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ABSTRACT 18 

In the current study, principal component (PC) analysis was used to reduce the number of 19 

predictors in the estimation of direct genomic breeding values (DGV) for meat traits in a sample of 20 

479 Italian Simmental bulls. SNP marker genotypes were determined with the 54K Illumina 21 

beadchip. After edits, 457 bulls and 40,179 SNPs were retained. PC extraction was carried out 22 

separately for each chromosome and 2,466 new variables able to explain 70% of total variance were 23 

obtained. Bulls were divided into reference and validation population. Three scenarios of the ratio 24 

reference:validation were tested: 70:30, 80:20, 90:10. Effect of PC scores on polygenic EBVs was 25 

estimated in the reference population using different models and methods. Traits analyzed were 26 

daily live weight gain, size score, muscularity score, feet and legs score, beef index (economic 27 

index), calving ease direct effect, and cow muscularity. Accuracy was calculated as correlation 28 

between DGV and polygenic EBV in the validation bulls. Muscularity, feet and legs, and the beef 29 

index showed the highest accuracies calving ease the lowest. In general, accuracies were slightly 30 

higher when reference animals were selected at random and the best scenario was 90:10 and no 31 

substantial differences in accuracy were found among different methods. Accuracies of direct 32 

genomic values were higher than those of traditional PA. Results of the present study suggest 33 

possible advantages of the use of genomic index in the pre-selection of performance test candidates 34 

for beef traits. 35 

 36 

Key Words: cattle, genomic selection, beef traits, principal component analysis  37 

  38 
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INTRODUCTION 39 

In the last years, the development of high density SNP platforms has had a relevant impact 40 

on genetics and breeding research programs for many livestock species. Genotypes of thousands of 41 

marker loci are currently used in dairy cattle to search for genomic regions associated with yield 42 

and functional traits (Raadsma, et al., 2009; Bolormaa et al., 2010a; Cole et al., 2009) and for 43 

predicting genomic enhanced breeding values (GEBV) in genomic selection (GS) schemes. For 44 

beef cattle, most of studies have dealt with genome-wide scans for associations between SNP and 45 

beef traits such as residual feed intake, average daily gain, hip height, and carcass traits (Bolormaa 46 

et al., 2011b, Bolormaa et al., 2011c) or to detect signature of selection able to discriminate between 47 

beef and dairy cattle (Hayes et al., 2009a). Until now, less pressure has been put on the 48 

implementation of GS programs, even though this technology may represent a valuable option also 49 

for beef cattle, allowing to increase breeding value accuracy and to enlarge breeding goals by 50 

including traits that are difficult or expensive to measure routinely. 51 

Possible constraints to the application of GS in beef cattle are the limited number of 52 

genotyped animals (Garrick, 2011) due to the limited size of male population, and the genotyping 53 

costs. The latter issue can be partially addressed by developing a low density SNP chip specific for 54 

beef breeds (Rolf et al., 2010), and imputing the 54k chip (Weigel et al., 2010, Berry and Kearney, 55 

2011, VanRaden, 2011). An approach to deal with the disproportion between the limited sample 56 

size and SNP number, relevant also for GS programmes in dairy cattle, may be represented by the 57 

use of strategies able to reduce predictor dimensionality. Principal component analysis (PCA) and 58 

partial least squares regression have been suggested for reducing the number of predictors in DGV 59 

calculations both for simulated and actual data (Long et al., 2011; Moser et al., 2009; Solberg et al., 60 

2009). In particular, PCA allows for a considerable reduction (>90%) of the number of independent 61 
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variables in DGV estimation with accuracies similar to those obtained using directly all SNP 62 

genotypes available in simulated and real data (Macciotta et al., 2010a; Solberg et al., 2009; Long et 63 

al., 2011). 64 

Aim of this work was to calculate DGV for beef traits in the dual purpose Italian Simmental 65 

cattle breed. A reduced set of predictors based on linear combinations of SNP genotyped on 66 

Illumina platform was obtained by PCA. Moreover, this method was compared with two other 67 

approaches commonly used to predict DGV in genomic selection programmes that use directly SNP 68 

genotypes as predictors. 69 

 70 

MATERIALS AND METHODS 71 

Data  72 

A total of 465 Italian Simmental bulls were genotyped at 54,001 SNP loci using the Illumina 73 

Bovine SNP50TM bead-chip (Illumina, San Diego, CA). Animals with more than 1,000 missing 74 

genotypes and with inconsistencies in the mendelian inheritance were excluded from the analysis. 75 

SNP selection was more conservative and edits were based on the number of missing records (< 76 

0.025), mendelian inheritance conflicts, absence of heterozygous individuals, minor allele 77 

frequency (> 0.05), deviance from Hardy-Weimberg equilibrium (P < 0.01) (Wiggans et al., 2009). 78 

After editing, 8 animals (2 for mendelian inheritance conflicts, 6 for missing genotypes) and 13,822 79 

SNP (21 SNP for mendelian inheritance conflict, 999 SNP with missing exceeding the threshold, 80 

12,215 SNP with MAF≤ 0.05 and 587 not in HW equilibrium) were discarded. Final number of 81 

bulls and SNP used were 457 and 40,179 respectively. Missing genotypes were replaced with the 82 

most frequent allele at that specific locus. 83 
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Phenotypes used were polygenic EBV provided by Italian Simmental association 84 

(evaluation of December 2009). Seven traits were considered: average daily weight gain (ADWG, 85 

kg/d), size score (SS), muscularity score (MS), feet and legs score (FLS), beef index (BI = 86 

0.40*ADWG + 0.10*SS + 0.40*MS + 0.10*FLS), calving ease direct effect (CED), cow 87 

muscularity score(CWM). Table 1 reports EBV average value and reliability. EBV for CED and 88 

CWM were derived from progeny test whereas the other traits were measured on performance test. 89 

The scale of EBV analyzed were equivalent for different traits (standardized with mean 100 and 90 

genetic standard deviation 12).  91 

Animals were sorted by year of birth (range 1972-2002) and the whole dataset was split into 92 

two subsets, reference (REF) and validation (VAL), containing the oldest and youngest animals, 93 

respectively. Different sizes of REF population were tested. Bulls born before 1999, 2000 or 2001 94 

were included in the REF population (Figure 1), corresponding to the ratios REF/VAL of 70:30, 95 

80:20 and 90:10 respectively. 96 

 97 

Statistical model 98 

PC-BLUP (BLUP on Principal Components). Data matrix Mnxm of marker genotypes was set up (n 99 

= total number of individuals, m = number of marker genotypes). Each element mij corresponded to 100 

the genotype at the j-th marker for the i-th individual. Genotypes were coded as -1, 0 or 1, where -1 101 

and 1 are the two homozygotes and 0 the heterozygote, respectively (Solberg et al., 2009). PC 102 

extraction was carried out separately for each chromosome The number of PCs retained was based 103 

on the percentage of variance explained (Macciotta et al., 2010a). Scores of the selected PC were 104 

calculated for all individuals. The estimation of effects of the PC on the REF data set was carried 105 

out using a BLUP model. 106 



7 
 
 

 

iris-AperTO 

University of Turin’s Institutional Research Information System and Open Access Institutional Repository 

]1[eZg1y ++=   107 

where y is the vector of polygenic EBVs, 1 is a vector of ones, µ is the overall mean, Z is the matrix 108 

of PC scores, g is the vector of PC regression coefficients treated as random, and e is the vector of 109 

random residuals. Random PC effects (g) were assumed identically and normally distributed with gi 110 

~ N(0, Igi
) where gi

=a
2/k (a

2 = additive genetic variance, k=number of PC retained). Random 111 

residuals were assumed normally distributed with ei ~ N(0, Ie
). Variance components were 112 

supplied by breed associations. BLUP mixed model equations were solved by using Gauss-Seidel 113 

iterative method. 114 

PC-BLUP_EIGEN. It is the same method as above, but the (Co)variance matrices of random PC 115 

effects (G) and residuals (R) were modeled as diagonal I
giλj and Ie

2 respectively. In particular, 116 

the contribution of each j-th principal component to the genetic variance was assumed to be 117 

proportional to its corresponding eigenvalue (λi) gi
2 = (a

2/k)*j (Macciotta et al., 2010a).  118 

To evaluate the effect of the reduction of predictor dimensionality on genomic predictions 119 

DGV were calculated also with other two approaches that directly uses all markers available (R-120 

BLUP and BAYES A), but with different theoretical assumptions on the distribution of marker 121 

effects. Hereafter, these are named “full models”. 122 

R-BLUP. In this model, marker effects were estimated using the same structure of model [1]. In this 123 

case, Z is the design matrix of SNP genotypes – coded as 0,1 and 2 according to the number of 124 

copies of the second allele. Marker effects were assumed to be sampled from the same normal 125 

distribution. (Co)variance matrix of SNP effects (G) was modelled as diagonal Igi
 , where gi

 = 126 

a
n, with n equal to the number of  SNP. Mixed model equations were solved using a Gauss-127 

Seidel iterative algorithm until convergence. 128 
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BAYES A. A Bayes A model (BAYES A) that allows for variance to differ across chromosome 129 

segments (Meuwissen et al., 2001) was fitted: 130 

]2[eWuZg1y +++=   131 

where W is the incidence matrix that allocate the animal with their phenotypic record and u is a 132 

vector of polygenic breeding values assumed to be normally distributed, with ui ~ N(0 ,Aa
) where 133 

A is the numerator relationship matrix and a
 is the additive genetic variance. The other symbols 134 

were the same as in model [1]. Prior structure and hyper-parameters were chosen according to 135 

Meuwissen et al., (2001). A scaled inverted chi-squared prior distribution was assumed for SNP 136 

specific variances, under the hypothesis that most of markers have nearly zero effects and only few 137 

have large effects. A total of 20,000 iterations were performed, discarding the first 10,000 as burn-138 

in and considering no thinning interval. A residual updating algorithm was implemented to reduce 139 

computational time (Legarra and Misztal, 2008). 140 

DGV estimation and accuracy assessment. The overall mean () and the vector (ĝ) of the PC 141 

scores (or marker effects in full models) estimated in the REF animals with the above described 142 

methods were used to calculate the DGV for VAL bulls as: 143 

gZy ˆˆ += 

 

 144 

where ŷ is the vector of DGV, Z is the matrix of PC scores (or marker genotypes in full models) for 145 

validation bulls.  146 

The accuracy of the genomic prediction in the validation set was evaluated through analysis of 147 

Pearson correlation between EBV and DGV. To evalue the difference between DGV and traditional 148 

polygenic evaluations, DGV accuracies were compared with correlations between EBV and Parent 149 

Average (PA) calculated for beef traits included in the BI. 150 
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Bias was assessed by examining regression coefficient of EBV on predicted DGV, and 95% 151 

confidence interval for b estimates was calculated. Mean squared error of prediction (MSEP) and its 152 

partition in different sources of variation related to systematic and random errors (Tedeschi, 2006) 153 

were used to evaluate the goodness of prediction. 154 

 155 

RESULTS 156 

Accuracy of genomic prediction 157 

The number of principal components to retain was assessed based on the pattern of DGV 158 

accuracies for increasing amounts of explained variance (Figure 2). A slight increase of DGV 159 

accuracy can be observed for larger proportions of explained variance, with a peak at 0.70 for some 160 

traits. This value, that corresponded to 2,466 extracted PC from the whole genome, was further used 161 

in the study. Actually it minimized the computational demand of DGV estimation without losing in 162 

accuracy. The distribution of extracted PC basically was proportional to the number of markers 163 

present in the chromosome (Figure 3). 164 

Table 2 reports the Pearson correlation coefficients between DGV and polygenic EBV 165 

across four different estimation methods and for different REF:VAL ratios. Accuracies were 166 

moderate to high except for CED, which showed lowest values (on average 0.24) across all 167 

different validation sets and estimation methods. In particular, highest accuracies were obtained for 168 

traits related to muscularity: average rEBV, DGV across estimation methods were 0.82, 0.73, 0.76 and 169 

0.66 and for CWM, MS, FLS BI, respectively. ADWG and SS showed moderate values (0.45 and 170 

0.51, respectively). Values for ADWG are higher than those reported by Rolf et al. (2010) for 171 

Angus cattle. Accuracies found for SS were similar to those for stature reported by Olson et al. 172 

(2011) in Brown Swiss using BAYES B. Liu et al. (2011) reported a values of 0.71 in German 173 
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Holstein. Values for CED were close to those reported for Piedmontese (Ajmone-Marsan et al., 174 

2010) and Brown Swiss (Olson et al., 2011). Higher values were reported for Angus bulls (Garrick, 175 

2011; Saatchi et al., 2011) but with population sizes greater than 2,000 bulls. 176 

In general, DGV accuracy tended to increase for larger REF:VAL ratios in almost all traits. 177 

Best values were obtained with a ratio 90:10 (Table 2). A slight effect of the estimation method 178 

could be observed, even though without a clear pattern. R-BLUP performed best for ADWG 179 

(accuracy of 0.49 averaged across REF:VAL ratios) compared to the other methods. A similar 180 

pattern can be observed for BI, due to the relevance of ADWG in its composition. The two methods 181 

that used all the markers available showed better average accuracies than the PC based approaches 182 

for size score (average values of 0.54 vs 0.48 respectively). No substantial differences can be 183 

observed for the other traits. The use of eigenvalues of SNP covariance matrix as prior variance did 184 

not result in higher DGV accuracy, except for CED. For this trait, accuracy ranged from 4% to 10% 185 

passing from REF:VAL 70:30 to 90:10. In general, for the other traits the PC-BLUP_EIGEN 186 

performed the same or slightly worse than PC-BLUP (the maximum difference between the two 187 

methods was 7%). 188 

Accuracies obtained with methods that used simultaneously all markers as predictors were 189 

substantially equivalent. Basically, slightly higher accuracies were found using BAYES A with a 190 

maximum difference of 6%. DGV accuracies were substantially higher than rPA,EBV for all traits 191 

(Table 2). On average the mean correlation across traits was 0.60 (PC-BLUP), 0.58 (PC-192 

BLUP_EIGEN), 0.60 (R-BLUP) and 0.61 (BAYES A), and these figures were higher than the 193 

average accuracy of PA (0.49). 194 

 195 

Bias and goodness of prediction assessment. 196 
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Regression coefficients between EBV and DGV were quite variable across methods (Figure 197 

4). In particular, PC-BLUP and PC-BLUP_EIGEN estimates showed the smallest regression 198 

coefficients, in most of cases lower than 1 (on average 0.82±0.27 and 0.89±0.28 respectively) 199 

(Figure 4). On the contrary, the methods that use SNP genotypes showed bEBV,DGV higher than 1 (on 200 

average 1.78±0.54 R-BLUP and 1.42±0.36 BAYES A) indicating that positive values of DGV 201 

underpredict EBV and vice versa for negative DGV values. The effect on prediction bias of CED 202 

was less defined compared to all other traits: regression slopes tended to be closer to one only for 203 

the full models, whereas they became worse for the PC based approaches. Furthermore, Figure 4 204 

shows the lowest variability of the regression coefficients of PC based approaches across different 205 

traits in all REF:VAL ratios. Moreover, the PC-based estimates were less inflated than SNP based 206 

estimates, in particular PC-BLUP-EIGEN performed slightly better than PC-BLUP, especially 207 

when the reference population was larger (REF:VAL 90:10). 208 

Table 3 reports the mean squared error of prediction of DGV and its decomposition for all 209 

traits and estimation methods. MSEP did not show large variation among traits excepted for MS 210 

(average of 60.8) that experienced the lower figure and BI with the highest MSEP (average of 32.7). 211 

Within traits, MSEP of DGV obtained using PC as predictors were on average higher than those 212 

calculated with SNP. Exceptions were observed for SS, FLS and CWM. PC-BLUP_EIGEN showed 213 

MSEP always lower than PC_BLUP except for CWM. In any case, MSEP differences among 214 

methods were rather small. On the other hand, larger differences in the MSEP decomposition can be 215 

highlighted. In general, mean bias was not very high (highest average value, 0.33, was found for 216 

ADWG) and for some traits it was close to zero. The systematic bias was very low for all traits 217 

being the maximum obtained for CWM (27% and 23% of the MSEP for BLUP and BAYES A 218 

respectively). A large incidence of random errors can be observed among traits with values ranging 219 



12 
 
 

 

iris-AperTO 

University of Turin’s Institutional Research Information System and Open Access Institutional Repository 

from 60% (ADGW) to 98% (CED). Methods that use PC as predictors showed the lowest incidence 220 

of components related to prediction bias, as inequality of variance, and the highest for sources of 221 

random variation as incomplete co-variation. 222 

 223 

DISCUSSION 224 

In this paper, principal component analysis was used for reducing predictor dimensionality 225 

and computational demand in calculating DGV for beef traits. The number of PC retained was 226 

about 6% of the number of original variables. The magnitude of such a reduction was similar to the 227 

one reported for US Holsteins by Long et al. (2011). The dimension of about 2,500 predictor is 228 

quite recurrent in studies aimed at simplifying the predictor space in genomic selection application. 229 

For example, Rolf et al. (2010) indicated a minimum threshold of 2,500 SNP markers for estimating 230 

a reliable genomic relationship matrix in cattle population.  231 

In general, DGV accuracies here obtained were moderate to high. Results on DGV accuracy 232 

in literature are scarce and mainly related to feed efficiency and body weight. However, the 233 

magnitude of correlations are in agreement with previous reports obtained on Angus (Garrick et al., 234 

2010; Rolf et al., 2010; Saatchi et al., 2011). An exception is represented by direct calving ease 235 

which was much smaller in the present study if compared to aforementioned researches. It is rather 236 

hard to relate DGV accuracy to some genetic features of the traits, i.e. h2. However, best values 237 

have been obtained for variables related to muscular development and to the robustness of legs. 238 

Intermediate are those related to the size and weight of the animals. In any case, DGV accuracies 239 

were higher than those of traditional parent averages, thus evidencing the superiority of the GS over 240 

traditional evaluations.  241 
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Other possible interpretation of the presented DGV accuracy may be the effects of the 242 

relatedness between reference and validation bulls which affects the accuracy as shown by Habier et 243 

al. (2010) that split the observed accuracy into two component, one related to LD and the other due 244 

to the relatedness of bulls in training and prediction population. Being 69 the number of sire-son 245 

pairs a possible effect of the relatedness might be envisaged. A high number of phenotypic records 246 

are needed to achieve reasonable accuracy as to overcome the curse of dimensionality and GS 247 

implementation. 248 

Among the factors that affected DGV accuracies, size of REF population and heritability of 249 

the traits were the most important. The increase of the size of the reference population has been 250 

widely reported to improve the accuracy of genomic prediction (Meuwissen et al., 2001; Liu et al. 251 

2011). Also in the present study, for larger sizes of REF population a moderate increase of rEBV,DGV 252 

was observed. In general, the lower the heritability the larger the references population needs to be 253 

(Hayes et al., 2009b). Simulation studies showed how the heritability of the trait affects positively 254 

the estimation accuracy (Calus and Veerkamp, 2007; Kolbehdari et al., 2007) as confirmed also by 255 

theoretical expectations (Daetwyler et al., 2008). The combination of low heritability and reduced 256 

population size may be able to explain the results presented here on CED accuracy. 257 

In general, no large differences in DGV accuracies were found between estimation methods 258 

(on average 0.03, range 0.02-0.10). Methods used in this research basically differed in two aspects. 259 

The first is the kind of predictors, i.e. SNP or PC scores. Results here obtained confirm the 260 

substantial equivalence between the two approaches, already observed on simulated (Macciotta et 261 

al., 2010a; Solberg et al., 2009) and real data for milk traits (Long et al., 2011; Macciotta et al., 262 

2010b). The second point deals with the distribution of predictor effects. Two methods, PC-BLUP 263 

and R-BLUP, assume an equal contribution of each predictor (SNP or PC score) on the variance of 264 
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the trait whereas the BAYES A and PC-BLUP_EIGEN relies on a heterogeneity of variance across 265 

predictor effects. Early results on simulated data have highlighted the net superiority of the BAYES 266 

method over the BLUP approach, confirming the suitability of the finite locus model. However, 267 

also in the present work the two approaches yielded the same results, in agreement with reports on 268 

real data for dairy cattle (VanRaden et al., 20009). 269 

On the other hand, difference between the kind of predictors was evident in the evaluation of 270 

prediction bias. PC based approaches were characterized by the lowest variability of bEBV,DGV 271 

within traits and by the predominance of the random components in the composition of the MSEP. 272 

These results are probably due to the orthogonality of PC scores that prevent problems of 273 

mullticollinearity between predictors. Apart from the relevant impact on calculation time (about 2 274 

minute for PC-BLUP with 2.33 GHz Quad core processor and 4 Gb RAM; 3-8 hours for the R-275 

BLUP 4x4 with Quad core processors and 128 Gb RAM; 3 hours for BAYES A using 3.2 GHz 276 

processor  8GB RAM), the PCA approach carried out by chromosome was effective also in reducing 277 

the gap between predictors and observations, which is a cause of bias for the application of 278 

multivariate techniques on non positive definite correlation matrices (Dimauro et al., 2011). 279 

Furthermore, PC-BLUP approach is a trait independent methods as the reduced set of variable may 280 

be used for different set of phenotypic measures.  281 

 282 

CONCLUSIONS 283 

Direct genomic values accuracies for some beef traits in the dual purpose Italian Simmental 284 

cattle breed exhibited high to moderate values. DGV accuracies were higher than those of  PA. 285 

These figures may open interesting perspectives for the implementation of GS in this breed not only 286 
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for dairy but also for beef traits. The early availability of DGV with high or moderate accuracies 287 

may allow for a better selection of young bulls entering performance test. 288 

The reduction of predictor dimensionality by using principal component had a relevant 289 

impact in reducing computational time without reduction in accuracies. Difference in assumptions 290 

of predictor effect distribution does not seem to affect DGV accuracies 291 
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Table 1. Heritability of average daily weight gain (ADWG), feet and leg score (FLS), Calving Ease 382 

direct (CED), Beef Index (BI), Muscularity Score (MS), Size Score (SS) and Cow Muscularity 383 

(CWM). Mean and standard deviation of EBV used as phenotypes and their average reliability  384 

Trait h2 Mean EBVa ± SD Mean Reliability ± SD 

ADWGb 0.35 104.08 ± 6.57 0.43 ± 0.12 

SSb 0.32 103.07 ± 6.45 0.43 ± 0.12 

MSb 0.61 106.45 ± 9.17 0.60 ± 0.16 

FLSb 0.25 104.72 ± 7.31 0.42 ± 0.12 

BIc - 104.99 ± 6.29 0.43 ± 0.12 

CEDd 0.05  99.13 ± 6.98 0.59 ± 0.17 

CWMd 0.36 100.76 ± 9.10 0.71 ± 0.21 
 385 

a) all traits are reported as standardized breeding values with mean 100 and genetic standard deviation 12 386 
b) EBV estimated in performance test 387 
c) Aggregate index of ADWG, SS, MS and FLS 388 
d) EBV estimated in progeny test 389 

  390 
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Table 2. Correlation coefficient between DGV on EBV of average daily weight gain (ADWG), feet 391 

and leg score (FLS), Calving Ease direct (CED), Beef Index (BI), Muscularity Score (MS), Size 392 

Score (SS) and Cow Muscularity (CWM) for three estimation methods tested and 3 composition 393 

ratios of reference/validation set. 394 

 395 

 396 

Trait1 PC-BLUP PC-BLUP_EIGEN R-BLUP BAYES A rPA-EBV 

 REF:VAL 70:30 

ADWG 0.39 0.39 0.43 0.41 0.24 

SS 0.43 0.44 0.49 0.50 0.19 

MS 0.73 0.67 0.73 0.73 0.72 

FLS 0.72 0.73 0.70 0.72 0.61 

BI 0.63 0.59 0.67 0.67 0.64 

CED 0.23 0.27 0.18 0.23 - 

CWM 0.80 0.73 0.80 0.81 - 

 REF:VAL 80:20 

ADWG 0.36 0.35 0.45 0.39 0.23 

SS 0.47 0.47 0.53 0.53 0.08 

MS 0.67 0.64 0.70 0.72 0.71 

FLS 0.74 0.70 0.74 0.76 0.63 

BI 0.57 0.54 0.66 0.64 0.64 

CED 0.23 0.27 0.20 0.20 - 

CWM 0.85 0.84 0.83 0.85 - 

 REF:VAL 90:10 

ADWG 0.53 0.51 0.58 0.54 0.24 

SS 0.53 0.53 0.61 0.60 0.21 

MS 0.81 0.79 0.78 0.81 0.71 

FLS 0.85 0.84 0.79 0.83 0.60 

BI 0.74 0.71 0.75 0.76 0.64 

CED 0.24 0.34 0.22 0.27 - 

CWM 0.83 0.81 0.81 0.83 - 
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Table 3. Mean squared error of prediction (MSEP) of DGV and its decomposition for beef traits in 397 

the validation bulls using different estimation method. 398 

 MSEP1 RMSEP MB UV IC SB RE 

Methods   ADWG     

PC-BLUP 44.68 6.68 0.33 0.05 0.63 0.08 0.60 

PC-BLUP_EIGEN 41.04 6.41 0.30 0.08 0.63 0.06 0.65 

BLUP 38.79 6.23 0.33 0.39 0.28 0.01 0.66 

BAYES A 41.14 6.41 0.37 0.26 0.38 0.00 0.64 
   SS     

PC-BLUP 43.71 6.61 0.09 0.21 0.71 0.02 0.90 

PC-BLUP_EIGEN 42.42 6.51 0.08 0.27 0.66 0.01 0.92 

BLUP 44.92 6.70 0.08 0.72 0.20 0.10 0.82 

BAYES A 42.93 6.55 0.11 0.57 0.33 0.05 0.85 
   MS     

PC-BLUP 63.15 7.95 0.23 0.17 0.61 0.00 0.77 

PC-BLUP_EIGEN 61.84 7.86 0.10 0.28 0.63 0.01 0.90 

BLUP 59.66 7.72 0.06 0.57 0.38 0.17 0.79 

BAYES A 58.70 7.66 0.10 0.47 0.44 0.11 0.79 
   FLS     

PC-BLUP 40.01 6.33 0.33 0.11 0.56 0.00 0.67 

PC-BLUP_EIGEN 34.50 5.87 0.22 0.25 0.54 0.03 0.76 

BLUP 39.73 6.30 0.18 0.46 0.37 0.11 0.72 

BAYES A 40.75 6.38 0.27 0.35 0.39 0.07 0.67 
   BI     

PC-BLUP 36.25 6.02 0.36 0.08 0.56 0.01 0.64 

PC-BLUP_EIGEN 32.76 5.72 0.25 0.15 0.61 0.00 0.75 

BLUP 29.93 5.47 0.23 0.42 0.35 0.08 0.70 

BAYES A 31.86 5.64 0.31 0.28 0.41 0.03 0.66 
   CED     

PC-BLUP 49.13 7.01 0.02 0.14 0.85 0.13 0.86 

PC-BLUP_EIGEN 46.54 6.82 0.02 0.17 0.82 0.09 0.89 

BLUP 44.79 6.69 0.04 0.69 0.28 0.00 0.97 

BAYES A 43.44 6.59 0.03 0.55 0.43 0.00 0.98 
   CWM     

PC-BLUP 42.02 6.48 0.01 0.23 0.77 0.02 0.98 

PC-BLUP_EIGEN 55.16 7.43 0.02 0.33 0.66 0.04 0.96 

BLUP 58.39 7.64 0.03 0.64 0.33 0.27 0.70 

BAYES A 51.04 7.14 0.01 0.59 0.41 0.23 0.77 

1) MB = Mean Bias; UV = Unequal variances; IC = Incomplete covariation; SB = Slope bias; RE = Random 399 
errors. Note that MB + UV+ IC= MB + SB + RE = 1 400 
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Figure 1 403 
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Figure 1 405 
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Figure 2. 408 
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Figure 3. 411 
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 413 

 414 

 415 

Open circle = values of regression coefficient (b) out of the 95% CI including b=1 (p-value <0.001) 416 

Solid circle = values of regression coefficient (b) inside the 95% CI including b=1 (p-value <0.001) 417 

Figure 4.418 
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Figure 1. Distribution of bulls by birth’s year. 419 

Figure 2. Number markers and number of PC components retained by chromosome. 420 

Figura 3. Pattern of DGV correlation (rDGV,EBV) function of % of variance explained by the PC of 7 421 

meat traits (ADWG=average daily weight gain, FLS=Feet and leg score, CED=calving ease direct 422 

effect, MS=muscularity score, SS=Size Score, CWM=cow muscularity). 423 

Figura 4. Pattern of regression coefficient of EBV vs DGV (bEBV,DGV) of 7 meat traits 424 

(ADWG=average daily weight gain, FLS=Feet and leg score, CED=calving ease direct effect, 425 

MS=muscularity score, SS=Size Score, CWM=cow muscularity) both for estimation methods and 426 

different REF:VAL ratios. 427 

 428 


