

This is the author's final version of the contribution published as:

Cesarani, A; Sorbolini, S; Criscione, A; Bordonaro, S; Pulina, G; Battacone, G; Marletta, D; Gaspa, G; Macciotta Nicolò Pietro Paolo,

Genome-wide variability and selection signatures in Italian island cattle breeds,

ANIMAL GENETICS, 49: 371:383, 2018,

doi: 10.1111/age.12697

The publisher's version is available at:

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12697

When citing, please refer to the published version.

Link to this full text:

http://hdl.handle.net/2318/1686978

This full text was downloaded from iris-Aperto: https://iris.unito.it/

- 1 Genome-wide variability and selection signatures in Italian island cattle breeds
- 3 A. Cesarani*, S. Sorbolini*, A. Criscione†, S. Bordonaro†, G. Pulina*, G. Battacone*, D.
- 4 Marletta†, G. Gaspa*, N.P.P. Macciotta*
- * Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy
- 6 † Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania,
- 7 95131 Catania, Italy.
- 8 §Agenzia FORESTAS, Regione Autonoma della Sardegna, 09123 Cagliari, Italy

10 Summary

In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo-Bruna and Sardo-Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared in order to investigate their genetic diversity and the existence of selection signatures. A total of 43,012 SNPs scattered across all twenty-nine autosomal chromosomes were retained after the data quality control. Basic population statistics, Wright Fixation Index and Runs of Homozygosity (ROH) analyses confirmed that Italian Brown genome was mainly shaped by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within breed genetic heterogeneity. The F_{st} comparison with the largest number of significant SNPs was Sardo-Bruna *vs* Sardo-Modicana, whereas the smallest was observed for Italian Brown Swiss *vs* Sardo-Modicana, respectively. Modicana exhibited the largest number of detected ROH, whereas the smallest was observed for Sardo-Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for the Italian Brown Swiss and fitness traits for local breeds. According to the results of Multi-Dimensional scaling and admixture analysis the Sardo-Bruna is more similar to the Sarda rather than to the Italian Brown Swiss. Moreover, the Sardo-Modicana is genetically closer to

- the Modicana rather than to the Sarda breed. Results of the present work confirm the usefulness of
- 27 Single Nucleotide Polymorphisms in deciphering the genetic architecture of livestock breeds.
- 28 **Keywords**: indigenous breeds, selection signatures, inbreeding, admixture, biodiversity

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Introduction

The bovine domestication occurred presumably about 8-10 thousand years ago in southwest Asia (Zeder 2017). This process led to the zebuine and taurine breeds (Loftus et al. 1994; Upadhyay et al. 2016) derived both from the extinct wild aurochs (Bos primigenius) that spread in Europe and Africa in successive waves of migration. With domestication, cattle acquired a large variety of distinctive traits compared to their wild ancestors: for example, they became smaller in size and developed the capacity to adapt to various environments. During the Neolithic revolution, cattle accompanied human migrations and crosses between individuals of different ethnic groups generated a gene flow that changed the genetic makeup of their populations (Ajmone-Marsan et al. 2010). The continuously increasing demand for work, milk and meat has enhanced between population differences over the centuries. In particular, changes in the farming systems, intense implementation of artificial selection, crossbreeding, and widespread use of artificial insemination that occurred in the last decades resulted in a huge genetic improvement of few highly specialized cattle breeds. However, as a consequence the within breed genetic variability has been seriously constrained in these populations (Brotherstone and Goddard, 2005). Biodiversity has been drastically endangered, a relevant reduction in the number of farmed cattle breeds has been observed leading to the extinction of many local breeds. Indigenous populations, better suited to extensive farming but not very productive, have been often abandoned in favor of highly productive breeds (Scherf 2000; Medugorac et al. 2009). Concerns about climate changes, ethical issues, and evolution of consumer needs, including ecosystem services and landscape protection, are bringing towards sustainable livestock farming

systems. Such an evolving situation seems to offer new opportunities to indigenous breeds, because
of their strong linkage to the production area, large genetic variability, and great fitness. Local breeds,
are now considered as important reservoirs of resilience and biodiversity (Giovambattista et al. 2001).
Their genomes represent an ideal model for studying and understanding the evolutionary history of
livestock species, essential goal for evolutionary biology and population genetics. Moreover, local
breeds represent a source of income in marginal areas (Ruto et al. 2008) and a chance to answer to
the environmental changes (Medugorac et al. 2009). Their typical products support a sustainable
development of the rural environment and respond to new consumer demands for healthy foods.
In Italy there is a particular attention for biodiversity, due to the high number of native animal and
plant populations distributed throughout the whole country (Maiorano et al. 2007). Seventeen
indigenous cattle breeds have been officially recognized by the Italian Ministry of Agriculture. Of
particular interest is the situation of four cattle breeds farmed in extensive traditional systems in the
two main Italian Islands, Sicily and Sardinia. The Sarda (SAR) breed is present in the Island of
Sardinia since about 3,000 years BC. It originates from west Mediterranean cattle populations
(mainly from the Iberic peninsula) with influences from North African and Middle East breeds
(Della Maria 1936; Brandano et al. 1983a). At the end of the XIX century, crossbreeding with
Brown Swiss (BSW) bulls imported from Switzerland and Modicana (MOD) bulls imported from
Sicily were carried out in order to improve the aptitude of SAR to draught, milk and meat
production respectively. These crosses have led to the current Sardo-Bruna (SB) and Sardo-
Modicana (SM) breeds, respectively. The three Sardinian breeds have been officially recognized in
1985 with the establishment of the Herd book. The current population size, based on the number of
animals recorded in the Herd book, is 25,315 and 923 herds for the SAR, 2,822 and 150 herds for
the SM, and 33,662 and 1,426 herds for the SB respectively (www.aia.it).
The Modicana herdbook was established since 1952. Currently there are 5,209 animals recorded in
the herd book, farmed in 235 herds (www.aia.it). An early genetic characterization of these breeds

was carried out using morphologic measurements (Brandano *et al.*1983b), milk and blood protein polymorphisms (Brandano *et al.* 1983c). Recently SM and MOD were compared in a study on coat color genetic determinism using the *Melanocortin 1 receptor* gene (Guastella *et al.* 2011) and the distribution of Runs of Homozygosity (ROH) was studied in MOD by Mastrangelo *et al.* (2016). The SAR, MOD, and BSW can be considered as founder breeds and SB and SM are the derived ones. In this work, a comparison between the five breeds is carried out using a medium density (50K) SNP panel in order to investigate the genetic diversity and in particular to assess the extent of diversity between pure-breeds and derived crosses. Moreover, gene discovery was performed in the genomic regions that exhibited difference between breeds.

Materials and methods

Animals and genotypic data

A total of 88 animals of five different breeds were genotyped in outsourcing with the Illumina BovineSNP50 beadchip: 22 BSW, 27 MOD, 19 SAR, 10 SB, and 12 SM, respectively. Genomic DNA was obtained from blood samples for SB, MOD, SM, and from nasal swab for SAR, using the NucleoSpin DNA rapidLyse Kit (Macherey-Nagel) according to manufacturer's instructions. For BSW animals, genotype data were generated within the SELMOL research project using the Genomix kit (Talent, Trieste, Italy). Animals of local breeds were randomly sampled from different herds located in various areas of Sardinia and Sicily. Given the difficulty in gathering large samples in local breeds, criteria used in the present work to include animals in the analysis were absence of relatedness, distribution in the territory, morphological appearance and information based on farmer interviews.

Since BSW animals were genotyped using Illumina BovineSNP50 v1 BeadChip in contrast to the other genotypic data (Illumina BovineSNP50 v2), common markers were retained and remapped on the UMD 3.1 release of the Bovine genome assembly. Only autosomal SNPs were considered.

Quality control was performed with Plink 1.9 (Purcell et al. 2007). Animals with a call rate > 95% 101 102 were retained. SNP selection was based on call rate (>97.5%), minor allele frequency (MAF>0.05), and significant deviation for Hardy -Weimberg equilibrium (P<0.00001). After quality control, 103 43,012 common SNPs between the two Beadchip versions were retained. Missing genotypes were 104 105 imputed using Beagle 4 (Browning & Browning, 2016). 106 107 Heterozygosity, Minor allele frequency and Linkage Disequilibrium Heterozygote count (HET) and the minor allele frequency (MAF) were calculated for each SNP 108 separately by breed using Plink 1.9. Linkage disequilibrium (LD) between markers was calculated 109 110 within 1000 kb distance (McKay et al. 2007) using Haploview (Barrett et al. 2005). 111 Multi-dimensional scaling and admixture analysis 112 The Multi-Dimensional scaling plot (MDS) and admixture analysis were performed using the 113 Zanardi pipeline (Marras et al. 2016) and "ggplot2" R package (Wickham, 2009). In MDS analysis, 114 a principal component (PC) analysis is performed on the genomic correlation matrix **G** and PC 115 scores are calculated for each individual. In order to confirm the animal classification in five 116 117 different breeds, the K parameter of admixture was fixed at 5. 118 **Wright Fixation Index and LOWESS** 119 Ten pair-wise comparisons were performed using the Wright fixation index (F_{st}) calculated using 120 121 the equation proposed by Nei (1977): $F_{st} = (H_t - H_s) / H_t$ 122 where H_T is the observed total heterozygosity and H_S is the observed heterozygosity in each 123 population, respectively. For the F_{st} calculation, an in house Python script was used. In order to 124 simplify the graphic interpretation of raw F_{ST} data, a Locally Weighted Scatterplot Smoothing 125

(LOWESS) procedure was used (Pintus *et al.* 2014). The LOWESS is a local smoothing regression in which the space of the independent variable (in this case the progressive order of adjacent SNPs along the chromosome) is fragmented into different intervals for which separate regressions are fitted. The method is aimed at removing noise from raw data and at improving graphical representation. A smoothing parameter corresponding to an interval of 20 SNPs for each local regression was used.

A common problem when interpreting genetic difference metrics is the lack of proper statistical tests. Some authors have proposed to fix a threshold based on the F_{8t} distribution (Kijas *et* al. 2012; Pintus et al., 2014). Although the distribution of raw F_{8t} values tends to be skewed, LOWESS smoothed values could be considered approximately normally distributed. Thus, the significance threshold in the present work was set to three standard deviation from the mean. Such a stringent

Runs of homozygosity

threshold was adopted considering the limited sample size.

Runs of Homozygosity (ROH) were detected using the Zanardi pipeline. Some constraints were fixed in order to limit the number of spurious ROH segments (Marras *et al.* 2015): the minimum length of ROH was set at 1 Mb, homozygous segments of minimum fifteen SNPs were considered and neither heterozygous or missing genotypes were allowed. The following ROH statistics were calculated by animal and by breed: number of ROH, the average ROH length (in Mb) and the sum of all ROH segments by animal (S_{ROH} , in Mb). ROH were grouped into five classes of length ($1 < Mb \le 2$, $2 < Mb \le 4$, $4 < Mb \le 8$, $8 < Mb \le 16$ and Mb > 16).

The ROH-based inbreeding coefficient (F_{ROH}) for each animal was calculated as

$$F_{\text{\tiny ROH}} = \frac{\sum S_{\text{\tiny ROH(-8Mb)}}}{Lgen}$$

where L_{gen} is the total length of genome. The minimum length of ROH to be included in the calculation was fixed to 8 Mb based on previous reports in cattle (Marras *et al.* 2015). Moreover, the ROH count per SNP (SNP_{ROH}), i.e. the number of animals having a given SNP included in a ROH (Nothnagel *et al.* 2010) was calculated. A threshold of 50% was fixed to consider a SNP_{ROH} value as significant.

Gene discovery

Gene discovery was performed in regions flagged by F_{sr} values exceeding the control chart upper limit. Intervals spanning 0.25 Mb upstream and downstream the significant marker were considered. Moreover, regions identified by ROH distribution were studied. In particular, markers having $SNP_{ROH} > 50\%$ within a breed were considered as significant and the region spanning 0.25 Mb upstream and downstream surrounding them was investigated. Annotated genes were retrieved from UCSC Genome Browser Gateway (http://genome.ucsc.edu./) and National Centre for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov) databases.

Results

HET and MAF showed a little variation between the five considered breeds (Table 1). BSW showed smallest values of both HET and MAF, whereas MOD and SAR exhibited the largest values for these parameters, respectively. A clear distinction between the breeds could be observed along the first axis (PC1) of the MDS plot (Fig. 1). In particular the PC1, that explains about 5.4% of the total variance, depicts a geographic cline: starting from the bottom of the graph there are individuals from BSW (origin from the Switzerland, North of Italy), then SAR and SB (centre of Italy), and at the top SM and MOD (native of Sicily, Southern Italy). Furthermore, it could be seen that along this dimension, SM breed is more similar to MOD than SAR. The second axis (PC2), explaining about 3% of the total variance,

174	highlights a separation within the SAR breed. The PC2 seemed to be able to discriminate animals
175	according to the percentage of SAR genetic contribution: an increase in PC2 scores indicates the
176	passage from SAR purebred to crosses, and then to MOD and BSW breeds. Population structure
177	analysed by admixture (Fig. 2) revealed a clear definition of BSW animals (95% assigned to a
178	single cluster, the one of red colour), and less precise for MOD and SAR (90% and 93% assigned to
179	two different clusters, respectively). Finally, also the derived breeds were grouped into two distinct
180	clusters (70% of both SB and SM cattle). The LD pattern (Fig. 3) shows the lowest value for MOD,
181	the highest for BSW and SB, respectively.
182	The F _{st} comparison with the largest number of significant SNPs was SB vs SM, whereas the smallest
183	was observed for BSW vs SM (Table S1). Figure 4 reports Manhattan plots of $F_{s\tau}$ predicted by
184	LOWESS for the comparisons between pure breeds and crosses. It can be observed that the highest
185	$F_{\text{\tiny ST}}$ values between BSW and SB were found for BTA6 (Fig. 4a), with the top significant markers
186	(Table S2) located between 38.20 and 38.83 Mb. In this region map some known genes controlling
187	milk production traits (ABCG2, PKD2, SPP1, LAP3), and body size (NCAPG and LCORL) in cattle.
188	BTA8 and BTA13 showed the highest F_{st} peaks in the SAR vs SB comparison (Fig. 4b) with seven
189	and three significant markers respectively (Table S2). In the region highlighted on BTA8 is located
190	the microRNA2471 (MIR2471), whereas in the highlighted segment of BTA13 is annotated the
191	Eukaryotic translation initiation factor 6 (EIF6) gene.
192	SAR and SM were different mainly on BTAs 7, 14, and 21 (Fig. 4c and Table S2). An interesting
193	gene retrieved from the database was the Ubiquitin Protein Ligase E3A (UBE3A) that maps in the
194	region between 2.1 and 2.3 Mb of BTA21.
195	As far as the comparison between SM and MOD is concerned (Fig. 4d), the highest values
196	of F_{st} have been found on BTAs 5, 16 and 20 (Table S2). On BTA20 the region from 70.9 to 71.7

Mb presents a QTL associated with milk somatic cell score. Moreover, this segment contains

198	several annotated genes, among which of interest is the Solute Carrier Family 9 Member A3
199	(SLC9A3).
200	Finally, for the SM vs SB comparison the highest values of $F_{\mbox{\tiny ST}}$ have been detected on chromosomes
201	7 and 24 (Fig. 4e and Table S2). On BTA7, five significant markers define a region (47.2-47.3
202	Mbp) were the <i>Transcription Factor 7</i> (T-Cell Specific, HMG-Box) (<i>TCF7</i>) gene maps.
203	The total number of detected ROH (Table 2) exhibited a large variation between breeds, with MOD
204	and SM having the largest and the smallest value, respectively. The BSW had the largest average
205	ROH length, even if together with a huge variability as evidenced by the value of the standard
206	deviation (Table 2). This breed had also the highest average number of SNP per ROH (Table 2). On
207	the contrary MOD showed the smallest values of both statistics. As expected, most represented
208	ROH classes in all breeds were those of length <4Mb (relative frequency ranging from 0.736 in
209	BSW to 0.868 in MOD and SM, respectively). The largest number of ROH in the class of highest
210	length (>16 Mb) was observed in BSW, and it was markedly larger than in all the other considered
211	breeds (Table 2).
212	ROH count per SNP showed some interesting peaks along the genome. The highest peak was
213	observed on BTA6 for BSW at approximately 30-40Mb (Fig. 5a). In this region map several known
214	genes as ABCG2, SPP1, LCORL, NCAPG. BSW exhibited another signal between 10-30 Mb on
215	BTA20 (Fig. 5b). Moreover, BTA1, BTA10 and BTA11 showed interesting signals of SNPs in
216	homozygosity for over 50% of the animals. In particular, BSW showed a $SNP_{\mbox{\tiny ROH}}$ peak on BTA1
217	(Fig. 6a) between 103.5 and 105.5 Mb. On the same chromosome, a peak was detected for MOD at
218	139.0 Mb. On BTA10 an interesting homozygous region was observed in the SAR breed between
219	72.2 and 72.8 Mb (Fig. 6b). Among the genes that map in this region the <i>Dehydrogenase/Reductase</i>
220	7 (DHRS7) can be mentioned. Finally, the SB showed a relevant value of SNP _{ROH} on BTA11 (Fig.
221	6c) between 65.0 and 67.0 Mb where the Ewing Tumor Associated Antigen 1 (ETAA1) was
222	annotated.

BSW exhibited also the largest average $F_{\text{\tiny ROH}}$ (Table 3) whereas the smallest value was observed by SM.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

223

224

Discussion

The practice of crossbreeding has represented a major cause of gene flow across cattle populations, providing a relevant contribution to the shaping of worldwide current breeds. The history of the Sarda breed and its crosses with Modicana and Brown Swiss represents a typical example. Results of the present study confirm the genetic relationships between the considered breeds. The admixture analysis (Fig. 2) clearly detected the five different genetic groups, highlighting the genetic background of the crossbred derived population in comparison of the original purebreds. Furthermore, the analyses of the genome features with different approaches gave useful insights on effects of selection and environmental adaptation on the cattle genome. A first indication was provided by basic population statistics. The lower genetic variability exhibited by the BSW in comparison with the other two pure-breeds, SAR and MOD, was expected due to the intense artificial selection this breed has been subjected to in the last decades (www.anarb.it). A low allelic diversity for BSW cattle in comparison with other cattle breeds has been already reported (Schmid et al. 1999; Melka & Schenkel 2012). The genome feature analysis carried out using the MDS decomposition, and the ROH detection highlighted an interesting structure of the considered sample of animals. The North-South geographical gradient highlighted by the first axis of the MDS is in agreement with several studies where a dimension reduction method is applied to molecular data on populations from different geographical origin (Price 2006; Chessa et al. 2009; Ciani et al. 2014). Also, the variation of the ROH statistics and of the inbreeding coefficient F_{ROH} exhibited the same cline. In particular the average ROH length, the average number of SNP per ROH, and the F_{ROH} showed an increase moving from South to North. This gradient was also confirmed by the LD analysis (Fig. 3). Purfield et al.

(2012) found a higher number of ROH in cattle breeds of British Isles compared to other European
breeds and ascribed such a diversity to the closed population histories of these cattle. Results
obtained in the present study can be probably due to a low effective population size of BSW and to
the population history of the SAR, MOD, and their crosses. A geographical South-North gradient in
ROH feature distribution has been observed also in human populations (Nothnagel et al. 2010), and
it has been explained with the most pronounced genetic isolation of Northern populations compared
to Mediterraneans. The second axis of the MDS analysis highlights two clusters in the sample of
Sarda cattle (Fig. 1). Previous studies on this population highlighted a large morphological
heterogeneity (Brandano et al. 1984). Moreover, in the traditional extensive cattle farming system
of Sardinia it is not very common to exchange bulls between herds, resulting in a high average
relatedness of individuals within farm and a low degree of kinship among farms.
Different degree of genetic relationships between original and derived breeds have been observed.
The similarity between SM and MOD was quite expected (Fig. 1). Although the first importation of
MOD bulls from Sicily started at the end of the nineteenth century in the Montiferru area (Center-
North Sardinia), it probably occurred again in more recent times and therefore the genetic
component of Modicana purebred is still preserved into current SM. On the other hand, the
separation between SB and the two founder breeds, i.e. BSW and SAR (Fig. 1), seems to indicate an
absence of recent genetic exchange.
The genetic history of the breeds is also depicted by other structural elements of their genome, as
their linkage disequilibrium (Fig. 3) and the extent of regions of autozygosity (Fig. 5 and 6). The
intensive genetic selection of BSW in comparison with the other investigated breeds resulted in the
highest level of LD and in the largest values of all ROH statistics. These results agree with previous
reports on this breed (Ferenčaković et al. 2013; Marras et al. 2015). A previous study on MOD
breed reported a smaller value of F_{ROH} (Mastrangelo <i>et al.</i> 2016) but using different ROH settings
(i.e. minimum number of SNP in a ROH equal to 40, minimum ROH length 4Mb, two missing SNP

273	allowed in a ROH etc.). An interesting result is the distribution across individuals of specific ROHs,
274	i.e. a segment that starts and ends exactly in the same position. The largest ROH frequency was
275	about 0.06 (Table 4) and it can be seen that in general local breeds tend to share ROH whereas the
276	autozygous segment detected on BTA6 can be found only within the BSW breed. In particular, the
277	latter ROH flagged a region where several known genes affecting milk traits are located. These
278	results confirm the role of ROH as indicators not only of inbreeding but also of signatures of
279	selection (Marras et al. 2014; Kim et al. 2015).
280	Signatures of selection were highlighted in the present study. Some of them flagged genome regions
281	already detected in many studies on cattle. An example is represented by the markers exhibiting the
282	largest F _{sr} values in the BSW vs SB comparison, all located in the region of BTA6 spanning
283	between 36-39Mb that harbors some known genes controlling milk production traits (ABCG2,
284	PKD2, SPP1, LAP3) (Olsen et al. 2005; Cohen-Zinder et al. 2005) and body size (NCAPG and
285	LCORL) (Takasuga 2016) (Table S2). This region was also flagged by a significant value of ROH
286	count per SNP in BSW.
287	Other two well known selection signatures were detected in BSW on BTA6 (Fig. 5a) by SNP _{ROH}
288	significant values (>50%). The first was located at around 70 Mb, where the V-Kit Hardy-
289	Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) locus maps. This gene is involved in
290	mammalian coat colour determinism (Fontanesi et al. 2010; Stella et al. 2010). The second
291	signature of selection, at around 85 Mb, identified the caseins cluster (Blott et al. 2003). Another
292	interesting peak value of SNP _{ROH} was found on BTA20 (14-25 Mb) (Fig. 5b), in a region where a
293	large QTL associated with milk protein percentage was reported (Ashwell et al. 2004). Among the
294	several genes that map in this region, of interest is the Importin 11 (IPO11) locus. This gene has
295	been found to be associated with the displacement of the abomasum in German Holstein cattle
296	breed (Mömke et al. 2013).

Interestingly, the F_{sr} pairwise comparison between the SAR and t	he SB did not detect SNPs located
in genomic regions known to contain genes associated with milk	production traits. These results,
together with the pattern highlighted by the MDS, confirm that co	urrent SB is closer to SAR than to
BSW, probably due to backcrossing.	
Of interest are the signatures of selection found in the comparison	ns between local breeds. Some of
them include interesting genes that were found to be associated w	vith fitness traits. In the comparison
between the SAR and its derived SB, the seven highly significant	SNPs found on BTA8 between
40.4 and 40.6 Mbp (Fig. 4b) identified a region where maps the n	nicroRNA2471 (MIR2471). In
animals, microRNAs are molecules involved in diverse biologica	l processes such as development,
cell differentiation, proliferation and metabolism. They are amon	g major post-transcriptional
regulators of gene expression through promoting mRNA degrada	tion or translational repression
(Glazov et al. 2009; Guo et al. 2010; Meunier et al. 2013). Recer	ntly they have been found to be
essential for the regulation of the immune response (Xiao & Raje	wsky 2009). The highest peak of
$F_{\mbox{\tiny ST}}$ comparison between the SAR and the other derived breed, the	SM, was detected on BTA14 (Fig.
4c and Table S2) in a region where maps the gasdermin C (GSD)	MC) locus. This gene was
associated to UV-protective eye pigmentation in Fleckvieh cattle	e (Pusch et al. 2012). Another
peak was located on BTA21, between 2.1 and 2.3 Mb, where the	Ubiquitin Protein Ligase E3A
(UBE3A) gene is annotated. This locus has been associated with	the calving ease (Pausch et al.
2011; Meszaros et al. 2016) in cattle. This trait represents very of	ften a distinguishing feature in
indigenous breed that are mainly reared in extensive and semi-ex	tensive systems (Boggio et al.
1988).	
Other genes detected in the local breeds are related to milk produ	ction traits and fatty acid
metabolism. Among genetic differences found between SM and I	MOD, of interest is the region
located on BTA20, from 70.9 to 71.7 Mb. Among the annotated g	genes, is worth of mention the
Solute Carrier Family 9 Member A3 (SLC9A3), involved in the r	umen sodium transport (Rabbani et

al. 2011). A high Na²⁺ tissue concentration improves milk production in warm/humid conditions (Granzin & Gaughan 2002). Moreover, a QTL associated with milk somatic cell score was reported in this region (Durán Aguilar et al. 2016). The comparison between the two derived breeds, i.e., SB vs SM. found a selection signature defined by five significant markers (47.2-47.3 Mbp) on BTA7, where maps the *Transcription Factor 7 (T-Cell Specific, HMG-Box) (TCF7)* gene. Recently, this locus was associated with milk production in Chinese Holstein (Mao et al. 2015). An interesting candidate gene highlighted by SNP_{ROH} in the SAR breed on BTA10 is the Dehydrogenase/Reductase 7 (DHRS7) locus. It catalyses the oxidation/reduction of a wide range of substrates, including retinoid and steroids (Haeseleer & Palczewski 2000) and it has high expression levels in adipocytes and skeletal muscles (Wu et al. 2009). In addition, this gene is responsible for the final step in the cholesterol production (Porter 2000). This gene was already associated in Nellore cattle with the intramuscular fat deposition and composition (Cesar et al. 2014). Finally, another signature of selection that included a gene involved in fatty acid metabolism was found in the SAR vs SB comparison (three significant markers on BTA13 between 65.1 and 65.2 Mb) (Fig. 4b). This region harbours the Eukaryotic translation initiation factor 6 (EIF6) locus. This gene controls fatty acid synthesis and glycolysis in tissues responsive to insulin such as adipose and muscular.

339

340

341

342

343

344

345

346

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

Conclusion

Results of the present work confirm the usefulness of genome structural features in deciphering the genetic architecture of livestock breeds. The different approaches used to explore medium density SNP genotypes gave a comprehensive picture of genetic relationships between the three original and the two derived breeds, reflecting their recent genetic history. As expected, a larger heterogeneity was highlighted for the local breeds. Signatures of selection located in genomic regions harboring candidate genes for milk production traits have been detected in the comparisons involving the

347	specialized BSW breed, whereas for local breeds the flagged genes involved in fitness and fatty acid
348	metabolism. The study confirmed the importance of these populations as resevoir of biodiversity and
349	as models for studying the genetic basis of adaptability.
350	
351	
352	
353	Acknowledgments
354	This Research was funded by the Banco di Sardegna Foundation and by the Regional Government
355	of Sardinia (project grant 07/G1-20, POR-FSE 2007-13). The author wishes to thank Dr. Salvatore
356	Mele of Agenzia FORESTAS for his contribution to the animal sampling.
357	
358	References
359	Ajmone-Marsan P., Garcia J.F. & Lenstra J.A. (2010) On the origin of cattle: How aurochs became
360	cattle and colonized the world. Evolutionary Anthropology: Issues, News, and Reviews 19, 148-
361	157.
362	
363	Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassell C.P., Da Y., VanRaden P.M., Ron M.,
364	Weller J.I. & Lewin H.A. (2004) Detection of Quantitative Trait Loci Affecting Milk Production,
365	Health, and Reproductive Traits in Holstein Cattle. Journal of Dairy Science 87, 468–475.
366	
367	Barrett J.C., Fry B., Maller J. & Daly M.J. (2005) Haploview: analysis and visualization of LD and
368	haplotype maps. Bioinformatics 21 , 263–265.
369	
370	Blott S., Kim J.J., Moisio S., Schmidt-Küntzel A., Cornet A., Berzi P., Cambisano N., Ford C.,
371	Grisart B., Johnson D., Karim L., Simon P., Snell R., Spelman R., Wong J., Vikki J., Georges M.,
	iris-AperTO

372	Farnir F. & Coppleters W. (2003) Molecular dissection of a quantitative trait locus: a
373	phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone
374	receptor is associated with a major effect on milk yield and composition. Genetics 163, 253–266.
375	
376	Boggio F., Pracchi R. & Asole A. (1998) Atlante economico della Sardegna 1. Jaca Book, Edizioni
377	Universitarie Jaca, Italia.
378	
379	Borg I. & Groenen P. (2003) Modern multidimensional scaling: theory and applications. Journal of
380	Educational Measurement 40, 277-280.
381	
382	Brandano P., Asara P., Pulina G., Bolla P. & Crimella C. (1983a). The Sardinian cattle. 1.
383	Morphological and biological characters. Annals of the Faculty of Agriculture of the University of
384	Sassari 30 , 161-177.
385	
386	Brandano P., Asara P., Pulina G., Bolla P. & Crimella C. (1983b) The Sardo- Modicana cattle
387	Breed. 1. Annals of the Faculty of Agriculture of the University of Sassari 30, 197-214.
388	
389	Brandano P., Pulina G. & Asara P. (1983c) The indigenous cattle of Sardinia. Breeds and herds
390	characteristics. Annals of the Faculty of Agriculture of the University of Sassari 30, 1-23.
391	
392	Brotherstone S., & Goddard M. (2005). Artificial selection and maintenance of genetic variance in
393	the global dairy cow population. Philos Trans R Soc Lond B Biol Sci. 360: 1479–1488.
394	
395	Browning B.L. & Browning S.R. (2016) Genotype imputation with millions of reference samples.
396	The American Journal of Human Genetics 98 , 116-126.

421	Ferencakovic M., Hamzic E., Gredier B., Solberg T.R., Klemetsdal G., Curik I., & Solkner J.
422	(2013) Estimates of autozygosity derived from runs of homozygosity: empirical evidence from
423	selected cattle populations. Journal of Animal Breeding and Genetics 130, 286–293.
424	
425	Fontanesi L., Scotti E. & Russo V. (2010) Analysis of SNPs in the KIT Gene of Cattle with
426	Different Coat Colour Patterns and Perspectives to Use These Markers for Breed Traceability and
427	Authentication of Beef and Dairy Products. Italian Journal of Animal Science 9, e42.
428	Giovambattista G., Ripoli M. V., Peral-Garcia P. & Bouzat J. L. (2001) Indigenous domestic breeds
429	as reservoirs of genetic diversity: the Argentinean Creole cattle. Animal Genetics 32, 240–247.
430	
431	Glazov E.A., Kongsuwan K., Assavalapsakul W., Horwood P.F., Mitter N. & Mahony, T.J. (2009)
432	Repertoire of Bovine miRNA and miRNA-Like Small Regulatory RNAs Expressed upon Viral
433	Infection. PLOS ONE 4, e6349.
434	
435	Granzin B.C. & Gaughan J.B. (2002) The effect of sodium chloride supplementation on the milk
436	production of grazing Holstein Friesian cows during summer and autumn in a humid sub-tropical
437	environment. Animal Feed Science and Technology 96, 147-160.
438	
439	Guastella A.M., Sorbolini S., Zuccaro A., Pintus E., Bordonaro S., Marletta D. & Macciotta N.P.P.
440	(2011) Melanocortin 1 receptor (MC1R) gene polymorphisms in three Italian cattle breeds. Animal
441	Production Science 51 , 1039–1043.
442	
443	Guo L & Lu Z. (2010) Global expression analysis of miRNA gene cluster and family based on
444	isomiRs from deep sequencing data. Computational Biology and Chemistry 34, 165-171.
445	

446	Haeseleer F. & Palczewski K. (2000) Short-chain dehydrogenases/reductases in retina. Methods in
447	enzymology 316 , 372-383.
448	
449	Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B.,
450	McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan L.,
451	Dalrymple B., and International Sheep Genomics Consortium (2012) Genome-Wide Analysis of the
452	World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PloS
453	Biology 10, e 10001258.
454	Loftus R. T., MacHugh D. E., Bradley D. G., Sharp P. M. & Cunningham P. (1994) Evidence for
455	two independent domestications of cattle. Proceedings of the National Academy of Sciences 91,
456	2757–2761.
457	
458	Maiorano L., Falcucci A., Garton E.O. & Boitani L (2007) Contribution of the Natura 2000 network
459	to biodiversity conservation in Italy. Conservation Biology 21, 1433-1444.
460	
461	Mao Y., Zhu X., Xin S., Zhang M., Wang X., Cheng D., Zhang H., Konig S., Yang Z. & Yang L.
462	(2015) Polymorphisms in the promoter of interleukin-12 β 2 and interleukin-23 receptor genes
463	influence milk production traits in Chinese Holstein cows. Livestock Science 178, 1–8.
464	
465	Marras G., Gaspa G., Sorbolini S., Dimauro C., Ajmone-Marsan P., Valentini A., Williams J.L. &
466	Macciotta, N.P.P. (2015) Analysis of runs of homozygosity and their relationship with inbreeding in
467	five cattle breeds farmed in Italy. Animal Genetics 46, 110–121.
468	

469	Marras G., Rossoni A., Schwarzenbacher, H., Biffani S., Biscarini F. & Nicolazzi E.L. (2016)
470	Zanardi: an open-source pipeline for multiple-species genomic analysis of SNP array data. Animal
471	Genetics 48, 121-128.
472	
473	Mastrangelo S., Di Gerlando R., Tolone M., Tortorici L., Sardina M.T. & Portolano B. (2014)
474	Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC
475	Genetics 15 , 108.
476	
477	Mastrangelo S., Tolone M., Gerlando R.D., Fontanesi L., Sardina M.T. & Portolano B. (2016)
478	Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three
479	local dairy cattle breeds. Animal 10, 746–754.
480	
481	McKay S.D., Schnabel R.D., Murdoch B.M., Matukumalli L.K., Aerts J., Coppieters W., Crews D.,
482	Dias Neto E., Gill C.A., Gao C., Mannen H., Stothard P., Wang Z., Van Tassell C.P., Williams J.L.,
483	Taylor J.F. & Moore S.S. (2007) Whole genome linkage disequilibrium maps in cattle. BMC
484	Genetics 8, 74.
485	
486	Medugorac I., Medugorac A., Russ I., Veit-Kensch C.E., Taberlet P., Luntz, B., Mix H.M. &
487	Förster M. (2009) Genetic diversity of European cattle breeds highlights the conservation value of
488	traditional unselected breeds with high effective population size. Molecular Ecology 18, 3394-3410.
489	Melka M.G. & Schenkel F.S. (2012) Analysis of genetic diversity in Brown Swiss, Jersey and
490	Holstein populations using genome-wide single nucleotide polymorphism markers. BMC Research
491	Notes 5, 161.
492	

493	Mészáros G., Taferner R. & Sölkner J. (2016) Pleiotropic and epistatic interactions between
494	stillbirth and calving ease in cattle. Acta Agriculture Slovenica 5, 56.
495	
496	Meunier J., Lemoine F., Soumillon M., Liechti A., Weier M., Guschanski K., Hu H., Khaitovich P.
497	& Kaessmann, H. (2013) Birth and expression evolution of mammalian microRNA genes. Genome
498	Research 23, 34-45.
499	
500	Mömke S., Sickinger M., Lichtner P., Doll K., Rehage J. & Distl O. (2013) Genome-wide
501	association analysis identifies loci for left-sided displacement of the abomasum in German Holstein
502	cattle. Journal of Dairy Science 96, 3959–3964.
503	
504	Nei M. (1977) F-statistics and analysis of gene diversity in subdivided populations. Annals of
505	Human Genetics 41 , 225-233.
506	
507	Nothnagel M., Lu T.T., Kayser M. & Krawczak M. (2010) Genomic and geographic distribution of
508	SNP-defined runs of homozygosity in Europeans. Human Molecular. Genetics 19 , 2927–2935.
509	
510	Olsen H.G., Lien S., Gautier M., Nilsen H., Roseth A., Berg P.R., Sundaasen K.K., Svendsen M. &
511	Meuwissen T.H.E. (2005) Mapping of a Milk Production Quantitative Trait Locus to a 420-kb
512	Region on Bovine Chromosome 6. Genetics 169, 275–283.
513	
514	Pausch H, Wang X, Jung S, Krogmeier D, Edel C, et al. (2012) Identification of QTL for UV-
515	Protective Eye Area Pigmentation in Cattle by Progeny Phenotyping and Genome-Wide
516	Association Analysis. PLoS ONE 7 : e36346.
517	

518	Pausch H., Flisikowski K., Jung S., Emmerling R., Edel C., Gotz K.U. & Fries R. (2011) Genome-
519	Wide Association Study Identifies Two Major Loci Affecting Calving Ease and Growth-Related
520	Traits in Cattle. Genetics 187, 289–297.
521	
522	Pintus E., Sorbolini S., Albera A., Gaspa G., Dimauro C., Steri R., Marras G. & Macciotta N.P.P.
523	(2014) Use of locally weighted scatterplot smoothing (LOWESS) regression to study selection
524	signatures in Piedmontese and Italian Brown cattle breeds. Animal Genetics 45, 1–11.
525	
526	Porter F.D. (2000) RSH/Smith-Lemli-Opitz syndrome: a multiple congenital anomaly/mental
527	retardation syndrome due to an inborn error of cholesterol biosynthesis. Molecular Genetics and
528	Metabolism 71 , 163-174.
529	
530	Price A.L., Patterson N.J, Plenge R.M., Weimblatt M.E., Shadick N.A. & Reich D. (2006) Principal
531	components analysis corrects for stratification in genome-wide association studies. Nature Genetics
532	38 , 904-909.
533	
534	Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P.,
535	de Bakker P.I.W., Daly M.J. & Sham P.C. (2007) PLINK: a toolset for whole-genome association
536	and population-based linkage analyses. American Journal of Human Genetics 81, 559–575.
537	
538	Purfield D.C., Berry D.P., McParland S. & Bradley D.G. (2012) Runs of homozygosity and
539	population history in cattle. BMC Genetics 13, 70.
540	
541	R Core Team (2015) R: A language and environment for statistical computing. R Foundation for
542	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

543	
544	Ruto E., Garrod G. & Scarpa R. (2008) Valuing animal genetic resources: a choice modeling
545	application to indigenous cattle in Kenya. Agricultural Economics 38, 89–98.
546	
547	Scherf B.D. (2000) World watch list for domestic animal diversity (No. Ed. 3) Food and
548	Agriculture Organization (FAO).
549	
550	Schmid B.M., Saitbekova N., Gaillard C. & Dolf G. (1999) Genetic diversity in Swiss cattle breeds
551	Journal of Animal Breeding and Genetics 116, 1-8.
552	
553	Stella A., Ajmone-Marsan P., Lazzari B. & Boettcher P. (2010) Identification of Selection
554	Signatures in Cattle Breeds Selected for Dairy Production. Genetics 185, 1451.
555	
556	Takasuga A. (2016) PLAG1 and NCAPG-LCORL in livestock. Animal Science Journal 87, 159–
557	167.
558	
559	Upadhyay M.R., Chen W., Lenstra J.A., Goderie C.R.J., MacHugh D.E., Park S.D.E., Magee D.A.,
560	Matassino D., Ciani F., Megens H.J., van Arendonk J.A.M, Groenen M.A.M, & European Cattle
561	Genetic Diversity Consortium, Crooijmans R.P.M.A. (2016) Genetic origin, admixture and
562	population history of aurochs (Bos primigenius) and primitive European cattle. Heredity 118, 169-
563	176.
564	
565	Wickham H. (2009) Gplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
566	

567	Xiao C. & Rajewsky K. (2009) MicroRNA control in the immune system: basic principles. Cell
568	136 , 26-36.
569	
570	Zeder M. (2017) Domestication and early agriculture in the Mediterranean basin: Origins, diffusion,
571	and impact. Proceedings of the National Academy of Sciences 105, 11592-11604.
572	
573	
574	

Table 1. Mean value of heterozygosity (HET) and

Minor allele frequency (MAF) in the five breeds.

	HET		MAF	
	Mean	s.d.	Mean	s.d.
BSW	0.318	0.011	0.232	0.010
MOD	0.348	0.008	0.249	0.006
SAR	0.335	0.011	0.252	0.005
SB	0.343	0.012	0.251	0.007
SM	0.347	0.013	0.251	0.006

577 BSW = Italian Brown Swiss; MOD = Modicana;

SAR =Sarda; SB =Sardo Bruna; SM = Sardo Modicana.

579

578

575

Table 2. Statistics of ROH size and frequency in the five investigated cattle breeds.

	BSW	MOD	SAR	SB	SM
Average length (Mb)	3.9 ± 5.0	2.3 ± 1.8	2.9 ± 2.4	2.6 ± 2.3	2.4 ± 2.0
Average number of SNP per ROH	67.2 ± 85.8	40.2 ± 30.3	49.1 ±40.8	44.7 ± 39.1	41.2 ± 33.6
Number of ROH					
1-2 Mb	780	1270	834	423	447
2-4 Mb	404	571	420	220	195
4-8 Mb	231	242	251	87	83
8-16 Mb	138	34	74	21	13
>16 Mb	56	2	2	4	2
Total	1609	2119	1581	755	740

BSW = Italian Brown Swiss; MOD = Modicana; SAR = Sarda; SB = Sardo Bruna; SM = Sardo

⁵⁸² Modicana.

586

calculated using ROH>8Mb.

		F _{ROF}	I	
	Mean	s.d.	Max	Min
BSW	0.127	0.043	0.210	0.043
MOD	0.073	0.056	0.290	0.031
SAR	0.095	0.086	0.360	0.015
SB	0.080	0.078	0.282	0.019
SM	0.060	0.058	0.227	0.023

585 BSW = Italian Brown Swiss; MOD = Modicana; SAR = Sarda;

SB =Sardo Bruna; SM = Sardo Modicana.

Table 4. Most frequent ROH detected in the five breeds

Chromosome	Start	End	Length (Mb)	Frequency ¹	Breed
1	73924347	75505402	1.58	5	SB, MOD,SAR
29	23762023	25780595	2.02	5	SB, SM, MOD,SAR
6	32241952	34661866	2.41	5	BSW
9	27516531	28538817	1.02	5	SB, SM, SAR
9	821062	2677236	1.86	5	SM, MOD, SAR, BSW

BSW = Italian Brown Swiss; MOD = Modicana; SAR = Sarda; SB = Sardo Bruna; SM = Sardo

589 Modicana.

¹Number of individuals that possess the specific ROH across breeds

591

590

588

592	Figures legend
593	Figure 1 Multi-Dimensional Scaling plot of the five investigated breeds: Italian Brown Swiss (BSW),
594	Modicana (MOD), Sarda (SAR), Sardo-Bruna (SB) and Sardo-Modicana (SM).
595	Figure 2 Genetic structure and admixture plot obtained through coefficients of individual
596	membership to clusters (K=5) assumed to be present in the sample of investigated breeds. Red
597	columns = cluster 1; Light green columns = cluster 2; Blue columns = cluster 3; Green columns =
598	cluster 4; Purple columns = cluster 5.
599	Figure 3 Average LD (r ²) between markers within an interval of 1000 kb in the five Italian cattle
600	breeds: Italian Brown Swiss (BSW), Modicana (MOD), Sarda (SAR), Sardo-Bruna (SB) and Sardo-
601	Modicana (SM).
602	Figure 4 Manhattan plot of F _{st} values predicted by the LOWESS. a) Comparison between Italian
603	Brown and Sardo-Bruna. b) Comparison between Sarda and Sardo-Bruna. c) Comparison between
604	Sarda and Sardo-Modicana. d) Comparison between Sardo-Modicana and Modicana. e) Comparison
605	between Sardo-Modicana and Sardo-Bruna. Red color dots indicate significant F _{ST} values (i.e. greater
606	than 3 standard deviations from the mean).
607	Figure 5 Occurrence of SNP counted in a ROH measured by the percentage of animals belonging to
608	the five investigated breeds for which a particular SNP falls into a ROH versus the position along the
609	chromosome. a) Comparison of BTA6. b) Comparison of BTA20.
610	Figure 6 Occurrence of SNP counted in a ROH measured by the percentage of animals belonging to
611	the five investigated breeds for which a particular SNP falls into a ROH versus the position along the
612	chromosome. a) Comparison of BTA1. b) Comparison of BTA10. c) Comparison of BTA11.
613 614 615 616 617 618	

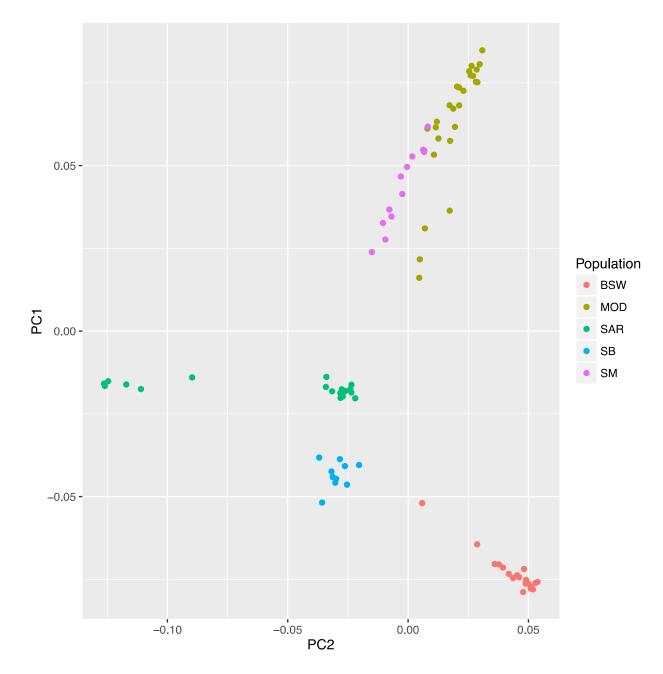
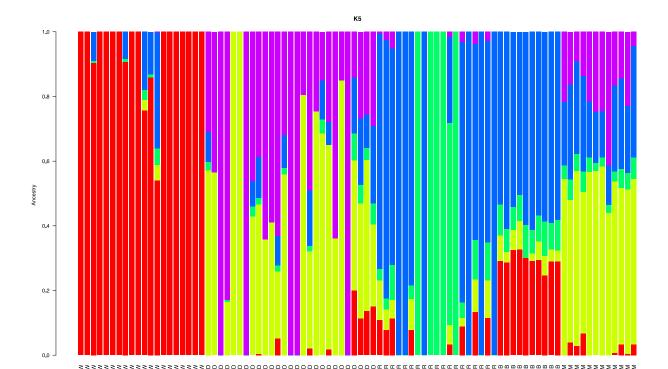
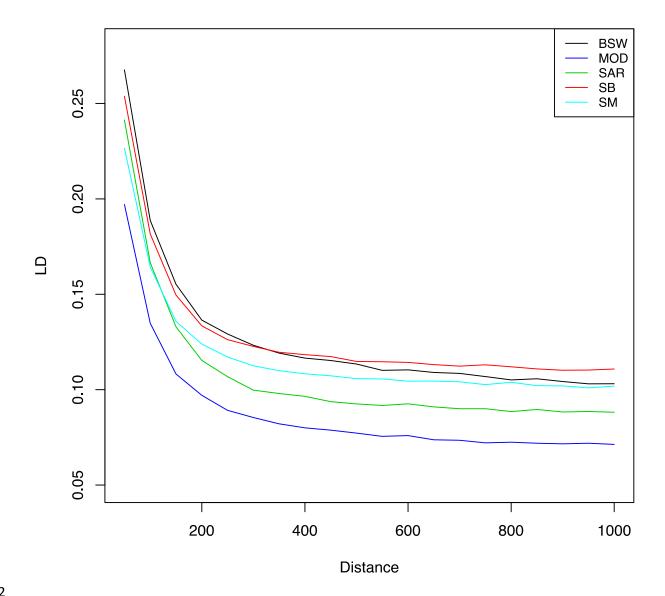




Figure 1

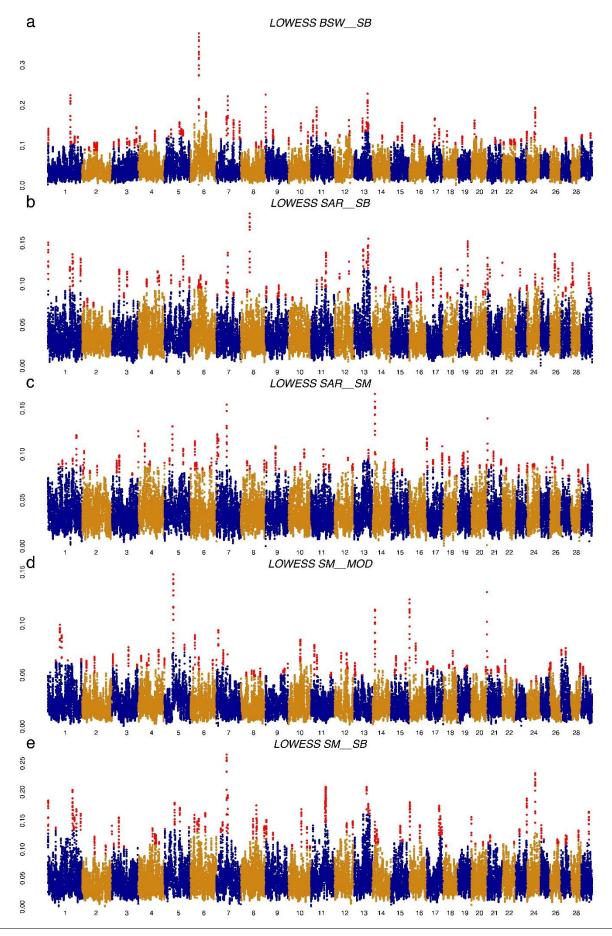
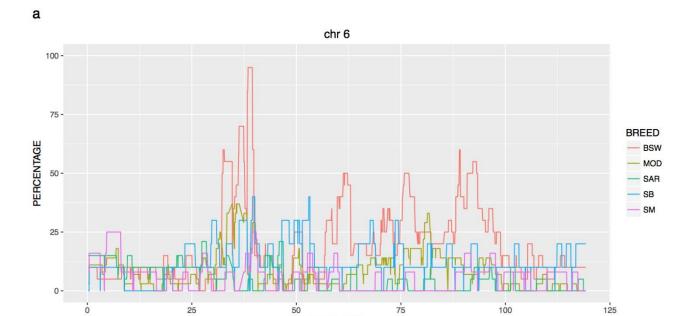


Figure 2


iris-AperTO

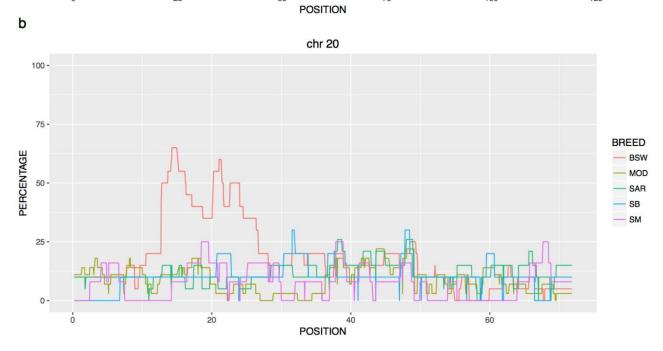


Figure 3

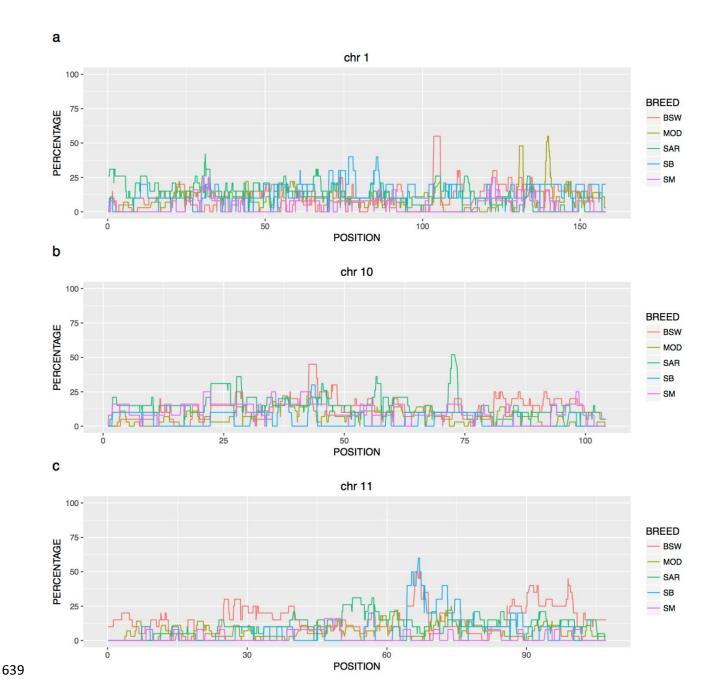


Figure 4

638 **Figure 5**

Figure 6