs retained after data 28 

editing ranged from 36521 to 41360. Principal components (PC) were extracted from 29 

actual genotypes. The total number of retained PC ranged from 4029 to 7284 in Brown 30 

Swiss and HBS respectively, reducing the number of predictors by about 85% (from 82% 31 

to 89%). Three traits were considered: milk, fat, and protein yield. Correlations between 32 

deregressed proofs and direct genomic values were used to assess prediction accuracy in 33 

validation animals. In the SB scenarios, average DGV accuracy did not substantially 34 

change when either SNPBLUP or PC were used. Improvement of DGV accuracy were 35 

observed for some traits in Brown Swiss, only when MB reference populations and PC 36 

approach were used instead of SB-SNPBLUP (+10% HBS, +16%HB for milk yield and 37 

+3% HBS and +7% HB for protein yield, respectively). With the exclusion of the 38 

abovementioned cases, similar accuracies were observed using MB reference population, 39 

under the PC or SNPBLUP models. Random variation due to sampling effect or size and 40 
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composition of the reference population may explain the difficulty in finding a defined 41 

pattern in the results.  42 

Keywords: genomic selection, reference population, multi-breed, dairy cattle, small 43 

population. 44 

Implication 45 

A multiple breed approach for predicting direct genomic values in three cattle breeds is 46 

presented. The use of multiple breed reference populations might help to increase 47 

genomic selection accuracy in small cattle populations. This approach is extendable to 48 

populations of other species with reduced number of genotyped animals. 49 

 50 

  51 
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Introduction 52 

Dense marker maps are currently used in the dairy cattle industry for predicting genomic 53 

enhanced breeding values (GEBV) in genomic selection (GS) programs (Meuwissen et al., 54 

2001). The advantages of GS in cattle have been extensively reviewed (Hayes et al., 55 

2009a, VanRaden et al., 2009). GEBV accuracy is related to the size and structure of the 56 

reference population, the level of linkage disequilibrium (LD) between markers and QTL, 57 

the number of QTL underlying the trait and its heritability. Among them, the size of the 58 

reference population probably plays the key role to accomplish the theoretical expectations 59 

of GS (Goddard and Haye s, 2009).  60 

The need for increasing the size of the reference population for improving GEBV 61 

accuracy led to the creation of consortia among breed associations and breeding 62 

companies. Thus, genotypes have been exchanged and larger common reference 63 

populations have been created as, for instance, in Holstein (Lund et al., 2011) and Brown 64 

Swiss (Jorjani et al., 2012). The problem still remains in small or admixed populations. 65 

Some authors proposed to use prediction equations estimated in a breed with a large 66 

reference population for calculating GEBV in others of small size. Poor results have been 67 

obtained, especially for populations that are genetically distant (Hayes et al., 2009b, Pryce 68 

et al., 2011, Olson et al., 2012). The use of a multi-breed (MB) reference population could 69 

be an alternative for improving GEBV accuracy in small populations. The MB rationale 70 

relies on the use of statistical models able to capture LD between SNPs and QTLs when 71 

different breeds are analyzed jointly. The combination of different breeds in a larger 72 

reference population was simulated by de Roos et al., (2009). The authors concluded that 73 

a large marker density was needed to preserve the marker-QTL association across breed, 74 

when genetically divergent breeds were pooled together. Furthermore, Kizilkaya et al., 75 

(2010) reached the same conclusions simulating MB performances from actual 54K 76 
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genotypes. A slight improvement in the accuracy of genomic predictions was achieved in 77 

real data using medium density chip in MB populations. To date, the increase of marker 78 

density (e.g. the use of BovineHD beadchip, Illumina inc., CA) hardly improved GEBV 79 

accuracy both in pure and multi breed cattle populations (Harris et al., 2011, Erbe et al., 80 

2012, VanRaden et al., 2013).  81 

Two main approaches have been proposed in the MB framework: SNP effect 82 

estimation (GBLUP or Bayesian methods) from a MB reference considered as 83 

homogenous population (Hayes et al., 2009b, Brondum et al., 2011, Pryce et al., 2011), or 84 

adaptation of multiple-trait model to the MB case. For instance, Makgahlela et al., (2013) 85 

proposed a multiple-trait random regression model, fitting breed proportions as random 86 

predictors and an interaction between marker and breed effects. Similar approaches have 87 

been implemented by Olson et al., (2012) and Karoui et al., (2012) in US and French MB 88 

dairy cattle population, respectively. Although these models allow marker effects to differ 89 

among breeds, no or slight gain in accuracy were obtained in comparison with less 90 

computational intensive models. 91 

An interesting option for across breed genomic evaluation may be represented by 92 

the use of multivariate statistics. Principal component analysis (PCA) originally proposed 93 

to take into account population structure in human genetics by Cavalli-Sforza (Patterson et 94 

al., 2006), is currently used in animal breeding for several purposes. In the GS framework, 95 

PCA has been used to reduce the number of predictors in the estimation of Direct 96 

Genomic Values (DGV) by Solberg et al., (2009). Furthermore, eigenvalues of SNP 97 

correlation matrix were also used as variance priors to estimate DGV in simulated and real 98 

cattle data (Macciotta et al., 2010, Pintus et al., 2012). In this context, PCA was used to 99 

reduce the computational demand and the co-linearity among predictors to calculate DGV 100 
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of pure breed animals. Daetwyler et al., (2012) developed a PCA approach to correct for 101 

population structure in a complex MB sheep population.  102 

The overall objective of this work was to test the effect of the use of principal 103 

components instead of SNP genotypes as predictors in the calculation of  direct genomic 104 

values either in single (SB) or multi breed scenarios. In particular, the effects of the size 105 

and the composition of the multi breed reference population on DGV accuracy were 106 

investigated.  107 

 108 

Materials And Methods 109 

Data 110 

A total of 3559 bulls of three Italian breeds (2093 Italian Holstein, 749 Italian Brown Swiss 111 

and 717 Italian Simmental) were genotyped at 54K SNP. Animals were genotyped with 112 

both Illumina Bead chip v1 and v2 that hold 54001 and 54069 SNPs, respectively. 113 

Therefore, only common markers (52340) were retained. Seven scenarios of breed 114 

composition were considered: Holstein, Brown Swiss, Simmental, Holstein+Brown 115 

Swiss+Simmental (HBS), Holstein+Brown Swiss (HB), Brown Swiss+Simmental (BS) and 116 

Holstein+Simmental (HS), respectively (Table 1). Bulls with poor quality genotypes (call 117 

rate <97.5%) were discarded. Furthermore, checks for Mendelian inconsistency were 118 

performed within each breed examining sire-son pairs (animal with >2% inconsistency 119 

were eliminated). Finally, bulls with missing phenotypic records were included in the 120 

dataset to perform PCA but excluded from the DGV estimation.   121 

 122 

  123 

Table 1 124 
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Quality control was performed separately in each data set. The causes of SNP elimination 125 

are summarized in Table  2. SNP with minor allele frequency (MAF) lower than 5% were 126 

discarded (monomorphic SNP ranged from 8% to 12% of the total number of SNP). SNP 127 

with callrate <97.5% (approximately 3% of total) were eliminated. SNP out of Hardy-128 

Weinberg (Bonferroni corrected P<0.01) were removed in SB scenarios. SNP that 129 

deviated from the HW equilibrium in the MB scenarios (HBS, HB, HS and BS) were 130 

retained in order to preserve markers potentially able to discriminate among breeds. 131 

Moreover, a high percentage of SNP would have not passed this test in a mixed 132 

population. The number of SNP retained after data editing ranged from 36521 (Brown 133 

Swiss) to 39240 (Holstein) in the case of single breed and from 39615 (BS) to 41360 134 

(HBS) across breed, respectively (Table 2). For the remaining missing values (<0.5% of 135 

the total), alleles were imputed using the most frequent allele at each involved locus within 136 

each breed. 137 

Table 2 138 

Animals born before December 31st  2000 were included in the reference whereas 139 

those born >2000 represented the validation either in SB or MB scenarios. Within each MB 140 

scenario the reference populations were set up pooling together bulls belonging to 141 

different breeds according to the date of birth. The validation population included always 142 

the same bulls across different scenarios (634 Holstein, 171 Simmental and 141 Brown 143 

Swiss). Phenotypes used were deregressed proofs (DRGP) provided by the 3 breed 144 

associations and calculated separately for each breed. Procedure of Interbull's 145 

deregression were carried out in order to remove the effect of pedigree. Moreover, 146 

phenotypes of sires that had daughters in foreign countries were corrected according to 147 

the multiple across country evaluation (MACE) EBVs for Simmental and Brown Swiss. For 148 

Holstein a set of effective daughter contributions (EDC) consistent with the set of 149 
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reliabilities and the pedigree was derived iteratively. Then full animal model deregression 150 

was performed using those EDCs by iteratively finding a set of DRGP consistent with the 151 

set of proofs. This procedure is similar to Interbull's deregression, with two differences, 152 

namely lack of genetic groups and treating MACE proofs on the Italian scale as if they 153 

were domestic proofs (Biffani, Personal communication). In order to have SNP effects 154 

comparable across breeds, DRGP (within and across breeds) were standardized to mean 155 

= 0 and s.d. = 1. Three traits were considered: Milk Yield (MY), Fat Yield (FY) and Protein 156 

Yield (PY). Average DRGP reliabilities for yield traits were 0.93±0.02 (0.90±0.04), 157 

0.90±0.07 (0.81±0.06) and 0.88±0.06 (0.85±0.05) in Holstein, Brown Swiss and Simmental 158 

reference (validation) bulls, respectively.  159 

 160 

Principal Component Analysis 161 

The genotype at each locus was coded as -1 and 1 for the opposite homozygotes and 0 162 

for the heterozygotes, respectively. PCA was carried out by chromosome in the whole 163 

population (reference+validation). PC scores were computed separately for each 164 

chromosome in the different scenarios (SB or MB) (Pintus et al., 2012). This chromosome-165 

wise approach was aimed at handling, whenever possible, full rank correlation matrices. 166 

The rank of a matrix is defined as the maximum number of independent rows (or columns). 167 

For SNP genotype data matrix, the rank is lower or equal to the minimum value between 168 

number of animals and number of SNP. In case of small reference population size, the 169 

number of observations << number of SNP. Thus the marker (co)variance matrix is not full 170 

rank, resulting in a reduction of the maximum number of PC that can be potentially 171 

extracted. Previous results obtained on simulated data showed no differences in DGV 172 

accuracies between chromosome-wide or genome-wide PC extraction (Macciotta et al. 173 

2010). Differently from the abovementioned papers, where the number of PC was chosen 174 
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based on the proportion of variance explained, in the present investigation the MINEIGEN 175 

criterion was adopted (Kaiser, 1960). In particular, for each chromosome a principal 176 

component was retained if its eigenvalue was greater than the average (i.e. one in the 177 

case PC are extracted from correlation matrices). Finally, individual PC scores were 178 

calculated combining the eigenvectors of correlation matrices and original genotypes. 179 

 180 

Genomic selection models 181 

Genomic predictions were obtained within each breed using either all marker genotypes 182 

available (SB-SNPBLUP) or PC scores (SB-PC) as predictors. The SB-SNPBLUP was 183 

considered as the base scenario for comparison with the other approaches. DGV for the 184 

different MB sets also were calculated using either SNP genotypes (MB-SNPBLUP) or PC 185 

scores (MB-PC). 186 

 187 

SB-SNPBLUP. Effects of the SNP were estimated using the following model:  188 

= + +y 1 Zg e   [1] 189 

where y is a vector of DRGP standardized across breeds with mean 0 and 
2 1y = , 190 

1 is a vector of ones, μ is the general mean, Z is the matrix of SNP genotypes coded as -1, 191 

0 and 1, g is a vector of random SNP effects g ~ N(0, Im
2

g ) and e is a vector of random 192 

residuals e ~ N(0, In 2

e ), where m and n are the number of markers and the number of 193 

animals, respectively. Variance components  
2
ê  and 

2
ĝ  and SNP effects were estimated 194 

running a Gibbs sampling using 100000 cycles and thinning interval of 10 (20000 samples 195 

were discarded as burn in). Estimated variance components were successively used to 196 

run a SNP-BLUP model. GS3 software was used to perform the analysis (Legarra et al., 197 

2012). 198 
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 199 

SB-PC. The effects of PC scores on phenotypes were estimated with model [1] by 200 

replacing genotypes with PC scores in Z. For j-th breed, mixed model equations were set 201 

up using as lambda 
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MB-SNPBLUP. Data of MB animals considered as an homogenous population were 205 
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  where: 209 

nH, nB and nS are the population size for Holstein, Brown Swiss and Simmental respectively;210 

2ˆej   and 
2ˆgj are the estimated variance components (j = Holstein, Brown Swiss or 211 

Simmental, respectively); j

i

j

i qp are the allelic frequencies at i-th locus for the j-th breed. 212 

Lambda ratios for the other MB combinations were calculated in the same way.  213 

MB-PC. Effects of principal components were estimated with model [1] by replacing SNP 214 

genotypes with PC scores in Z. Different lambda ratios were calculated for each MB 215 

scenario following the approach of MB-SNPBLUP. 216 
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For each model, MME were solved by using a Gauss-Seidel iterative method. SNP or PC 217 

effects ( ĝ ) were then used to calculate DGV of validation bulls as:    218 

     gZDGV ˆ+= μ  219 

 220 

Assessment of model accuracy.  221 

Pearson correlation coefficients between DGV and DRGP ( DGVr ) scaled by the squared 222 

root of the mean DRGP reliability (RELDRGP), were used to evaluate DGV accuracy 223 

)REL( DRGPDGVDRGP,DGV rr = . The scaling was aimed at accounting for inaccuracy of the 224 

phenotypes used in the genomic evaluation (Hayes et al., 2009a, Calus et al., 2013). It 225 

does not have any effect on
 DGVr when RELDRGP is equal to one. Furthermore, the 226 

correlation between DGV and Pedigree Index (PI) was calculated )( PIr . Slope of the 227 

regression of DRGP on DGV was also calculated to evaluate the different models. Both 228 

DGVr  and DGVb were calculated separately for each breed, for both SB and MB scenarios.   229 

 230 

Results 231 

Principal component analysis  232 

The patterns of eigenvalues obtained for the different chromosomes in the SB and MB 233 

scenarios are reported in Figure 1. It is a useful tool for a visual detection of PC that met 234 

the eigenvalue >1 criterion. Principal components are extracted in order to maximize 235 

successively the amount of the original variance explained. Hence, the first component 236 

has the largest eigenvalue (i.e. the variance accounted for), the second PC the maximum 237 

after the first, and so on. Thus, the plot of eigenvalues is commonly characterized by a 238 

drop as the PC extraction proceeds. In the present study, such a drop was more 239 
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pronounced for the breeds with the smallest number of genotyped animals (i.e. Simmental 240 

and Brown Swiss). 241 

  242 

Figure 1 243 

The variance accounted for by retained PCs varied from 0.85 (±0.01) in HBS to 0.92 244 

(±0.01) in Brown Swiss scenario, corresponding to 7284 and 4029 PC, respectively. The 245 

average number of PC retained per chromosome ranged from 149±42 (Brown Swiss) to 246 

226±65 (HBS). The Simmental showed the largest number of PC in comparison to the 247 

small size of its population (Table 3).  248 

  249 

Table 3 250 

Figure 2 reports individual PC scores for the first three principal components. Although 251 

they were able to explain only about 9% of the original variance, the three breeds are 252 

clearly separated. In particular, the first PC separates Holstein  from the other two breeds, 253 

whereas Brown Swiss and Simmental clustered in two different group along the second 254 

PC. The third PC summarizes the interior variability of the largest group of bulls (Holstein).   255 

Figure 2 256 

 257 

 258 

Genomic prediction accuracy 259 

SB-SNPBLUP. DGV accuracies for both SB and MB scenarios are reported in Table 4. In 260 

the SB scenarios the accuracy varied across breeds and traits. The highest value was 261 

observed in Holstein, the lowest in Brown Swiss. The accuracy of DGV was in most cases 262 

higher than accuracy of pedigree index. However, in Brown Swiss  DGVr  was lower than PIr  263 

for MY and PY (Table 4). 264 
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SB-PC. PCA reduced the number of predictors by 85% (±3%) on average. However, DGVr  265 

for Holstein decreased by about 5% when PC scores instead of SNP genotypes were used 266 

as predictors. Conversely, the application of PCA did not affect DGVr  in the other two 267 

breeds (Table 4).  268 

 269 

MB-SNPBLUP. The combination of a multi breed reference population with the SNPBLUP 270 

model did not affect the average DGVr in comparison to the single breed scenario. If 271 

compared to SB-SNPBLUP, the maximum DGVr  difference were +3% (HS) in Simmental 272 

validation. With the exclusion of Holstein, the application of MB-SNPBLUP produced 273 

similar  DGVr  if compared to SB-PC.   274 

 275 

MB-PC. In general, the use of a MB-PC slightly affected DGVr  compared to the other 276 

models. In Holstein, an average DGVr  difference of +4% (vs SB-PC), -1% (vs SB-277 

SNPBLUP) and no difference (vs MB-SNPBLUP) were observed when HBS instead of 278 

single breed was used as reference, respectively. Average accuracy did not change in 279 

Simmental for MB-PC scenario, whereas slight differences of DGVr  were observed 280 

compared to MB-SNPBLUP. Increases of 2% and 5% (vs SB-SNPBLUP) were observed 281 

for Brown Swiss using HBS and HB reference population respectively. However, an 282 

average decrease of 2% (vs SB-PC) and 4% (vs SB-SNPBLUP) was found using BS as 283 

reference (Table 4). Looking at MB scenarios, most of the results are fairly comparable. 284 

MB-PC average DGVr
 
difference spanning from -3% (BS) up to +4% (HB) if compared to 285 

MB-SNPBLUP in Simmental and Brown Swiss validation set, respectively.  286 

 287 
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As far as DGV accuracy across traits is concerned, no clear pattern may be observed in 288 

the different MB scenarios (Table 4). The use of MB-PC was advantageous for Brown 289 

Swiss over SB for MY and PY. For instance, DGVr  of MY nearly doubled when Holstein 290 

were also present in the reference (HB +13% and +16% vs SB-PC and SB-SNPBLUP 291 

respectively). These gains were reduced (+7% SB-PC and +10% SB-SNPBLUP) when 292 

also Simmental was included in the reference (HBS scenario), whereas a drop in DGVr  was 293 

observed by combining Brown Swiss and Simmental (−4% SB-PC and -1% SB-294 

SNPBLUP). A similar pattern can be observed for PY, with gain of reduced magnitudes. 295 

Conversely, a reduction of DGVr  was obtained for FY in all MB scenarios especially when 296 

Holstein bulls were in the reference population (−9%HB, −7% HBS, and −1% BS, 297 

respectively). Accuracy of DGV increased across different MB scenarios for yield traits in 298 

Holstein: up to 6%, 5% and 2% for MY, PY and FY, respectively (HBS reference).  299 

 300 

Table 4 301 

Pearson correlations between DGV for validation bulls calculated using MB-PC or 302 

SB-PC approaches are reported in Table 5. Across traits and MB reference population, the 303 

correlation ranged from 0.89 to 0.93, from 0.67 to 0.91 and from 0.88 to 0.98 for Holstein, 304 

Brown Swiss and Simmental, respectively. Very similar values for different validation set 305 

were observed across traits. Holstein did not show variation of correlations among different 306 

MB references and presented the highest value for FY (0.93). DGV calculated for 307 

Simmental using BS reference were highly correlated with DGV estimated using 308 

Simmental only for all the traits (>0.97). The correlation among SB and MB DGV of Brown 309 

Swiss were lower for the breed combinations HB and HBS (from 0.67 to 0.74 depending 310 

on the trait) in comparison to the breed combination BS (0.91). 311 
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Table 5 312 

Table 6 reports the regression slopes of DGV on DRGP in SB and MB scenarios 313 

using SNPBLUP or PC approaches. For SB-PC and MB-PC, the regression slopes were 314 

fairly lower than 1 for all scenarios denoting a bias of prediction. No substantial changes 315 

were observed for Holstein passing from SB to MB. In general, the bias of prediction was 316 

higher both in Brown Swiss and Simmental when MB-PC genomic evaluations were 317 

carried out, with a generalized reduction of the regression coefficients.  318 

DGV estimates of the SNPBLUP models were biased as well, albeit that the 319 

magnitude of the bias was smaller than for the PC models. 320 

Table 6 321 

 322 

Discussion 323 

Principal component analysis 324 

In the present work a multivariate SNP reduction method was tested both in single and 325 

multi-breed populations and compared with the conventional approach of using SNP 326 

genotypes as predictors.  327 

The determination of the number of components to retain represents a crucial problem that 328 

researcher must handle when using PCA. In fact, an incorrect choice may imply  the 329 

under-extraction of components,  can lead to the loss of relevant information and it is likely 330 

to introduce distortion in the solutions (Ledesma and Valera-Moro 2007). On the other 331 

hand the extraction of a redundant number of PC may also be possible with less serious 332 

consequences. In the current investigation, the number of retained PC was based on the 333 

definition of a threshold for eigenvalues extracted from chromosome-wise SNP correlation 334 

matrices. Cross validation procedures or Montecarlo simulations are often used to 335 

establish the significant number of PC (Ledesma and Valera-Moro 2007). In genomic 336 
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selection framework, different approaches have been proposed. For instance, in 337 

supervised PC Regression proposed by Long et al. (2011), a panel of SNP was 338 

preselected according to associations with phenotypes and then PC were extracted. An 339 

increase of genomic prediction accuracy was observed for PC extracted from the selected 340 

SNP panel in comparison with the PCA carried out on the whole set of SNP (Long et al., 341 

2011). However, in this approach the number of retained PC may change across 342 

phenotypes. Whereas, The MINEIGEN criterion was adopted in the present work for  343 

identifying the optimum amount of variance accounted for PC in datasets of different size 344 

and for any traits. Despite some criticism on the MINEIGEN criterion, it is still valid for 345 

decomposition of correlation matrix with unities at the diagonal elements (Ledesma and 346 

Valera-Moro 2007).  347 

 348 

The retained PC were able to explain comparable amounts of variance (~90%) in 349 

the three breeds for the SB scenario. Despite that, a higher number of PC were found for 350 

Simmental. This feature was already observed in our previous work (Pintus et al., 2012) 351 

and it can be explained by differences in the genetic structure of this population (e.g. 352 

Linkage Disequilibrium pattern, see later in the discussion), or by an overestimation of the 353 

significant number of PC able to best explain original correlation among SNP variables 354 

(Ledesma and Valero-Mora, 2007). Although the number of PC retained was higher than 355 

previous reports (Long et al., 2011, Pintus, 2012) a considerable reduction of the predictor 356 

dimensionality was achieved though. 357 

 358 

Genomic prediction accuracy 359 

SB approach. The average DGV accuracy for SB-SNPBLUP model in Holstein, Brown 360 

Swiss and Simmental reflects somehow the difference in the size of the reference 361 
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populations, as previously observed in the same (Pintus et al., 2012, Pintus et al., 2013) or 362 

other Holstein populations of similar size (VanRaden et al., 2009). 363 

The application of SB-PC in Holstein resulted in a large reduction of predictor 364 

dimensionality, with some negative effects on predictive ability. The reduction in DGVr were 365 

systematic, and probably related to the number of retained PC. A substantial equivalence 366 

among PC and other methods was highlighted, in our previous work, when a larger 367 

number of PC was extracted (15609 vs 4908 used in the present paper) (Pintus et al., 368 

2013). Conversely, no substantial changes (or slight improvement) in DGVr  were observed 369 

in Simmental and Brown Swiss in comparison to SB-SNPBLUP. For Simmental, the DGVr  370 

of  PY was lower than values obtained by Gredler et al., (2009), Gredler et al., (2010) 371 

using a Partial Least Squares Regression approach. However in both cases the reference 372 

population size was larger than in the present work (1091 and 2477 bulls, respectively). 373 

DGV accuracies for Brown Swiss were consistent with our other previous work, but lower 374 

than those reported in literature. For instance the DGVr  for PY was 0.16 in comparison to 375 

0.32 (Olson et al., 2012), 0.55 (Olson et al., 2011) and 0.60 (Jorjani et al., 2012) using 376 

reference population of 506 (US), 1056 (US) and 4800 (InterGenomics) Brown Swiss bulls 377 

respectively. This fact clearly denotes the effect of population size on DGV accuracy.  378 

MB approach. The application of MB slightly improved average DGVr
 
of yield traits in 379 

comparison to SB-PC. Across multibreed scenarios, MB-SNPBLUP and MB-PC performed 380 

similarly. The DGVr  for Holstein were lower than those reported by Hayes et al., (2009b) 381 

even if they used less animals in the reference. In a work of Pryce et al., (2011), after a 382 

further enlargement of the previous MB reference population (including Holstein, 383 

Simmental and Jersey) no substantial changes in the DGVr  were recorded for milk 384 

production traits. 385 
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Looking at specific traits, some interesting results came up, even if without a clear 386 

and constant pattern across MB scenarios. Difference among traits are probably due to  387 

the sampling effect due to the reduced size of the population involved in the present work. 388 

However, interesting pattern in DGVr  can be observed among traits. The highest gain in 389 

DGVr
 
for MY and PY was observed by pooling Holstein and Brown Swiss population 390 

together. A partial decrease was observed when Simmental was added to the dataset 391 

(HBS), whereas the combination BS gave the worst results. Brown Swiss and Simmental 392 

together presented the largest difference at LD level (Figure 3), and this could explain the 393 

reduced accuracy of milk traits from their combination.  394 

Presented results are in agreement with reports on Nordic Red Cattle (Brondum et 395 

al., 2011). In particular MB genomic evaluation produced gain of 7% and 9% for MY 396 

(+10% for PY) in Swedish and Finnish validation populations respectively. Adding a third 397 

breed (Danish Red) sometime was beneficial for the other two breed, whereas just slight 398 

gain in accuracy were recorded for Danish itself, across different traits. Their results 399 

probably rely on similar LD among breeds (0.20) (Brondum et al., 2011) and particularly on 400 

reduced genetic distances between Swedish and Finnish cattle. In fact, these two breeds 401 

are of the Ayrshire type, while the Danish Red has some old influence from Brown Swiss 402 

and Holstein (Brondum et al., 2011). A similar pattern may be observed in our dataset for 2 403 

traits under control of many genes such as PY and MY. Indeed, Brown Swiss and Holstein 404 

have similar Linkage Disequilibrium patterns (Figure 3) and probably this similarity makes 405 

possible to pick up QTL effects across breeds using PCA. However, this conclusion is not 406 

supported by the literature. For instance, in US Brown Swiss just a slight increase of 407 

accuracy was achieved by adding Holstein in the reference population. This fact was 408 

probably due to small contribution (less than 10%) of Brown Swiss to the whole MB 409 
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population (Olson et al., 2012) in comparison to our dataset (30% and 20% of Brown 410 

Swiss in HB and HBS respectively).  411 

Figure 3 412 

If MY and PY showed an increase of accuracy in MB scenarios, opposite behavior 413 

was observed for FY, specially for MB-PC approach. The genetic background of FY may 414 

explain these results.  It is known that a polymorphism in DGAT1 gene (BTA 14) explains 415 

>40% of genetic variance of FY, whereas the genetic background of MY and PY is 416 

markedly polygenic. Despite DGAT1 polymorphism is not included in the 54K panel, SNP 417 

markers in LD with this gene can capture part of its genetic variance. DGAT1 is 418 

segregating in the Italian Holstein population, but not in Italian Brown Swiss (Scotti et al., 419 

2010). Hence, PC effects mighty be biased by the fact that in Italian Brown Swiss and 420 

Italian Simmental one of the allele is fixed. This hypothesis need to be verified but the 421 

comparison of PC effects on BTA 14 both in SB and MB scenarios might have led to such 422 

conclusion. (Figure 4). In fact, no large effects were observed on BTA14 for Italian Brown 423 

Swiss and Italian Simmental. Conversely, in Holstein a big PC signal was found on BTA14 424 

as well as in any MB scenario including Holstein. 425 

Figure 4 426 

In general, prediction biases were observed in our model. In all cases regression slopes of 427 

DRGP on DGV were lower than one, indicating inflation of variance for all prediction 428 

methods.  An optimal prediction would led to regression slope of 1, in the present work the 429 

DGV estimates are inflated in both MB and SB scenarios, even if BLUP estimates 430 

presented bDGV coefficients slightly higher than PC scenarios. A clear pattern across traits 431 

and scenarios hardly can be identified, likewise other MB papers (Brondum et al., 2011). 432 

Moreover, prediction bias increased for MB in comparison to either SB analysis in the 433 

present paper or other work involving the same populations (Pintus et al., 2012, Pintus et 434 
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al., 2013), and this could be also due to the increase of the dimensionality of predictors.  435 

Another possible explanation is related to the expected value of slopes: DGVb is 1 only if the 436 

genotyped animals are a representative sample of the animals population in the 437 

corresponding age classes (Mäntysaari et al., 2011; Patry et al., 2013). For Simmental and 438 

Brown almost all the available bulls were genotyped, whereas a bias can be introduced by 439 

selecting the Holstein bulls from a larger population. Probably, in MB reference population 440 

(with a higher proportion of Holstein) an expected values for DGVb  different from one could 441 

be hypothesized, depending selective genotyping of bulls. Biases in genomic predictions 442 

can also be due to the multi-step genomic selection procedure in population under 443 

selection. The application of prediction equations developed in training population using 444 

pseudo-phenotypes as observations (DRGP) was claimed to introduce bias in the DGV 445 

(Vitezica et al., 2011). Inflation of DGV variance were also observed in other works that 446 

use multivariate regression methods for genomic prediction. For instance, Solberg et al., 447 

(2009) found that the DGVb  decreases as the number of latent variables used grew. In 448 

multivariate context, this problem can be overcome  by cross validation to identify the 449 

number of PC that provide unbiased estimate of DGV (Solberg et al., 2009). 450 

General discussion 451 

The summary of DGV accuracy as function of the reference population size, obtained in 452 

the present work, together with some of the results retrieved from recent literature is 453 

presented in Table 7. The increase in population size pooling together multiple breed 454 

populations gave rise just to slight increase in DGV accuracy according to most of reported 455 

results. Figures in Table 7 might suggest that MB approach works better when breeds are 456 

not too genetically distant, especially for some of the Nordic Red Cattle. For reference 457 

population of reduced size, an apparent overestimations of DGV accuracy was observed 458 
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for some breeds, whereas there are other cases of underestimation as Brown Swiss in our 459 

data. Actually, a possible explanation for this apparent overestimation can be found in the 460 

different strategy for the calculation of GEBV reliability implemented in diverse genomic 461 

evaluation softwares. 462 

Table 7 463 

In order to try to explain these results of accuracy the within breed LD level was 464 

investigated. The patterns of LD in Simmental and Holstein populations are in agreement 465 

to the finding of Pryce et al., (2011) in Australian Holstein and German Fleckvieh. The LD 466 

values at the average marker distance in the 54K panel (about 67 kbp) were similar 467 

between Brown Swiss and Holstein (0.19) and slightly lower in Simmental (0.15). For the 468 

latter a lower LD persistency was also observed, with a sharp drop of LD over short 469 

distance in comparison to Holstein and Brown Swiss. Although Simmental had similar 470 

number of genotyped bulls compared to Brown Swiss, its effective population size (Ne) is 471 

greater. That was expected to have a negative effect on the accuracy of genomic 472 

prediction of Simmental but did not. A possible explanation is that a fair number of Brown 473 

Swiss bulls (~1/4) were born before 1980 (and the oldest bull dates 1960) in contrast to 474 

the Simmental and Holstein reference population whose bulls were more closer to each 475 

other (Pintus et al., 2012, Pintus et al., 2013). Another possible explanation could be found 476 

in the influence of relatedness between reference and validation populations (96 and 70 477 

father son pairs were included in the Brown Swiss and Simmental population, respectively) 478 

as also hypothesized by Habier et al., (2010) and Pszczola et al., (2012). 479 

 480 

Conclusions  481 

Results of the present study showed a slight average increase of DGV accuracy in the 482 

multi-breed approach compared to the single breed, although differences have been 483 
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observed between breeds. In particular, DGVr seemed to be quite in agreement to the 484 

theoretical expectation for Holstein, whereas Simmental did not exhibit gains in accuracy 485 

using an MB reference population. Brown Swiss showed an increase of DGV accuracy in 486 

MB scenarios for PY and MY and a decrease for FY. Differences in the LD structure of the 487 

three breeds and in their sample size may explain at least partially these results. Within 488 

the MB approaches, basically no clear differences in DGV accuracy were observed 489 

between the use of SNP genotypes or principal component scores as predictors.  490 
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Tables 602 

 603 

Table 1. Composition of Reference and Validation populations used for DGV estimation in 604 

Italian Holstein (Hol), Italian Simmental (Sim) and Italian Brown Swiss (Brw) single breed 605 

(SB) cattle breed or Multiple Breed (MB) population. Number of bulls left after data editing 606 

and cut-off year of birth used to  define reference and validation population were  reported 607 

both for SB or MB population.  608 

Reference 

Population 

Validation 

Population 

Birth  

years 

No 

Bull1 

Bulls 

Used2 

Ref 

Year ≤ 2000 

Val3 

Year > 2000 

Single Breed (SB) 

Hol Hol 1979-2007 2093 2058 1424 634 

Sim Sim 1972-2006 717 551 380 171 

Brw Brw 1960-2004 749 634 493 141 

Multi Breed (MB) 

HBS (Hol+Brw+Sim) - 3559 3245 2299 634+171+141 

HS (Hol+Sim) - 2810 2610 1805 634+171 

HB (Hol+Brw) - 2842 2692 1917 634+141 

BS (Brw+Sim) - 1466 1185 873 171+141.   

1 Bulls used in Principal component analysis 609 

2 Bulls used for genomic evaluation: differences in the number of bulls are due to missing phenotypes. 610 

3 Validation bulls of MB dataset were the same as single breed analysis:  611 

  612 
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 613 

Table 2. Number of SNP retained after data editing and related causes of elimination 614 

(MAF = minor allele frequency, HW=Hardy-Weinberg) for Holstein (Hol), Simmental (Sim) 615 

and Brown Swiss (Brw) considered both as separate (Hol, Brw, Sim) or pooled population 616 

(HBS, BS, HB, HS).  617 

 618 

  619 

 SB    MB 

Cause of elimination Hol Sim Brw  HBS HS HB BS 

Monomorphic 5481 5416 6282  4337 4553 4703 4931 

MAF < 5% 5521 6376 8319  4786 4973 4998 6417 

Callrate <97.5% 1633 1314 818  1489 1614 1499 1025 

No heterozygous 166 107 176  105 104 173 106 

Not HW equilibrium 197 161 119  0 0 0 0 

Mendelian conflict 64 185 84  263 254 207 246 

SNP Discarded 13100 13559 15819  10980 11498 11581 12725 

SNP Used 39240 38781 36521  41360 40842 40759 39615 
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Table 3. Average variance explained by PC (%) for SB and MB datasets, average number 620 

of PC by chromosome and total number of PC used. Number of rows and columns of 621 

chromosome-wise SNP correlation matrices. 622 

Dataset1 Variance 

explained (%)2 

Average number 

of PC3 ± sd 

PC 

used 

No. row 

(n bulls) 

Brw 92 149 ± 42 4029 749 

Sim 91 218 ± 57 6402 717 

Hol 90 160 ± 43 4908 2093 

HB 88 188 ± 53 5840 2482 

HS 87 211 ± 60 7099 2810 

BS 86 212 ± 43 6477 1466 

HBS 85 226 ± 65 7284 3559 

1 Brw=Brown Swiss, Sim=Simmental, Hol=Holstein, HB=(Hol+Brw), HS=(Hol+Sim), BS=(Brw+Sim), 623 

HBS=(Hol+Brw+Sim). 624 

2 Variance explained by all PCs which eigenvalues was >1 averaged by 29 chromosome (standard deviation 625 

1%) 626 

3 These values represent the average across 29 chromosomes. 627 

  628 
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Table 4. Realized Pedigree Index accuracy (rPI) for Milk, Fat and protein Yield. DGV 629 

accuracy (rDGV) for single breed (SB) approach using the whole set of markers (SB-630 

SNPBLUP) or principal component analysis (SB-PC). Multiple breed DGV accuracy using 631 

SNPBLUP (MB-SNPBLUP) or PCA approaches (MB-PC) for different combination of 632 

reference population. 633 

Single breed (SB) (rPI)  SNPBLUP (rDGV)  PC (rDGV) 

Validation1 Hol Brw Sim  Hol Brw Sim  Hol Brw Sim 

Milk Yield 0.45 0.21 0.34  0.45 0.13 0.38  0.39 0.16 0.38 

Fat Yield 0.34 0.23 0.33  0.45 0.28 0.32  0.42 0.27 0.35 

Protein Yield 0.40 0.20 0.34  0.41 0.14 0.36  0.36 0.16 0.36 

Average 0.40 0.21 0.34  0.44 0.18 0.35  0.39 0.20 0.36 

Sd 0.06 0.02 0.01  0.02 0.08 0.03  0.03 0.06 0.02 

Multiple Breed (MB) SNPBLUP (rDGV) 

Reference2 HBS  HB  HS  BS 

Validation1 Hol Brw Sim  Hol Brw  Hol Sim  Brw Sim 

Milk Yield 0.45 0.17 0.38  0.45 0.18  0.45 0.39  0.13 0.38 

Fat Yield 0.44 0.26 0.34  0.44 0.24  0.44 0.37  0.29 0.31 

Protein Yield 0.42 0.16 0.37  0.41 0.16  0.41 0.39  0.14 0.36 

Average 0.44 0.19 0.36  0.44 0.19  0.44 0.38  0.19 0.35 

Sd 0.02 0.05 0.02  0.02 0.05  0.02 0.01  0.09 0.04 

 PC (rDGV) 

Reference2 HBS  HB  HS  BS 

Validation1 Hol Brw Sim  Hol Brw  Hol Sim  Brw Sim 

Milk Yield 0.45 0.23 0.37  0.43 0.29  0.44 0.36  0.12 0.38 

Fat Yield 0.44 0.20 0.34  0.44 0.18  0.44 0.35  0.26 0.33 

Protein Yield 0.41 0.17 0.36  0.39 0.21  0.40 0.37  0.11 0.36 

Average 0.43 0.20 0.36  0.42 0.23  0.43 0.36  0.16 0.36 

Sd 0.02 0.03 0.02  0.03 0.06  0.02 0.01  0.08 0.03 

1 Hol=Holstein (n=634) ; Brw=Brown Swiss (n=141), Sim=Simmental (n=171) 634 
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2 HBS = Hol+Brw+Sim (n=2299); HB =Hol+Brw (n=1805); HS=Hol+Sim HS (n=1917); BS=Brw+Sim 635 

(n=873)  636 
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Table 5. Pearson Correlation among DGV calculated for yield trait in validation bulls using 637 

single breed (SB) and Multiple breed (MB) reference population. 638 

  MB Reference1 

Trait Validation2 HBS HB HS BS 

Milk yield Hol  0.89 0.89 0.89 * 

 Brw  0.70 0.67 * 0.91 

 Sim   0.88 * 0.89 0.98 

Fat Yield Hol   0.93 0.93 0.93 * 

 Brw  0.67 0.68 * 0.91 

 Sim   0.84 * 0.87 0.97 

Protein Yield Hol   0.92 0.92 0.91 * 

 Brw  0.74 0.74 * 0.91 

 Sim   0.89 * 0.89 0.98 

1 HBS = Hol+Brw+Sim (n=2299); HB =Hol+Brw (n=1805); HS=Hol+Sim HS (n=1917); BS=Brw+Sim (n=873) 639 

2 Hol=Holstein (n=634) ; Brw=Brown Swiss (n=141), Sim=Simmental (n=171)  640 

 641 
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Table 6. Bias of prediction measured by b(DRGP,DGV) for single breed (SB) and multiple breed (MB) approach for yield traits using 642 

PC or SNPBLUP methods. 643 

PC SB  MB 

Reference1 Hol Brw Sim  HBS  HB  HS  BS 

Validation2 Hol Brw Sim  Hol Brw Sim  Hol Brw  Hol Sim  Brw Sim 

Milk Yield 0.40 0.20 0.78  0.40 0.24 0.39  0.45 0.33  0.54 0.53  0.18 0.66 

Fat Yield 0.49 0.38 0.67  0.47 0.19 0.42  0.50 0.20  0.49 0.45  0.32 0.60 

Protein Yield 0.38 0.21 0.71  0.36 0.17 0.42  0.39 0.23  0.45 0.50  0.13 0.61 

SNPBLUP SB  MB 

Validation2 Hol Brw Sim  Hol Brw Sim  Hol Brw  Hol Sim  Brw Sim 

Milk Yield 0.65 0.20 0.72  0.64 0.26 0.68  0.63 0.28  0.65 0.71  0.17 0.71 

Fat Yield 0.76 0.46 0.74  0.72 0.42 0.63  0.63 0.41  0.75 0.70  0.43 0.59 

Protein Yield 0.54 0.22 0.78  0.54 0.23 0.62  0.53 0.24  0.55 0.66  0.21 0.65 

1 HBS = Hol+Brw+Sim (n=2299); HB =Hol+Brw (n=1805); HS=Hol+Sim HS (n=1917); BS=Brw+Sim (n=873) 644 

2 Hol=Holstein (n=634) ; Brw=Brown Swiss (n=141), Sim=Simmental (n=171)  645 

 646 

 647 
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Table 7.  Average Genomic Selection accuracy1 across yield traits as function of the size of the reference population. Data for DGV 648 

accuracy for milk, protein and fat yield were averaged from recent literature on multi-breed Genomic Selection. 649 

     VALIDATION  

TYPE BREED2 TRAINING3  N4  DK SWE FIN ALL REFERENCE5 

SingleBreed NRC DK 778  0.47 0.10 0.13  Brondum et al., (2011) 

   SWE 1395  0.12 0.35 0.42  

  FIN 1562  0.10 0.38 0.45  

MutliBreed  SWE+FIN 2957   0.47 0.55 0.52 

  DK+SWE+FIN 3735  0.49 0.50 0.49 0.53 

  SWE+FAY+OTH 3300     0.58 Makgahlela et al. (2012) 

  SWE+FAY+OTH 3300     0.60 

     VALIDATION  

     BRW HOL JER SIM  

SingleBreed BRW IT BRW 493  0.20    ¶ 

  US BRW 506  0.32    Olson et al., (2012) 

 HOL AU HOL 755   0.43   Pryce et al., (2011) 

  AU HOL* 781   0.51   Hayes et al., (2009b) 

  IT HOL 1424   0.39   ¶ 

  US HOL 5331   0.70   Olson et al., (2012) 
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 JER AU JER 243    0.52  Hayes et al., (2009b) 

  US JER 1361    0.71  Olson et al., (2012) 

 SIM IT SIM 380     0.36 ¶ 

  GER SIM  1247     0.41 Pryce et al., (2011) 

MutliBreed  IT BRW+IT SIM 873  0.16    ¶ 

  IT HOL+IT BRW 1917  0.23 0.42   ¶ 

  IT HOL+IT BRW+IT SIM 2299  0.20 0.43  0.36 ¶ 

  US HOL+US JER+US BRW 7198  0.36 0.69 0.70  Olson et al., (2012) 

  AU HOL+AU JER 1024   0.51 0.50  Hayes et al., (2009b) 

  AU HOL+AU JER* 1141   0.41   Pryce et al., (2011) 

  IT HOL+IT SIM 1805   0.43  0.36 ¶ 

  AU HOL+GER SIM 2002   0.41  0.31 Pryce et al., (2011) 

  AU HOL+GER SIM+AU_JER 2388   0.42  0.31 Pryce et al., (2011) 

  FR HOL+NOR+MON 4896   0.64  0.52 Karoui et al., (2012) 

1 DGV accuracy were expressed as simple correlation. Squared correlation from literature were converted using the square root of the published accuracy values. 650 
2 NRC Nordic red Cattle, BRW Brown Swiss, HOL Holstein, JER Jersey, SIM Simmental or Fleckvieh 651 
3 Reference populations used in within or across breed genomic prediction. Danish (DK), Finnish (FIN) and Swedish Red (SWE) dairy cattle, Finnish Ayrshire 652 
(FAY), other breeds (OTH). AUSTRALIAN DAIRY: Australian Holstein (AU HOL), Australian Jersey (AU JER) Austrian & German Fleckvieh (GER SIM). 653 
FRENCH DAIRY: French Holstein (FR HOL), Monbeliarde (MON), Normande (NOR). US DAIRY: US Holstein (US HOL), US Jersey (US JER) and Brown Swiss 654 
(US BRW). ITALIAN DAIRY: Italian Holstein (IT HOL), Italian Simmental (IT SIM), Italian Brown Swiss (IT BRW). 655 
4 Number of animals of  different reference populations used in within or across breed genomic prediction. 656 
5 References of the corresponding figures. ¶ refers to the results presented in the current papers applying PC Multibreed approach. 657 
 658 
 659 
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 660 
 661 

 662 
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Figure Captions 663 

Figure 1. Pattern of eigenvalues as function of number of PC extracted: each line 664 

represents the eigenvalues on logarithmic scale for each of the 29 chromosome analyzed 665 

for Holstein (a), Brown (b),  Simmental (c) and their combination (d).  666 

Figure 2. Plot of the individual scores that animals belonging to different breeds obtained 667 

on first three Principal Components (PC). (Variance explained by PC1=5.1%, PC2=2%, 668 

PC3=1.6%).   669 

Figure 3. Pattern of Linkage Disequilibrium (LD) within 1,000 kbp of distance among all 670 

pairs of marker for Holstein (Hol), Brown Swiss (Brw) and Simmental (Sim), values 671 

reported are the average r2 across 29 chromosome.  672 

Figure 4. Boxplots of PC or SNP effect estimates for fat yield in BTA14 in single breed 673 

(Hol, Sim, Brw) or Multiple Breed reference population (HBS, HB, HS and BS).  674 

 675 
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Figure 1 677 
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Figure 2 679 
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 680 

Figure 3 681 
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 683 

Figure 4 684 


