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Abstract

The European Union has set ambitious targets for emission reduction and the

penetration of renewable energy, including the electricity generation sector as one of

the major emitters of CO2. After a period of subsidy-driven investments, the costs of

renewables decreased strongly making investments more attractive. Since European

countries differ strongly in terms of natural resources, we analyse the profitability

of wind onshore and offshore and solar PV across Europe to determine where it is

optimal to invest in the future and to understand which factors drive the profitability

of the investments. We use a power systems model to simulate the whole European

electricity market in 2030. Using the renewable revenues determined by the model,

we calculate the internal rate of return to analyse how profitable each technology

is in each country. We find that investments in the considered technologies are not

homogeneously profitable across Europe. This suggests that cooperation between

European countries can be expected to achieve the overall targets at lower costs than

nationally-driven approaches. We also find that in many countries, wind onshore and

solar PV are profitable by 2030 in absence of any financial support. Wind offshore

does not seem to be profitable without financial support.
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1 Introduction

The European Commission (EC) and the European Council set ambitious energy targets

for 2030 in order to secure clean and efficient energy in the European Union.1 In 2014,

EU countries agreed that by 2030, the share of renewables should be 27% of total en-

ergy consumption in order to achieve the overall target of 40% GHG emission reduction

(Commission, 2014a). In 2018, this overall renewable target has been increased to 32%

of total energy consumption (Commission, 2018). This target holds at the EU level, so

all countries should work together either by reducing the energy demand or increasing

generation from renewable energy sources (RES), to achieve the overall goals.

Electricity generation is one of the sectors affected by the EU targets together with

transport, agriculture and industry, as it is one of the major sectors responsible for total

emissions (EUROSTAT, 2017). Following the track started with the 2020 targets on

emission reductions, renewable electricity generation (RES-E) should increase to 49% of

total electricity demand by 2030 in order to be consistent with the overall target on total

energy demand, as noted by the Commission (2014a) in its own impact assessment analysis.

The installed capacity in renewable energy has increased strongly during the last

decade, when every EU country set up different incentives to promote the investment

in renewable generation. There are several works that focus on the costs and the regu-

latory changes needed to promote the investments in renewable energy. All these works

highlight that subsidies given to renewables are positively related with the investment in

this type of generation in all EU countries. Papaefthymiou and Dragoon (2016) and Held

et al. (2018) analyse the impact of increasing RES-E penetration in the EU system and

focus on the associated distribution network costs. Other studies (Edenhofer et al., 2013;

Cambini and Rondi, 2010; Boomsma et al., 2012; Sisodia and Soares, 2015; Winkler et al.,

2016) analyse how regulation and subsidies are necessary to encourage the investment in

renewable energy.

Despite the positive correlation between subsidies and investment in RES-E, it is widely

recognised that the use of subsidies is suboptimal with respect to the first best solution of

carbon-pricing (Kalkuhl et al., 2013), so a rigorous analysis is needed to assess under which

conditions investments in renewable energy are economically profitable without subsidies.

Looking at 2030, investment costs associated with renewables should decrease over

time, making the investment in renewable energy more attractive to market operators
1See EC Directive 2009/28, Commission (2014b) and EU Council (2014).
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(IRENA, 2012). However, European countries are quite different in terms of natural

resources and the availability of wind and solar irradiation, thus a careful analysis of the

profitability of investments in renewable technologies is required to determine where it is

optimal to invest in the future, as capital costs of renewables are often higher than for

fossil fuels (Neuhoff et al., 2016).

Despite the importance of the subject, there are not many studies focusing on the

profitability of renewable technologies in 2030 or beyond, in particular when it comes to

comparing countries across Europe. Duscha et al. (2016) combined short and long term

simulations to find the optimal technological and economical pattern to meet the emission

targets up to 2050. The authors examine the impact of different RES targets on the

EU economy and find that the Commission’s overall renewable energy target should be a

minimum target rather than the maximum level of RES. The authors show that a RES

penetration going beyond the overall EU target results in higher economic benefits for the

Union. As the investment costs of RES decrease over time, the authors highlight that

new investments rely on convenient cost of capital, and the regulation should then focus

on reducing that in the next years. Finally, the authors point out that offshore wind and

tidal energy are not economically efficient, so subsidies would need to be provided in order

to incentivise investments in these technologies. Safarzyńska and van den Bergh (2017)

focus on the financial stability associated with the investment in renewables and find that

investments in gas fired plants instead of renewable technologies would be beneficial in

countries in which coal plants are still active and play a major role in generation. Finally

Knopf et al. (2015) find that the cost-effective share of RES-E to meet the European

targets in 2030 ranges from 43% to 56%, raising the question about the profitability of

new investments above the threshold of 49% identified by the Commission. However, no

specific focus is given to the profitability of specific technologies.

In this work we therefore investigate whether the investment in specific renewable tech-

nologies (solar, wind onshore and wind offshore) is profitable across Europe. In particular,

we compare several scenarios to determine under which conditions investment in renew-

ables would be profitable in each country without additional financial support. A review

of methods adopted to optimally locate investments in renewables is provided by Tan

et al. (2013). We use a power systems model to simulate the whole European electricity

market in 2030 aimed at investigating the costs and benefits of investment in renewable

technologies for all EU countries. We then use the output of the power systems model
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to calculate the internal rate of return for solar, wind onshore and wind offshore invest-

ments in each country in Europe. We focus on these technologies in this paper because

significant investments in additional hydro capacity are rather unlikely and limitations to

the feedstock potential are found to limit the expansion of biomass for electricity only

generation (Hennig et al., 2016).

The remainder of this paper is organised as follows. Section 2 describes the methodol-

ogy and data used. Section 3 presents our results, which we discuss in section 4. Section

5 concludes.

2 Methodology and data

2.1 Methodology

We use the Artelys Crystal Super Grid power systems model to simulate the European

electricity market in 2030 (EU28 plus Switzerland and Norway).2 The model minimises

the overall generation costs across the EU to meet demand at an hourly resolution and

subject to generator technical characteristics.

In these simulations a competitive market is assumed across the EU (i.e. no market

power and power plants bid their short run marginal cost) and we assume perfect foresight,

whereby the model has full knowledge of all input variables such as demand and variable

renewable generation output. This hypothesis does not allow us to investigate the poten-

tial beneficial effects of competition in mitigating anti-competitive behaviour in different

markets, as noted by Neuhoff et al. (2005). The resulting market price is calculated as

the marginal price at member state level and does not include any extra revenues from

potential balancing, reserve or capacity markets or costs such as grid infrastructure cost,

capital costs or taxes.

For the economic assessment, we calculate the internal rate of return (IRR) for so-

lar PV, wind onshore and wind offshore at member state level. We deliberately chose

to calculate the IRR rather than the net present value (NPV) or the annuity since the

calculation of the latter always requires an interest rate as input. Consequently, an NPV

or annuity can only be interpreted subject to the assumed interest rate (Bertsch et al.,

2017a). We acknowledge that the use of the NPV or annuity would be more common than

the use of the IRR within a single company with a fixed equity ratio (and hence a quasi
2See: https://www.artelys.com. We thank Artelys for the provision of the software and their support.
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fixed interest rate). However, since equity ratios may differ between investors and interest

rates for borrowed capital may differ between countries, we deemed the IRR to be more

appropriate for comparing the profitability of investments across Europe.

The IRR is the interest rate that leads to an NPV or annuity of €0 including the

cash flows CFt (revenues and expenses, including investments CF0) over all time periods

t ∈ {0, ..., T} of an investment project, where T is the project’s lifetime (see equation (1)).

Artelys calculates annual revenues based on the hourly generation by technology and

country and hourly prices by country assuming marginal costs of zero for the considered

technologies. Capital and fixed operational expenditures are considered ex post and,

together with the revenues calculated by Artelys, provide input to our IRR calculations.

NPV =
T∑

t=0

1
(1 + IRR)t

CFt ≡ 0 (1)

.

2.2 Data

The input data for our analysis can be structured into three main categories: a) supply

and demand data for modelling the European power system, b) fuel and carbon prices,

and c) capital and fixed operational expenditures of the considered RES-E technologies.

a) Supply and demand data

The supply and demand input data to Artelys are broadly based on Deane et al.

(2017). This includes data on the generation portfolio and demand for the 28 European

member states from the 2016 European Commission modelling of a Reference Scenario

(PRIMES) of the future European Energy system.3 The Reference Scenario is one vision

of the European power system in 2030 based on business-as-usual assumptions, including

full implementation of European climate and energy policies adopted by December 2014

to achieve a renewable electricity penetration of 49% in 2030 up from 27.5% in 2014.4 5

3PRIMES is a partial equilibrium model that provides projections of detailed energy balances, both
for demand and supply, CO2 emissions, investment in demand and supply, energy technology penetration,
prices and costs”. The projections are set up in order to meet the EU 2016 targets on emissions for
2030:http://ec.europa.eu/environment/archives/air/models/primes.htm.

4The generation mixes of Switzerland and Norway are not included in the PRIMES scenario. Swiss
data was developed based on data available from the Federal Department of the Environment, Transport,
Energy and Communications (DETEC). Norwegian data was developed based on data available from the
Norwegian government (see: https://www.regjeringen.no) for thermal power plants and the Norwegian
water resources and energy directorate (NVE, see: https://www.nve.no) for renewables including hydro
power.

5Note that the portfolio used for PRIMES 2016 does not exactly match the recent EU target to achieve
32% of renewables in final energy consumption by 2030 (see: http://europa.eu/rapid/press-release_
STATEMENT-18-4155_en.htm). It is consistent, however, with a 49% target for renewable electricity.
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In addition to the data of the PRIMES Reference Scenario, hourly wind power gener-

ation for each Member State was taken from Aparicio et al. (2016). Hourly solar profiles

for each Member State were developed using NREL’s PVWatts® Calculator web applica-

tion, which determines the electricity production of photovoltaic systems based on system

location and basic system design parameters. Moreover, our model includes the network

interconnection capacities between EU countries, as described in ENTSOE (2016) for 2030.

Table 1: Installed RES capacity, MW, by country, 2030

Country Wind Onshore Wind Offshore Solar Hydro Other Renewables

AT 4,545 0 2,821 13,756 815
BE 3,557 3,350 3,818 1,484 820
BG 2,122 0 2,572 2,338 101
CH 834 0 5,272 16,587 0
CY 229 0 529 0 11
CZ 488 0 2,391 1,109 274
DE 57,796 9,418 63,959 13,102 7,065
DK 4,134 2,318 838 10 2,870
EE 445 0 1 8 154
ES 29,824 64 24,564 16,795 1,923
FI 2,763 152 19 3,461 3,330
FR 23,717 7,055 25,382 28,803 4,350
GR 6,038 0 5,616 3,579 232
HR 682 0 686 2,190 29
HU 477 0 106 57 409
IE 4,003 131 19 587 208
IT 15,574 3 24,562 18,939 6,182
LT 467 0 74 116 139
LU 302 0 131 1,345 35
LV 238 48 2 1,589 108
MT 0 0 198 0 2
NI 1,525 500 4 0 133
NL 6,975 3,121 5,586 37 2,308
NO 1,000 0 15 30,495 155
PL 9,442 897 99 1,039 2,105
PT 6,275 28 2,172 9,971 693
RO 6,017 0 2,223 6,645 157
SE 9,013 0 88 16,742 3,161
SI 242 0 779 1,284 118
SK 19 0 680 1,725 332
UK 18,550 12,846 11,040 4,624 17,233

Total 217,292 39,930 186,243 198,416 55,451

The installed RES capacities by country are taken from PRIMES and summarised

in Table 1. In this paper, RES capacities include hydro and thermal RES, where the

latter is the sum of biomass, geothermal and other renewables. Table 1 reveals that the

installed renewable capacity is not distributed homogeneously across Europe. Countries
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in the South, such as Spain and Portugal, have a higher proportion of solar generation

than countries like Belgium or Ireland. Northern countries are rich in wind generation,

and Central European countries have a variable proportion of both resources.

b) Fuel and carbon prices

The fuel prices used in our analysis are taken from DECC (2016) and summarised in

Table 2. The generators’ costs are based on fuel costs, emission costs and heat rates.6

Table 2: Fuel price assumptions, (€2010)

€/GJ Nuclear Coal Gas (CCGT, OCGT, derived gas) Oil Carbon

Low 2.00 2.40 5.70 10.00 20.00
Baseline 2.00 2.90 8.50 14.80 37.00
High 2.00 3.70 12.30 21.50 40.00

Data source: DECC (2016). Exchange rate €/GBP=0.858

c) RES capital and fixed operational expenditures

As in Slednev et al. (2018), capital and fixed operational expenditures are taken from

Taylor et al. (2016). For 2015, their assumptions are 1,810 US$/kW for solar PV, 1,560

US$/kW for wind onshore and 4,650 US$/kW for wind offshore translating into 1,629

€/kW for solar PV, 1,404 €/kW for wind onshore and 4,185 €/kW for wind offshore

assuming an exchange rate of 1 US$= 0.90 €. For 2025, Taylor et al. (2016) assume

technology costs of 790 US$/kW for solar PV, 1,370 US$/kW for wind onshore and 3,950

US$/kW for wind offshore translating into 711 €/kW for solar PV, 1,233 €/kW for wind

onshore and 3,555 €/kW for wind offshore. Given that our study focusses on 2030, we will

use the assumptions for 2025 as baseline technology costs. However, we will also carry

out the analysis using the values for 2015 to show what happens if technology costs do

not decrease as anticipated. Moreover, these assumptions will be varied in a number of

additional sensitivity analyses the results of which are presented in section 3.4. In terms

of fixed operating and maintenance costs, we assume 1% of the specific investment costs

per year for solar PV and 2% for wind onshore and wind offshore. The lifetime of the

investment is assumed to be 20 years for all considered technologies. Again, we will vary

this assumption (see section 3.5) to explore the impact of longer/shorter lifetimes.
6Production costs for power plant type i, inclusive of CO2, are calculated as:

P rodCosti = F uelP ricei ∗ HeatRatei + ET S ∗ (HeatRatei ∗ CO2EmissRatei) (2)

The assumed CO2 emission rates are 93.6 kg/GJ for coal, 55.9 kg/GJ for gas and 77 kg/GJ for oil.

7



3 Results

We now present the results of our analysis. Section 3.1 provides an overview of the achieved

RES-E shares by country and technology in 2030, whereas section 3.2 provides insights

into the different technologies’ profitability in each country. Subsequently, sections 3.3-3.5

illustrate the impact on the IRR when varying the assumptions in relation to fuel prices,

technology costs and lifetime respectively.

3.1 RES-E shares

First, we calculate the renewable penetration using the model results. With our assump-

tions including the demand and generation portfolio from PRIMES, the share of renewable

electricity generation (hydro, solar, wind, biomass and other renewables) is 49% of the total

European electricity demand. This is in line with the recommendation by EU Commission

Staff (2014) to meet the EU 2030 target in relation to total energy demand.

Figure 1: Proportion of RES generation on total demand, 2030

Figure 1 examines the proportion between RES-E generation and demand for each EU

country (plus Switzerland and Norway). Figure 1 shows that Switzerland and countries in

Scandinavia, e.g., Denmark and Norway, have the highest RES-E over demand proportion.

These countries are followed by Austria (driven by their hydro power capacities, similar

to Norway and Switzerland), the UK and a couple of Southern-European countries such

as Portugal (79%), Greece (66%) and Spain (57%). Note that RES curtailment in our

model is very low. In part, this can be explained by the fact that we do not consider the
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transmission network within each country. In addition, we assume that interconnection

capacities between the countries have been realised accordingly to the 10 year network

development plan (TYNDP) from ENTSOE. As a result, renewable generation may flow

between the EU countries, reducing curtailment. Overall, the RES-E shares from our

model should therefore be considered as upper limits. Eastern European countries have the

lowest renewable share as a proportion of total demand. In countries such as Hungary, the

Czech Republic, Poland and Lithuania less than 20% of final demand is met by renewable

generation. Italy, Ireland and Germany have RES-E shares of almost 50%, whereas France

has a relatively lower RES share of around 40%. On the other hand, however, France has

a high share of nuclear generation, which is low-carbon, too.

Figure 1 also shows that countries with a very high overall RES-E share but without

significant hydro capacities (e.g., Denmark and the UK) have rather high shares of other

(thermal) RES-E. Moreover, it shows that with very few exceptions, the wind onshore

shares are higher than the solar power shares. Overall, Figure 1 reveals that the expected

RES shares in 2030 differ significantly across Europe. Because of differing RES-E capacity

factors (mainly influenced by the geographical and meteorological conditions) and whole-

sale electricity market price levels and structures, we also expect the profitability of RES

investments to differ strongly between countries. In the following subsections, we therefore

analyse the profitability of RES according to the PRIMES model based on their economic

performance in 2030 for each member state aimed at understanding which countries have

favourable conditions for which technologies. Since significant investments in additional

hydro capacity are rather unlikely and limitations to the feedstock potential may limit

the expansion of biomass for electricity only generation (Hennig et al., 2016), we focus on

investments in solar PV as well as wind onshore and wind offshore in our analysis.

3.2 Profitability of investment in RES-E

Figure 2a provides an overview of the profitability of the three considered RES-E technolo-

gies across Europe on the basis of the IRR. The IRR of the investments increases from the

left to the right. For the baseline fuel price and technology cost assumptions, investment

in wind onshore is more profitable than in solar PV for half of the countries, while solar PV

is more profitable for the other half. Wind offshore is not profitable, neither considering

high nor low capital costs.

Broadly speaking, four categories of countries can be identified. First, there are a
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number of countries (e.g., in Scandinavia and other parts of Northern or Western Europe)

where wind onshore is rather profitable, whereas the profitability of solar PV is low. Sec-

ond, there is a group of countries in the South-Eastern part of Central Europe where solar

PV is rather profitable, whereas wind onshore investments reach their lowest IRRs (e.g.,

the Czech Republic, Slovakia, Hungary and Bulgaria). Third, there are some countries in

Central Europe where the profitability of both solar PV and wind onshore is rather low

(e.g., Luxembourg, Lithuania and Slovenia). Fourth, there are a few countries in Southern

Europe with coastal access where the profitability of both technologies is rather high (e.g.,

Portugal, Greece and Cyprus).

Looking at the investment in solar power, Italy, with a large capacity of solar PV in-

stalled, has the highest profitability for this technology, followed by Malta, Greece, Cyprus

and Portugal. Looking at the investment in wind onshore, the Netherlands, Cyprus and

Greece achieve the highest IRRs, followed by a number of Scandinavian countries (Fin-

land, Denmark, Sweden) and the UK. The situation is structurally similar for wind off-

shore investments. This technology achieves the relatively highest IRR in the Netherlands,

followed by Finland, Denmark and the UK. However, for the baseline technology cost as-

sumptions, this relatively highest IRR in the Netherlands is still negative.

As expected, Figure 2b generally shows that the profitability of RES-E investments is

much lower if today’s (2015) technology costs do not decrease as anticipated by Taylor

et al. (2016). In this case, wind onshore investments are more profitable than solar PV

investments for all considered countries. In other words, while the IRR of wind onshore

investments only decreases by around 2%, there is a step change in terms of the profitability

of solar PV investments. This is mainly driven by the much stronger cost reduction

assumptions until 2025 in the case of solar PV as compared to wind onshore.

Overall, Figure 2 shows that investments in PV are particularly profitable in Southern

European countries. Moreover, Figure 2 demonstrates the importance of reducing PV

technology costs from today’s levels in order to make this technology viable widely across

Europe. Investments in wind onshore seem generally profitable in Northern European

countries but also in some countries on the Mediterranean or Atlantic coast, the latter

having favourable conditions for both solar PV and wind onshore. On the contrary, a

number of countries in Central and Eastern Europe would neither have favourable condi-

tions for PV nor wind. It might therefore be better for these countries to import renewable

energy (certificates) from other EU countries with more favourable conditions assuming
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that the overall objective is to increase renewable penetration at the lowest-possible costs.
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Figure 2: Overview of IRR across countries and technologies for today’s and future tech-
nology cost assumptions
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3.3 Impact of fuel price variations on the profitability of RES-E invest-

ments

Figures 3 and 4 show how the IRRs of the different RES-E investments change when fuel

prices (and hence electricity prices) are higher or lower than the baseline assumptions

(see Table 2 for the corresponding assumptions in the High and Low scenarios), while the

technology costs are not changed. As expected, higher fuel prices increase the profitability

of solar PV (see Figure 3a). Italy and Malta still achieve the highest IRRs for solar

investments, now exceeding 18%. However, a number of countries in which the IRR was

below 5% for the baseline assumptions now achieve an IRR of 8-9% (e.g., Scandinavia,

the UK or Ireland). On average, the IRR increases by around 4% in the High fuel price

scenario compared to the baseline fuel price scenario. In contrast, lower fuel prices result in

IRRs around or below zero for solar investments for some countries (e.g., France, the UK,

Ireland and Scandinavia). On average, the IRRs are around 5.5% lower in this scenario

than for the baseline assumptions.

Figure 3b shows similar effects for wind onshore. On average, the IRRs are around

4.5% higher in the High fuel price scenario compared to the baseline scenario. Lower fuel

prices result in IRRs that are around 6.1% lower on average than in the baseline scenario

for this technology. This means that the IRRs for wind onshore investments are negative

for some countries, including Slovenia, Luxembourg, Lithuania, Bulgaria and the Czech

Republic, while Hungary and Romania yield IRRs of around zero under these fuel prices.

Figure 4 shows how wind offshore investments are affected by the different fuel price

scenarios. In the scenario with high fuel prices, the IRRs are around 3.5% higher on

average than under the baseline assumptions. While in the baseline scenario the IRRs

for wind offshore were negative across Europe, the IRR is slighty positive under high fuel

prices in the Netherlands (around 0.5%), followed by Finland and Denmark. Under low

fuel prices, the IRRs of wind onshore would be strictly negative across Europe (around

6.4% lower on average than for the baseline assumptions), whereby the order between the

countries remains largely unchanged.

Overall it is interesting to note that the fuel price variations do not have the exact

same impact on all countries. For instance, Figure 3b shows that for wind onshore, the

order between the countries would be slightly different under the High scenario than under

the Baseline scenario. This can be explained by different power systems and generation

portfolios, which are affected by the fuel price variations in different ways.
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Figure 3: Impact of fuel price variations on the IRR of solar and wind onshore investments
across Europe, 2030
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Wind Offshore: Impact of Fuel Prices 
For Baseline Technology Costs (3555€/kW) 
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Figure 4: Impact of fuel price variations on the IRR of wind offshore investments across
Europe, 2030

3.4 Impact of technology cost variations on the profitability of RES-E

investments

For the considered technologies, the study by Taylor et al. (2016) suggests that there will

be huge reductions of investment-related costs by 2025. However, there is obviously also a

very high uncertainty related to these reductions, which is yet higher in our case given that

our analysis is based on 2030. A thorough sensitivity analysis of the impact of changes

in technology costs on the profitability of RES-E investments is therefore very important.

We shall do this using fuel price assumptions of the baseline scenario.

Figure 5a shows how the IRR of solar PV investments changes across Europe when

the specific investment costs of solar PV vary between 500 e/kW and 1,750 e/kW (where

Taylor et al. (2016) expect 711 e/kW by 2025). It becomes obvious that such cost reduc-

tions lead to a step change in profitability of PV across Europe. Already a slightly less

ambitious reduction to 1,000 e/kW would result in positive IRRs for the vast majority of

countries in Europe and in IRRs around or above 5% for a third of the member states.

Figure 5b shows how specific investment costs of wind onshore varying between 1,000

e/kW and 2,000 e/kW affect the IRR of wind onshore across Europe (where Taylor et al.

(2016) expect 1,233 e/kW by 2025). If technology costs of wind onshore remained un-

changed or increased slightly, the IRRs would still be positive in most countries. However,

if the specific investment costs fell to around 1,000 e/kW, the IRRs would exceed 5%

across Europe, while for two thirds of the countries they would exceed 10%.
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Figure 5: Impact of technology cost variations on the IRR of solar and wind onshore
investments across Europe, 2030
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Wind Offshore: Impact of Technology Costs 
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Figure 6: Impact of technology cost variations on the IRR of wind offshore investments
across Europe, 2030

Figure 6 shows how technology cost variations between 2,000 e/kW and 3,500 e/kW

would affect wind offshore investments. While Taylor et al. (2016) expect 3,555 e/kW

by 2025, Figure 6 shows that reductions to 2,000 e/kW would be necessary to achieve

a positive IRR in most countries with wind offshore potential. However, even for such

significant cost reductions, the IRR would not exceed 5% in any of the countries, which

may not be sufficient to make this a viable investment given the scale of offshore projects.

3.5 Impact of lifetime variations on RES-E investments

We now explore how changes in the expected lifetime of solar and wind projects affect their

profitability, where our baseline assumption is 20 years (see section 2.2). Figure 7 shows

that for both solar PV and wind onshore, decreasing the lifetime expectation to 15 years

would result in IRRs that are around 2% lower on average. An increase in the lifetime of

the projects would have a slightly lower positive effect. The IRRs for both technologies

would be around 1% higher for a lifetime of 25 years (compared to 20 years), while the

IRRs would increase by another 0.5% for a lifetime of 30 years (compared to 25 years).

Furthermore, Figure 7a shows for solar PV investments that a lifetime reduction to 15

years would lead to an IRR of below 4% in almost 50% of the countries. An increased

lifetime of 25 years, however, would ensure an IRR of at least 6% in almost all countries.

For wind onshore, Figure 7b shows that the IRR would fall below 6% if the lifetime was

reduced to 15 years. A lifetime increase to 25 years, would ensure an IRR of at least 8%

for two thirds of the countries. However, countries in Northern Europe (Estonia, Finland,

Sweden and Norway) and Western Europe (Belgium, UK, Netherlands) as well as Cyprus

and Greece achieve IRRs of around or higher than 8% for all considered lifetime scenarios.
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(b) Wind onshore

Figure 7: Impact of lifetime variations on the IRR of solar and wind onshore investments
across Europe, 2030
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Wind Offshore: Impact of Lifetime 
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Figure 8: Impact of lifetime variations on the IRR of wind offshore investments across
Europe, 2030

Figure 8 shows that the IRR of wind offshore investments is yet more sensitive to

lifetime variations than the IRR of wind onshore or PV. A lifetime reduction of offshore

projects to 15 years would come along with IRRs that are around 4.5% lower on average.

A lifetime increase to 25 years would lead to IRRs that are around 2.5% higher on average

(compared to 20 years), while the IRRs would increase by another 1.5% for a lifetime of

30 years (compared to 25 years). However, with the exception of an assumed lifetime of

30 years in the Netherlands the IRRs remain negative under all lifetime scenarios for the

baseline technology cost and fuel price assumptions.

4 Discussion

The results in the previous section highlight that the market-based profitability of RES-E

investments differs substantially across Europe. While some technologies are profitable in

some countries without any additional subsidies, the same or other technologies are not

profitable in other countries. Consequently, if all countries, for whatever reason, sought

to deploy all RES technologies within their own jurisdiction, additional incentives would

need to be provided to investors, which would ultimately be borne by the consumers.

In theory this suggests that, as long as interconnection capacities between countries are

sufficiently high, it would be more efficient to export renewable generation from countries

in which natural conditions incentivise the development of renewable generation to other

countries in which these conditions are less favourable. However, the issue of trading so-

called Renewable Energy Certificates (RECs) or Guarantees of Origin (GOs) is debated

controversially. While those in favour of an approach for cross-border trading of renew-

ables (e.g., Perez et al., 2016) would broadly follow the same arguments outlined above,
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those against such an approach (e.g., Toke, 2008) would typically highlight the adminis-

trative barriers and increasing risk for investors ultimately turning into increased costs to

consumers. In contrast, Green et al. (2016) propose a market design aimed at facilitating

long-distance trading of renewable energy, hence mitigating existing barriers. Altogether,

it should be noted that our analysis across the EU focusses on 2030 and shows that the

considered RES technologies are profitable in quite a few countries without any subsidies,

largely driven by cost reductions of RES technologies. This suggests that spikes of REC

prices as anticipated by Haas et al. (2011) for trading-based RES support systems within

individual countries should not be expected, at least not to the same extent.

In this paper, we present IRRs for different RES-E technologies across Europe. For

an adequate interpretation, it is important to note that these have been calculated using

wholesale electricity prices and a uniform payback period of 20 years. We acknowledge,

however, that in reality there are different investors with different expectations and con-

siderations. Energy companies or investment funds are likely investors in wind onshore

capacities (García-Álvarez et al., 2017), which suggests that the use of wholesale electric-

ity prices is adequate. In the case of solar PV, on the other hand, and indeed some wind

onshore projects, likely investors also include non-energy companies (Bergek et al., 2013),

whose investment considerations would be based on industrial tariffs rather than wholesale

prices. In addition, the perception of regulatory or technology-related risks are important

determinants of (energy as well as non-energy) firms’ investment behaviour (Masini and

Menichetti, 2013). Finally, residential households are very likely investors for small-scale

solar PV assets. Their investment considerations are usually based on residential retail

tariffs as well as a number of non-economic aspects, such as investing in green technologies

or achieving a certain level of autonomy (Jager, 2006; Kwan, 2012; Graebig et al., 2014;

Islam, 2014; De Groote et al., 2016; Bertsch et al., 2017a)). For the latter two (investments

by non-energy companies and residential households), the IRR estimates based on whole-

sale prices should therefore be understood as lower boundaries as the wholesale prices are

only one component of the total industrial and residential retail tariffs.

Overall, the rates of return required to undertake an investment in RES technologies

vary significantly between different types of investors (Karneyeva and Wüstenhagen, 2017)

and may also vary across countries. For instance, our results (see Figure 2a) show that the

IRR of solar PV investments is below 7% for around half of the countries, which may not

be enough to incentivise utilities to invest in this technology (Bonnafous and Jensen, 2005).

20



For residential households, studies show that these face a market interest rate between 1%

and 3% (LaMonaca and Ryan, 2017; De Groote and Verboven, 2016) and may consider

15 years as a reasonable payback period for their investment. At the household level, the

investment in solar PV may therefore be undertaken in most of the countries by 2030 (see

Figure 7a).

As for wind offshore, it is interesting to observe that this technology is almost never

profitable in our analysis, which concurs with findings by Green and Vasilakos (2011).

However, in recent auctions held in Germany for instance, investors submitted bids for

wind offshore projects without any financial support.7 One possible reason could be that

the investors expect strong reductions in investment costs associated with this technology

(Radov et al., 2016). However, our analysis on the impact of technology cost variations

(see Figure 6) shows that even for a reduction of wind offshore investment costs to 2,000

€/kW (i.e. a reduction to around 50% of today’s costs), the IRR does not exceed 5% in

any of the countries and does not exceed 3% in most countries. In order to understand

under which conditions wind offshore may become profitable, we carried out an additional

sensitivity analysis on the corresponding capacity factors. For this purpose, we increased

the capacity factors of wind offshore in all countries proportionally reflecting technological

improvements. With a capacity factor between 40 and 50% for all the countries with wind

offshore potential, however, we still find that capital costs above 2,500 €/kW result in IRRs

below 6% for all countries. This suggests that there may be other considerations behind

these wind offshore bids. Either, the investors expect lower technology costs in combination

with high fuel prices and/or longer lifetimes or they may evaluate the importance of

entering in this market as a strategic option and may re-evaluate their investment decisions

over time, e.g., as information about new support schemes (to be put in place by 2030)

becomes available (Brown et al., 2015). However, such ‘wait-and-see’ strategies have been

proven to be detrimental (Dedecca et al., 2016). We acknowledge that all these factors

are crucial to understand the strategy of the investors in wind offshore but they cannot

be included within the scope of this paper.

While the focus of this paper is the assessment of the economic viability of different

renewable technologies across Europe on the basis of the IRR, there are non-economic con-

siderations which are important, in particular for policy makers, in the context of RES-E

deployment. Above, we already mentioned non-economic determinants of investments
7https://www.cleanenergywire.org/news/support-free-bids-again-germanys-second-offshore-wind-auction
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such as the willingness to pay for ‘green investments’ or autonomy. Another crucial aspect

for the successful and timely deployment of renewables is the public acceptance of these

investments, i.e. not the acceptance by those investing but by those who are affected by

the investments (e.g., Bertsch et al., 2017b; Hyland and Bertsch, 2018). Acceptance of

renewable technologies usually depends on the technology type (e.g., solar vs. wind), the

size of the investment and the geographical distance between the built capacity and the

people affected (Wüstenhagen et al., 2007; Bertsch et al., 2016). For instance, studies show

that (i) the social acceptance of renewable projects is inversely related to the geographical

proximity to residential dwellings and (ii) that the acceptance of solar PV is much higher

than that of wind onshore even at very low distances to people’s homes (e.g., Bertsch

et al., 2016, 2017b; Harold et al., 2018). Moreover, existing research has found that in

some regions the public acceptance of wind offshore is higher than that of wind onshore

(Schmidt, 2017). This is important to understand for both policy makers and investors

as such considerations of public acceptance may counterbalance the economic advantages

of wind onshore to some extent. While policy makers might give preference to solar PV

or even wind offshore instead of wind onshore with the objective of ensuring a timely

achievement of the European renewable energy targets, investors might give preference to

solar PV hoping to avoid project delays. Overall, this underlines the importance of under-

standing the investment economics and public acceptance of different RES-E technologies

as well as the tradeoffs people make and their willingness to pay for the second-cheapest or

even third-cheapest RES-E technologies if their acceptance levels are higher. The analysis

presented in this paper is one contribution to resolving this conundrum.

As for all quantitative studies, the analysis and results presented in this paper come

along with some limitations and therefore need to be interpreted with caution. We use the

internal rate of return (IRR), which is the discount rate that makes the net present value

(NPV) of all the cash flows produced by a project (both negative and positive) net of the

necessary investment to implement the project equal to zero. Santos et al. (2014) highlight

that a real option analysis would be better suited than the IRR methodology, in particular

when investors face uncertainty and may postpone their investment decision.8 However,

in the framework in this paper, we consider only one year (2030) and we acknowledge

the simplifying assumption that the projects have constant annual cash flows over their

lifetime. Nevertheless, the IRR gives a sound estimate of the profitability of each project,
8See also Ceseña et al. (2013).
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and (in our specific case) is also a good measure to compare projects between different

countries. Moreover, in order to calculate the costs associated with the investment in

renewable generation, we assume that the costs of solar and wind technologies are the

same across Europe. We acknowledge that this is a simplifying hypothesis that may be

changed in future work.

5 Conclusions and policy implications

This work has estimated the marked-based profitablity of different renewable technology

investments across Europe. The analysis focuses on solar PV as well as wind power

(onshore as well as offshore), does not assume any separate financial support for renewables

and uses the internal rate of return (IRR) as an indicator to compare the profitability

between technologies and countries.

We show that investments in the considered technologies are not homogeneously prof-

itable across Europe. Our results reveal four categories of countries. The first category

includes a number of countries in Scandinavia and other parts of Northern or Western Eu-

rope where wind onshore is rather profitable, while the profitability of solar PV is low. The

second category consists of a group of countries in the South-Eastern part of Central Eu-

rope (e.g., the Czech Republic, Slovakia, Hungary and Bulgaria) where solar PV is rather

profitable, whereas wind onshore investments achieve very low IRRs. The third category

includes countries in Central Europe (e.g., Luxembourg, Lithuania and Slovenia) where

neither solar PV nor wind onshore are perticularly profitable. Finally, the fourth category

consists of countries in Southern Europe with coastal access (e.g., Portugal, Greece and

Cyprus) where the profitability of both solar PV and wind onshore is rather high. Wind

offshore is not found to be profitable under our baseline assumptions.

We also carried out a number of sensitivity analyses to explore the impact of varying

key factors, such as the fuel prices, technology costs and technology lifetimes. Our analysis

shows that a reduction in the lifetime of the projects, increased technology costs / less than

anticipated technology cost reductions by 2030 and lower fuel prices significantly reduce

the profitability of wind and solar investments. More specifically, we observe that the

downside risks and the upside potentials of the investments are distributed asymmetrically,

i.e. the downside risk of lower fuel prices and shorter technology lifetimes is larger than

the corresponding upside potential of higher fuel prices and longer lifetimes. In contrast,

the upside potential of decreased technology costs is larger than the downside risk of
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increased costs. All these factors need to be taken into account when assessing whether

the investments in renewables will meet the 2030 targets in the absence of any financial

supports by Member States or what form and level of support may be required in different

states to meet the targets.

There are a number of messages that policy-makers can take away from this research.

First, our analysis shows that allowing for some form of trading renewable generation

between countries or providing some other mechanism for joint target achievement / co-

operation between European countries (as opposed to national targets that have to be met

nationally only) can be expected to achieve the overall targets at lower costs. Comparing

the 2030 target shares (Figure 1) and profitabilities (Figure 2) reveals that some countries

have high RES-E targets while the profitability is rather moderate or low and vice versa.

This suggests that either financial support payments will be required (ultimately leading

to higher costs to consumers) to meet the targets in these countries or the targets may not

be met. Trading of renewable generation between countries can resolve both problems.

Should countries, for whatever reason, wish to achieve certain technology-specific national

targets, our analysis provides quantitative support in determining which technologies need

support in which countries. Moreover, our analysis shows that in most countries at least

one technology (wind onshore or solar PV) is profitable by 2030 even in absence of any

financial support payments. Second, our analyses provide insights for policy makers as

to how sensitive a successful RES deployment and target achievement are to uncertain-

ties related to different factors. For technology developers, these analyses can be used to

derive targets in relation to technology cost reductions and lifetimes. Third, our results

show that in quite a few countries, wind onshore is more profitable than solar PV, and

definitively more profitable than wind offshore. Beyond these economic considerations,

however, the public acceptance of energy infrastructure investments is a prerequisite for

a successful deployment of renewables, which has been shown to be higher for solar PV

and wind offshore compared to wind onshore in many cases as discussed in section 4. It is

therefore crucial for policy makers to have an open and transparent discourse about the

tradeoff people make between consumer costs (depending, amongst others, on the prof-

itability of investments) and acceptance related to different renewable technologies. The

analyses presented in this paper provide an important contribution to understanding the

investment economic side of this tradeoff.
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