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ABSTRACT Objective: In this prospective study, we assessed the utility of a novel prognostic score (PS) in 

guiding the surgical strategy of patients with sensorimotor area gliomas. Patients and methods: Form 

December 2012 to April 2016, we collected data from patients diagnosed with brain gliomas in the 

sensorimotor area. All the patients had intraoperatively confirmed contiguity or continuity with 

sensorimotor cortical and subcortical structures. Several clinical and radiological factors were analyzed to 

generate a PS for each patient (range 1–8). The end-points included the extent of resection (EOR) and 

neurological outcome (modified Rankin Score; mRS). We assessed the predictive power of the PS using 

different analyses. Crosstabs analyses and Fisher’s exact test (Fet) were used to evaluate the possible 

predictive parameters, and for the classification of positive or negative outcomes for the chosen proxies; 

the significance threshold was set at p < 0.05. Results: Using independent t-tests, we compared the mRS at 

different time points (pre, post, and at 6 months) for 2 subgroups from the total sample using a cut-off PS 

value of 4. For the EOR, a PS value of ≥5 was predictive of successful outcome, a value of 4 indicated an 

uncertain outcome, and a value of ≤3 predicted a worse outcome. Conclusions: This PS value can be easily 

used in clinical settings to help predict the functional outcome and EOR in sensorimotor area tumors. 

Integration with information from fMRI, DTI, and TMS, along with MRI spectroscopy could further enhance 

the value of this PS.  

 

1. Introduction The surgical approach for gliomas in highly functional areas aims to achieve large surgical 

resection to improve oncological prognosis and functional preservation to maintain an optimal 

postoperative functional status [1]. This objective of wider resection is easily achievable in certain locations, 

but may be difficult at certain other sites, including an eloquent area or more generally critical area. 

Furthermore, an oncologically desirable resection always should be balanced with the need to preserve 

neurological function, in both high and low grade gliomas (HGGs and LGGs). Data from recent studies 

suggest that poor postoperative functional outcome negatively affects the quality of adjuvant therapies, 

and finally the global outcome [2–4]. Although clear evidence has been obtained regarding the factors 

predicting survival (age, tumor volume, preoperative neurological status, and location in eloquent areas) 
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[5–13], information on reliable indices predicting functional outcome and EOR is scarce. Moreover, an 

eloquent location can hinder larger resection and is associated with a greater risk of postoperative deficits. 

Nevertheless, the availability of the direct mapping technique has helped overcome this limitation, and 

facilitates safe and large resection by exploiting interindividual variability and brain plasticity [14–18]. 

However, it would be useful to determine the specific patient characteristics that enhance the risk of new 

neurological deficits. In fact, the ultimate goal involves the ability to predict the risk of a specific neurologic 

deficit for a given lesion at a particular site in the brain [19]. In our previous retrospective study [20], we 

assessed the gliomas in eloquent areas to determine the clinical and neuroradiological parameters that 

predominantly affect the extent of resection (EOR) and immediate and late neurological outcome. We 

observed that factors related to the biology and morphology of the tumor, along with the clinical 

presentation, clearly helped define the operative risks in terms of the EOR and functional outcome. Based 

on this evidence, we identified factors with the best predictive power to create an in-house prognostic 

score (PS). We decided to apply this PS to only sensorimotor area gliomas, rather than language area 

gliomas, as these tumors are associated with less variable cortico-subcortical structures (i.e. primary motor 

cortex, premotor cortex, primary sensory areas, and corticospinal tract). Here, we describe the results of 

our prospective study on this novel clinico-radiological PS that can help define the surgical strategy for 

patients with sensorimotor area gliomas. 2. Patients and methods Form December 2012 to April 2016, we 

analyzed from a prospectively collected database of patients diagnosed with brain gliomas of the 

sensorimotor area. The inclusion criteria were as follows: the presence of suspected glioma infiltrating or in 

close vicinity to the precentral or postcentral gyri and cortico-spinal tract; availability of preoperative and 

follow-up clinical and neuroradiological data; and intraoperative confirmation of eloquence through 

intraoperative monitoring or cortico-subcortical electrical stimulation. The last criterion was vital to 

enhance the reliability of the PS. The positions of the sensory and motor areas were determined 

anatomically (axial T1 and T2) or through functional magnetic resonance imaging and diffusion tensor 

imaging (in cases where the precentral and postcentral gyri and CST were severely compressed or 

dislocated). When feasible, we follow a criteria of proposing awake surgery in patients with sensorimotor 

area tumors in order to obtain more detailed mapping, particularly in cases with important subcortical 

infiltration. However, intraoperative monitoring (IOM) in an asleep patient was chosen when the patient 

was unsuitable for awake surgery, and the tumor volume and subcortical infiltration were limited. Exclusion 

criteria were as follow: age under 18; patients with relapse/progression of a previously operated tumor. 

The preoperative data used to calculate the PS included clinical and neuroradiological parameters. Clinical 

parameters were: the presence of seizures at onset and presence of paresis/dysesthesias. These deficits 

were considered regardless they responded or not to steroid administration. Neuroradiological parameters 

were: 1. morphology of the tumor margins (sharp or diffuse); 2. presence of cysts (large cystic borders 

surrounding the tumor); 3. tumor volume (in cm3 ; tumor’s volume threshold was fixed at 80 cm3 ). 

Volume’s calculation was performed by approximation to the volume of a sphere or ellipsoid on 

gadolinium-enhanced MRI or on T2 FLAIR for non-enhancing tumors; 4. degree of subcortical white matter 

infiltration based on our previously described MRI index of infiltration (Fig. 1). Briefly, the visual anatomical 

limit on MRI to define the infiltration of subcortical connections was the end of the sulcus. The MRI 

patterns of invasion of the subcortical white matter were classified into 5 groups: (1) tumors invading and 

confined to only 1 gyrus; (2) tumors invading 1 gyrus with extension to white matter and/or adjacent gyrus; 

(3) tumors infiltrating up to 3 gyri and extending toward the long range white matter tracts; (4) tumors 

primarily located in the white matter below eloquent gyri; and (5) lobar tumors presumed high tumor grade 

based on contrast uptake. All the neuroradiological features were assessed by at least one neuroimaging 

expert. Further details regarding the determination of these prognosticators have been described 

previously [20]. The end-points included the EOR and the postoperative neurological status, expressed as 



the modified Rankin Score (mRS), at 1 and 6 months. The EOR was defined as gross total resection (GTR) in 

cases where ≥95% of tumor volume was resected, subtotal resection (STR) in cases where 85–95% of tumor 

volume was resected, and partial resection (PR) in cases where < 85% of tumor volume was resected. Once 

the clinical and neuroradiological parameters were recorded, a value of 0 or 1 was assigned based on the 

presence or absence of that specific factor, as shown in Table 1. These values were then added or 

subtracted based on the following formula: PS = 5 + Margins + Cysts + Seizure - Paresis - MRI index > 2 - 

Volume > 80 cm3 - Contrast enhancement. The resulting values range between 1 and 8, wherein a higher 

value is indicative of a better outcome. 2.1. Intraoperative protocol Awake cortical and subcortical mapping 

is performed through a bipolar fork measuring 6 mm in distance between the electrodes which delivers a 

non-deleterious, biphasic square-wave current in 4-s trains at 60 Hz. Stimulation began at 1 mA and 

increases by 0.50 mA until generation of contralateral side movement or a paraesthesia occur. Every 

positive site is restimulated to confirm reproducibility of stimuli. For subcortical tumors, we test motor or 

sensory sites throughout the subcortical resection, stopping whenever anomalies appear. Motor responses 

following cortical and subcortical stimulation are checked via both direct observation of the patient and 

electromyography (EMG). In asleep patients, intraoperative identification of the central sulcus and the 

central region was made using a combination of somatosensory evoked potential phase reversal and direct 

monopolar anodal highfrequency electrical stimulation of the cortex. 2.2. Statistical analysis Statistical 

analyses and descriptive statistics were performed using IBM SPSS Statistics 20.0.0 software (SPSS® , IBM® , 

https://www.ibm. com/analytics/us/en/technology/spss). We computed the descriptive statistics based on 

the demographic and clinical data of the sample. We used 3 proxies to evaluate the positive/negative 

outcome: EOR (total or subtotal); 6-month follow-up mRS (worsened or equal/improved compared to the 

preoperative mRS); and a combination of EOR and mRS (0: subtotal resection and worsened mRS; 1: total 

resection or better mRS; or 2: total resection and better mRS). We also assessed the predictive power of 

the PS using various analyses. Crosstabs and Fisher’s exact test (Fet) analyses were used to evaluate the 

possible predictive parameters, as well as the classification of positive or negative outcomes for the chosen 

proxies; the significance threshold was set at p < 0.05. Using 2-sample independent t-tests, we assessed the 

mRS at different time points (pre, post, and at 6 months) for 2 subgroups from the total sample based on a 

cut-off PS value of 4 (for further details refer to supplemental material). 3. Results We enrolled a total of 48 

patients with tumors in sensorimotor areas who were undergoing intraoperative mapping or monitoring. 

Of these patients, 4 were excluded as the tumor did not exhibit infiltration of the cortical nor subcortical 

sensorimotor regions intraoperatively. Table 2 describes the characteristics of the patients. The PS was 

found to be associated with certain proxies, as determined by Fet (Table 3) and descriptive statistics (Table 

4). For EOR, a PS value of ≥5 was predictive of successful outcome, a value of 4 indicated an uncertain 

outcome, and a value of ≤3 predicted a worse outcome. If only patients with a mRS on follow-up were 

considered, those with a PS of 4 exhibited worse or improved mRS values, those with a PS≥ 5 exhibited 

improved mRS values, and those with a PS ≤ 3 exhibited worsened mRS values. In the PS subgroups (Table 

5), only the follow-up duration indicated a significant difference, including greater mRS values in those with 

PS < 4 and a mean increase in the scores compared to those before surgery. In fact, the PS outperformed 

the single indicators (both EOR and mRS). In the Table 6 a comparison of binary classification for different 

indicators with the numbers of correctly classified patients. 4. Discussion When counseling a patient with a 

tumor located in highly functional regions of the brain, it is ideal to use methods that accurately predict the 

EOR and functional outcome; in such cases, treatment aims to achieve a low incidence of postoperative 

permanent neurological deficits, as these would markedly affect the global outcome of patients by delaying 

adjuvant therapies and eventually reducing survival [2–4]. Such methods would help surgeons choose the 

best treatment strategy for specific patients, particularly when considering challenging operations, such as 

awake surgery and direct brain mapping. Surgeons typically consider several factors before choosing a 



surgical technique, such as the neurological status, symptoms at onset, tumor volume, proximity to 

eloquent regions, mass effect, and presumed malignancy. Although these are important factors to consider, 

only limited information is available on their role and contribution to the outcome (Fig. 2). Tumor location 

is classically a predominant factor influencing the EOR and functional outcome. Historically, hemispheric 

gliomas are classified as far, near, or within eloquent areas, which are related to increasing risk of 

postoperative functional deterioration [7,12,21,22–24]. However, this categorization method is quite 

reductive and unreliable due to the wide interindividual functional variability, and even with the help of 

modern neuroradiologic advancements such as functional MRI and diffusion tensor imaging, it is difficult to 

predict the EOR and functional outcome [24–27]. Accordingly, intraoperative mapping techniques are 

becoming more commonly used, as they enable point-by-point mapping of the cortex and subcortical tracts 

with high reliability and reproducibility, as confirmed by large outcome studies [24,28,29]. Our PS is 

supported by systematic intraoperative confirmation through direct stimulation of the cortical and 

subcortical pathways. This point should be emphasized, because as intraoperative confirmation is not 

possible, the eloquent location of a tumor remains putative. Thus, a preoperative PS based only on 

functional or anatomical neuroimaging data may have very low reliability due to the interindividual 

variability and plasticity of the functional areas. Tumor volume is another critical factor that influences 

surgery. However, in a previous study, we found that, although tumor volume is a determinant for safe 

surgery, it cannot be solely considered as a prognosticator and should instead be combined with other 

patientspecific factors (subcortical infiltration pattern, grade of malignancies, presence of preoperative 

deficits) to generate better predictions. This concept is evident in the present study, where apparently 

similar tumors behave in markedly different manners (Fig. 3). A reason for this phenomenon may involve 

the microscopic relationship between the pathologic tissue and the apparently healthy brain (i.e. tumor’s 

sharp rounded margins can displace subcortical long tracts better then tumors with diffuse margins). 

Moreover, the growth rate can affect the brain capacity to reshape and adapt. This point is strictly related 

to the biology of the tumor (high or low grade) and influences the eventual appearance of focal deficits at 

onset. Furthermore, the central role of white matter infiltration on EOR and functional outcome has only 

recently been recognized [30,31]. Interestingly, this was not strictly related to the volume of the tumor 

[20,30,31]. Based on our results, it appears that PS has good predictive value in discerning between good 

and bad outcomes, which may be due to the fact that we restricted analysis to only glial and sensorimotor 

area tumors. We aimed to create a PS that was applicable to a well-defined (both clinically and 

radiologically) type of patient and tumor. As mentioned previously, tumors located in the so-called 

“language” areas should be considered differently, due to the large networking structure of those areas 

and the wide spectrum of clinical presentations. The presence of a “gray zone”—i.e., a PS of 4—is 

important as it reflects a common condition where it is difficult to predict reliable outcomes. The current PS 

can be applied in cases where the surgeon believes the tumor is located in proximity of the sensorimotor 

area. In fact, given that the PS value functions well in our series of cases with intraoperatively 

demonstrated sensorimotor area infiltration, it will also be suitable for tumors located in proximity to the 

sensorimotor areas. It has to be emphasized that such a PS can help in formulating the potential risk in 

operating on sensory-motor located gliomas but it cannot indicate which kind of surgical techniques to be 

used (intraoperative monitoring, direct mapping etc.). One limitation of the present study is that the 

number of patients is low and were strictly selected. However, this selection strategy was vital to obtain a 

homogeneous cohort of patients and yield more coherent results. Another possible bias may be related to 

the fact that all patients were initially intended to undergo surgery. Moreover, the grouping of HHG and 

LLG cases together may confound the results. In fact, we aimed to demonstrate the manner in which the 

growth rate and biology of tumors influence the interaction between the tumor and brain through different 

mechanisms (infiltration, dislocation, and plasticity), which finally affect the EOR and functional outcome. 



We foresee a new analysis in which HGG and LGG are analyzed separately. 5. Conclusions and perspectives 

Even though it did not include a large sample, this prospective series clearly showed that the PS can be 

easily used in the clinical setting to help predicting the functional outcome and EOR. However, we believe 

that this PS should be integrated with other parameters (including fMRI, DTI, and transcranial magnetic 

stimulation) to generate a multifaceted score. Moreover, novel MRI spectroscopy software can also yield 

vital information on new biomarkers that can help define tumor malignancy and indications of the final 

outcome [32,33].  
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