
applied
sciences

Article

Computational Accountability in MAS Organizations
with ADOPT

Matteo Baldoni *,† ID , Cristina Baroglio † ID , Katherine M. May †, Roberto Micalizio † ID

and Stefano Tedeschi † ID

Dipartimento di Informatica, Università degli Studi di Torino, via Pessinetto 12, I10149 Torino, Italy;
baroglio@di.unito.it (C.B.); katherine.may@edu.unito.it (K.M.M.); roberto.micalizio@unito.it (R.M.);
tedeschi@di.unito.it (S.T.)
* Correspondence: baldoni@di.unito.it; Tel.: +39-011-670-6756
† These authors contributed equally to this work.

Received: 28 February 2018; Accepted: 20 March 2018; Published: 23 March 2018
����������
�������

Abstract: This work studies how the notion of accountability can play a key role in the design and
realization of distributed systems that are open and that involve autonomous agents that should
harmonize their own goals with the organizational goals. The socio–technical systems that support the
work inside human companies and organizations are examples of such systems. The approach that is
proposed in order to pursue this purpose is set in the context of multiagent systems organizations,
and relies on an explicit specification of relationships among the involved agents for capturing who
is accountable to whom and for what. Such accountability relationships are created along with the
agents’ operations and interactions in a shared environment. In order to guarantee accountability as
a design property of the system, a specific interaction protocol is suggested. Properties of this protocol
are verified, and a case study is provided consisting of an actual implementation. Finally, we discuss
the impact on real-world application domains and trace possible evolutions of the proposal.

Keywords: methodologies for agent-based systems; organizations and institutions; socio–technical
systems; computational accountability; social commitments; agent-based programming

1. Introduction

The design of complex distributed systems, such as socio–technical systems (STSs), requires the
coordination of activities that are carried out simultaneously by different software components, that is,
the interfaces through which humans interact. Multiagent systems (MASs) allow tackling this problem
by providing modeling, like [1–5], development approaches, like [6,7], and frameworks, like [8–11].
Broadly speaking, such solutions represent software components as goal-oriented, autonomous agents,
which act in a shared environment and need to coordinate so as to achieve their goals [12].

This goal-oriented approach, in which modularity is realized through the assignment of
subgoals to the agents, is criticized in [13–15] because it does not fit the realization of open systems,
which comprise autonomous agents, each with their own goals to accommodate in a greater picture.
For instance, an agent could be assigned a goal it has no capability to achieve, making the whole system
vulnerable. Interaction and a representation of the responsibilities that are explicitly taken by the
agents are suggested by those works to play a central role. The proposal that we present in this paper
develops this perspective (i) by supplying a definition of computational accountability [14,16] and
(ii) by providing both modeling and computational tools that can be used in actual implementations.
Accountability is a well-known key resource inside human organizations: it fosters the creation of
commitments that will help the organization to meet expectations, develop and align strategies,
assign resources, analyze and react to failures, and adapt processes to evolving environmental

Appl. Sci. 2018, 8, 489; doi:10.3390/app8040489 www.mdpi.com/journal/applsci

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302263229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9294-0408
https://orcid.org/0000-0002-2070-0616
https://orcid.org/0000-0001-9336-0651
https://orcid.org/0000-0002-9861-390X
http://www.mdpi.com/2076-3417/8//489?type=check_update&version=1
http://dx.doi.org/10.3390/app8040489
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 489 2 of 29

conditions. In decision making, accountability constrains the set of acceptable alternatives, and thus
it allows organization members to take decisions in a way that goes beyond the private beliefs,
goals and psychological dispositions of the decision maker [17]. At the core of the proposal lies
an interpretation of accountability as a design property. We will explain how it is possible to design
systems where accountability is a property that is guaranteed by design, and where the monitoring of
ongoing interactions will allow identifying behaviors that diverge from the expected. The proposed
solution builds upon the equally important notions of control and of accountability relationship.
In particular, the realization of computational accountability follows principles, explained in Section 3,
that find a realization in the ADOPT (accountability-driven organization programming technique)
protocol for creating and manipulating accountability relationships. Technically, the core of the
proposal builds upon the notion of role and in the action of role adoption (or enactment), on one
side, and on the concept of social commitment [18,19] on the other side. An early version of
ADOPT was presented in [16]. In this paper we enhance the protocol by clearly separating the
role adoption phase from the goal agreement phase, and by relying on well-known FIPA protocols to
capture the message exchanges which create the accountability relationships (represented by social
commitments), and make them evolve. Moreover, we present, as a case study, an extension of the
JaCaMo framework [11] that implements the proposal.

From a practical perspective, the proposal can find a natural application in supporting
self-regulatory initiatives in human organizations. For instance, many organizations and companies
voluntarily adopt monitoring and accountability frameworks, for example [20,21], but such frameworks
are currently very-little supported by software and information systems. The commitments that involve
the parties are basically hand-written by filling in forms [22,23], and the assessment of satisfaction
or violation of the involved liabilities, as well as the actual accounting process, are totally handled
by authorized human parties [24]. The problem is that when accountability channels are informal or
ambiguous, in the long run, all these processes that are at the heart of a healthy organization will be
thwarted, leading to little effectiveness and poor performance. The ADOPT protocol and, more in
general, MASs that provide accountability as a design property, would find immediate application in
such contexts.

The paper is organized as follows. Section 2 explains the lack, due to relying mostly on
goal-orientation, of current MAS approaches (in particular those concerning MAS organizations).
It motivates the need of a change of perspective in order to enable the realization of accountability
frameworks. Section 3 explains accountability, getting into the depths of computational accountability
in organizational settings. Section 4 explains the ADOPT accountability protocol, including also
the verification of properties that are granted by the protocol. Section 5 reports, as a case study,
the implementation of ADOPT in the JaCaMo framework, which is one of the best-known, and widely
used, MAS programming frameworks. Section 6 discusses the impact and related works, and Section 7
ends the paper with some conclusions.

2. Multiagent Systems Need Accountability

A common way to tackle coordination in MASs is to define an organization, that is, a “structure”,
within which interaction occurs. Inspired by the human organizations, a MAS organizational model
includes a specification of organizational goals, and of a functional decomposition for achieving these
goals through subgoals distributed among the agents in the organization. One key notion that is used
in defining an organization is that of role. Organizational roles are typically understood as a way to
delegate a complex task to different principals, abstracting from the actual individuals (the agents)
who will play the roles. Following [25], when adopting a role, an agent, who satisfies some given
requirements, acquires some powers inside that organizational context. A power extends the agent’s
capabilities, allowing it to operate inside the organization and to change the organizational state.
Requirements, in turn, are needed capabilities that a candidate player must exhibit to play a particular
role. This definition of role follows the one given in [26] in which roles are definitionally dependent

Appl. Sci. 2018, 8, 489 3 of 29

from the organization they belong to: Roles do not exist as independent entities, but rather, they are
linked by definition to the organization they belong to.

Typically, in organization-oriented approaches, the MAS designer focuses on the organization of
the system, taking into account its main objectives, structure and social norms. OperA [2], for instance,
defines an organization along three axes: An organizational model describes the desired overall
behavior of the organization, and specifies the global objectives and the means to achieve them;
a social model defines the agent population, maps agents to organizational roles, and defines social
contracts (agreements) on role enactment; and the interaction model correlates role-enacting agents
through specified interactions. OMNI [3], based on OperA, provides a top-down, layered model of
organization. An abstract level describes the general aims of the organization through a list of externally
observable objectives. A concrete level specifies the means to achieve the objectives identified in the
abstract level. Finally, an implementation level describes the activity of the system as realized by the
individual agents. In this perspective, individual agents will enact organizational roles as a means
to realize their own goals. E-institutions [1] model organizations as social groups of individuals
built to achieve common (shared or antagonistic) goals. Here, organizations usually provide a set of
norms, which agents in the system need to follow, depending on the role they are playing. If an agent
violates a norm, the system must detect the violation and act consequently, for example, applying
a sanction or warning the other participants. OCeAN [4] is a conceptual framework that extends
the concept of the E-institution. The authors state that a suitable meta-model for open interaction
systems must comprise, besides norms, an ontology, a set of roles associated to institutional actions,
and a set of linguistic conventions. Roles provide agents the capability to perform institutional
actions, which are actions whose meaning and effects require a convention among participants of
the system. OCeAN foresees that institutional actions are messages, whose sending is bound to
an institutional action by means of a count-as relation. 2OPL [10] is a rule-based language to define
norms within a MAS, in order to achieve global goals of the system. The state of the world is represented
by means of brute facts, first-order atoms, and of institutional facts which model the normative
state of the system, tracing occurred violations. In Tropos [7], a MAS is seen as an organization
of coordinated autonomous agents that interact in order to achieve common goals. Considering
real-world organizations as a metaphor, the authors propose some architectural styles which borrow
concepts from organizational theories, such as joint ventures. The styles are modeled using the
notions of actor, goal and actor dependency, and are intended to capture concepts like needs/wants,
delegations and obligations. Finally, the organizational model adopted in JaCaMo [11] decomposes the
specification of an organization into three dimensions. The structural dimension specifies roles, groups
and links between roles in the organization. The functional dimension is composed of one (or more)
scheme(s) that elicits how the global organizational goal(s) is (are) decomposed into subgoals and how
these subgoals are grouped in coherent sets, called missions, to be distributed to the agents. Finally,
the normative dimension binds the two previous dimensions by specifying the roles’ permissions and
obligations for missions.

Recently, however, such a goal-oriented perspective on organizations has been criticized [13,27].
The point is that this approach provides a viable solution for modularizing complex tasks in terms
of subtasks, each of which is assigned to a specific agent, but it is not a good solution for handling
open distributed systems where agents are autonomous. In such scenarios, in fact, agents’ goals
might be in contrast to each other. Indeed, the organizational goals may not overlap completely with
agents’ goals. It follows that agents’ obedience to the system norms cannot be taken for granted.
Agent autonomy demands a different way of conceptualizing software modularity: not in terms of
subgoals that are assigned to the agents, but rather in terms of responsibilities that are explicitly
taken on by the agents. In [13], the authors see interaction as a central element of their modeling
approach, and model interactions in terms of mutual expectations among the agents, bringing the
conception of accountability as a way of characterizing the “good behavior” of each of the involved
agents. Here, accountability is a directed relationship from one agent to another, and reflects the

Appl. Sci. 2018, 8, 489 4 of 29

legitimate expectations the second principal has of the first. The resulting approach, dubbed interaction-
oriented software engineering (IOSE), focuses on social protocols, which specify how accountability
relationships among the concerned principals progress through their interactions. In particular, as the
authors themselves state, “in IOSE, it makes little sense to ask what functionality a role provides [...];
it makes sense though to ask to whom and for what is a role accountable [...]. A social protocol
essentially describes how a principal playing a role would be embedded in the social world by way
of accountability”.

The essential message we want to stress, thus, is that the lack of an explicit treatment of the
accountability relationship, within the existing organizational models, makes those models vulnerable.
In this paper we have demonstrated this vulnerability in practice in the context of the JaCaMo platform.
In particular, we show how the lack of an explicit take-on of responsibilities, for the distributed goals,
thwarts goal achievement as well as the overall system capability of answering when some exceptional
event occurs. We show, in fact, that when an agent joins an organization by playing a role, it is not
aware of all the possible goals it will be asked to achieve as a role player. Thus, an agent can be
assigned a goal for which it has no plan. The failure of the goal, though, cannot be attributed to the
agent, nor to the organization, in an easy way. In fact, on the agent’s side, the lack of a proper plan
for the goal does not make the agent responsible. On the organization’s side, the organization has no
means to know what an agent can actually do, thus, the system cannot be considered as responsible
either. In other terms, if an agent does not have the capabilities for achieving a goal, assigning that
goal to it, even through an obligation, does not bring any closer the achievement of the goal of interest.
In JaCaMo, the possibility to create goals along with the execution is a desired feature whose rationale
is that goals pop up dynamically and cannot be foreseen; the problem is that agents, who are aware of
their own capabilities, do not possess instruments for accepting or negotiating their goals.

Notably, these are not just features of JaCaMo, but of all the organizational models based on
functional decomposition of goals. Those approaches substantially assume that the agents playing
roles have been specifically designed for that purpose. This limits the openness of the system and the
reuse of code. Instead, the design of an organization should rely on explicit relationships between
agents, and also between agents and their organizations, capturing assumptions of responsibility by
the agents. This would make the system accountable.

The organizational model, thus, should no longer be a structure that distributes goals to its agents,
but it should become a way for coordinating responsibility assumption by the agents. More precisely,
since agents are opaque (i.e., not inspectable even by the organization), and since no assumption on
their capabilities can be done, an organization cannot assign a goal to an agent without putting the
system in danger (as we have seen). The organization, however, can safely undertake an interaction
protocol through which it negotiates with agents the attribution of goals. At the end of such a protocol,
the agent itself takes on the responsibility of achieving a specific goal. The rationale here is that only the
agent knows whether it has the control over a goal. Hence, if the agent accepts to bring about that goal,
it also takes on the responsibility for the very same goal. The organization has therefore a legitimate
expectation that the goal will be obtained. If the final outcome is not satisfactory, then, the agent is
held to account for its conduct. Before explaining the accountability protocol, we characterize in the
next section the key features of computational accountability.

3. Computational Accountability in Organizational Settings

Different research communities have dealt with the topic of accountability, such as [28–36].
While its main features remain relatively static, definitions vary in approach, scope and understanding
in different communities. The cause of such variability lies with its socio–cultural nature and is one
of the main reasons for the lack of a comprehensive support for the realization of accountability
frameworks in current socio–technical systems. Accountability’s most general definition refers to the
assumption of responsibility for decisions and actions that a principal, individual or organization
has towards another party. In other words, principals must account for their behavior to another

Appl. Sci. 2018, 8, 489 5 of 29

when put under examination. The concept is inherently social, and provides a mechanism by which
entities constrain one another’s behavior [17]. The previously cited examination is usually carried
out by an investigative entity, a forum of auditors [37,38]. The process can be divided into three main
phases: (1) The forum receives all information regarding the principals’ actions, effects, permissions,
obligations and so on that led to the situation under scrutiny; (2) the forum contextualizes actions
to understand their adequacy and legitimacy; and finally, (3) the forum passes judgment on agents
with sanctions or rewards. Our goal consists of automating the entire process for use in multiagent
organizations, although we will presently leave out the sanctioning piece of the third phase due to its
domain-specific application.

With the term computational accountability, we mean the abilities, realized via software, to trace,
evaluate and communicate accountability, in order to support the interacting parties and to help
solve disputes. In modern organizations, in particular, accountability determination can be a way to
obtain feedback useful to evaluate and possibly improve the processes put in place and, eventually,
the overall structure, too. Accountability determination is an extremely complex task, as the following
example highlights.

Example 1. Alice and Bob are a painter and a bricklayer, called by Carol for estimating the cost of renovating
a room. The walls in the room are very old and for this reason, before being painted, they should be spackled.
Since the prices seem reasonable, Carol decides to hire both Alice and Bob with the following work plan. Firstly,
Bob should spackle the walls and Alice should paint them white afterwards. Come execution time, Bob decides
to use a new variety of dark-colored spackle, since he has an open tin of it and he had not received any precise
instruction from Carol. The following day, when Alice finds the dark colored walls she realizes she will not be
able to satisfy the commitment she made with Carol because, in order to do a nice job, she will have to use twice
as much paint as expected. This simple example shows many challenges brought about when trying to tackle
accountability in a computational way. Let us suppose the agreement between Alice and Carol was somehow
formalized (for example, with a contract). Alice is unable to fulfill her contract with Carol. Should the simple
fact that she made a commitment, which is now impossible for her to fulfill, cause a computational system to
conclude she is accountable for the failure? Clearly, conditions have changed since the original room inspection.
One may argue that contextual conditions, constituting the prerequisites for Alice for the execution of the work,
should have been formalized. In the real world, however, contextual conditions that hardly change over time
are presumed implicitly stipulated even when they are not formalized. How could Alice foresee that Bob would
have used a particular kind of spackle while the great majority of the bricklayers use white ones? Is, then,
Carol accountable? Perhaps she should have checked all the involved parties to be in condition to fulfill their
tasks properly when she organized the work. On the other hand, we know that Bob is the one who arbitrarily
changed the color of the spackle. However, he received no instruction about the desired color of the spackle
from Alice nor from Carol. In other words, there was no reason to assume that a similar decision would have
caused problems. Here the problem arises from the fact that the involved parties, despite being in a collaborative
environment, have different expectations and rely on (conflicting) assumptions about some contextual conditions.
An alternative ending of the story is that Alice, feeling responsible, will paint the room at the agreed price because
she values the satisfaction of the contract more than earning money.

In our society, accountability becomes possible because of shared meanings culturally accepted as
interpretations of events. Without such attributed meanings, mechanisms of accountability become
difficult to be realized for lack of consensus concerning the interpretation of the events in question.
This means that accountability becomes impossible in the absence of collective interpretations and
meaning attributions. Another difficulty lies in value attribution. How does one decide whether
a given outcome is “good” or “bad”? Who decides? This depends on the value attribution mechanism
adopted in the system. In different systems the same outcome could be judged in different ways.
In other words, accountability requires the presence of a social-meaning-defining structure in which
actions and outcomes can be interpreted and evaluated in a uniform manner. Software systems can

Appl. Sci. 2018, 8, 489 6 of 29

provide such a structure in the form of an organization, which provides the tools and infrastructure
needed to communicate and collaborate with the reassurance of shared meanings.

Our interest in applying accountability to the software world lies in two of its natural
consequences: its diagnostic ability, that is, the ability to understand what went wrong, and its
society-building aspect, that is, a system in which entities can know what most helps the encompassing
organization and find encouragement to act on that knowledge to better it. With our concept of
computational accountability, we strive towards a general goal of teaching agents correct behavior
in the context of a particular organization. The mechanism of accountability contains two sides
that we call a positive and a negative approach. Positive accountability means that an entity is
socially expected to act in a certain way and will be held to account for that expectation’s fulfillment.
Negative accountability means that an entity is expected to not impede organizational progress and
negatively impact others. In this work we focus on positive accountability, leaving the discussion
related to negative accountability for future studies.

Accountability implies agency because if an agent does not possess the qualities to act
“autonomously, interactively and adaptively”, that is, with agency, there is no reason to speak
of accountability, for the agent would be but a tool, and a tool cannot be held accountable [39].
As discussed in [40], entities are free to act as they wish even against behavioral expectations.
Because accountability’s domain lies in the past, it is only concerned with how entities acted, and places
no restrictions on future actions. So, accountability does not hinder autonomy and allows entities the
freedom to choose. On the other hand, neither does accountability unjustly single out those who have
no control and are unable to act as autonomous beings. For example, during a robbery, a bank teller
who hands over money would not be held accountable even though that person is an autonomous
being who directly caused a financial loss, because that person had no “avoidance potential” [41],
that is, no control over the situation. In an analogous fashion for positive accountability, entities
must exhibit the possibility of action for accountable expectations: they must have control. Control
is an extremely complex concept, related to the philosophical notion of free will. Restricting our
attention to the scope of software agents, we cannot say, broadly speaking, that they have free will,
but that they can exhibit some kind of control. Referring to [42], control can be defined as the the
capability, possibly distributed among agents, of bringing about events. Ref. [43] gives a slightly
different definition of control as the ability of an agent to maintain the truth value of a given state
of affairs.

Accountability requires but is not limited to causal significance. Intuitively, for an entity to
be held accountable for an outcome, that entity must be causally significant to that outcome [38].
However, accountability cannot be reduced only to a series of causes, that is, be reduced to the
concept of traceability. Some authors, namely [40], even suggest that traceability is neither necessary
nor sufficient for accountability. Accountability comes from social expectations that arise between
principals in a given context. However, as implied by the word social, both principals must be aware of
and approve the stipulated expectation in order to hold one another accountable. Accountability cannot
be solely a result of principals’ internal expectations. Expectations, here, follow the definition in [13],
of ways to represent a given social state.

In order to make correct judgments, a forum must be able to observe the necessary relevant
information. However, in order to maintain modularity, a forum should not observe beyond its scope.
Organizations can be made up of other organizations. Societies, for example, contain micro-societies in
which actions are encoded differently. In each micro-context the forum must be able to observe events
and actions strictly contained in that context and decipher accountability accordingly. In each context,
the forum must be able to observe events and actions strictly contained in its scope and decipher
accountability accordingly. As context changes, accountability will change accordingly. Observability,
thus, becomes integral for the forum to exercise its ability to process information. For this reason,
a mechanism to compose different contexts and decide accountability comprehensively is essential.

Appl. Sci. 2018, 8, 489 7 of 29

The object under a forum’s scrutiny can take the form of either an action or an outcome.
The evaluation of the former implicates the recognition of social significance inherent in that action,
relatively independently of where it leads. On the other hand, an evaluation of the latter denotes
an importance in a state. When speaking of evaluating actions rather than outcomes in accountability,
the examination implicitly involves a mapping between individual and social action, since the same
individual action performed in different social contexts can take on different social significance.
Therefore, a fundamental part of holding an individual accountable consists of identifying the social
significance mapped from that individual’s actions. In a social context an agent is accountable for
an action to others, because of the realization that the others’ goals depend on the outcome of the
given actions.

When Does a MAS Support Accountability?

A MAS can be said to support accountability when it is built in such a way that accountability can
be determined from any future institutional state. Consequently, the MAS must necessarily provide
a structure that creates and collects contextualized information, so that accountability can actually be
determined from any future institutional state. We consider integral to this process the following steps.
A forum must receive all information (including all causal actions) regarding a given situation under
scrutiny. The forum must be able to contextualize actions to understand their adequacy and legitimacy.
Finally, the forum must be able to pass judgment on agents.

We identify the following necessary-but-not-sufficient principles a MAS must exhibit in order to
support the determination of accountability.

Principle 1 All collaborations and communications subject to considerations of accountability among
the agents occur within a single scope that we call organization.

Principle 2 An agent can enroll in an organization only by playing a role that is defined inside
the organization.

Principle 3 An agent willing to play a role in an organization must be aware of all the powers
associated with such a role before adopting it.

Principle 4 An agent is only accountable, towards the organization or another agent, for those goals it
has explicitly accepted to bring about.

Principle 5 An agent must have the leeway for putting before the organization the provisions it needs
for achieving the goal to which it is committing. The organization has the capability of reasoning
about the requested provisions and can accept or reject them.

Principle 1 calls for situatedness. Accountability must operate in a specific context because
individual actions take on their significance only in the presence of the larger whole. What constitutes
a highly objectionable action in one context could instead be worthy of praise in another.
Correspondingly, a forum can only operate in context, and an agent’s actions must always be
contextualized. The same role in different contexts can have radically diverse impacts on the
organization and consequently on accountability attribution. When determining attribution, thus,
an organization will only take into account interactions that took place inside its boundaries.

Placing an organizational limit on accountability determination serves multiple purposes.
It isolates events and actors so that when searching for causes/effects, one need not consider all
actions from the beginning of time nor actions from other organizations. Agents are reassured that
only for actions within an organization will they potentially be held accountable. Actions, thanks to
agent roles (Principle 2), also always happen in context.

To adequately tackle accountability by categorizing action, we must deal with two properties
within a given organization: (1) An agent properly completes its tasks, and (2) an agent does not
interfere with the tasks of others. The principles 2–5 deal more explicitly with the first property, that is,
how to ensure that agents complete their tasks in a manner fair for both the agents and the organization.
The second property is also partially satisfied by ensuring that, in the presence of goal dependencies,
the first agent in sequence not to complete its goal will bear accountability, not only for its incomplete

Appl. Sci. 2018, 8, 489 8 of 29

goal, but for all dependent goals that will consequently remain incomplete. That is, should an agent be
responsible for a goal on whose completion other agents wait, and should that agent not complete its
goal, then it will be accountable for its incomplete goal and for that goal’s dependents as well.

As an organizational and contextual aid to accountability, roles attribute social significance to
an agent’s actions. Following the tradition initiated by Hohfeld [44], a power is “one’s affirmative
‘control’ over a given legal relation as against another.” The relationship between powers and roles has
long been studied in fields like social theory, artificial intelligence and law. By Principle 3 we stipulate
that an agent can only be accountable for exercising the powers that are publicly given to it by the
roles it plays. Such powers are, indeed, the means through which agents affect their organizational
setting. An agent cannot be held accountable for unknown effects of its actions but, rather, only for
consequences related to an agent’s known place in sequences of goals. On the other hand, an agent
cannot be held accountable for an unknown goal that the organization attaches to its role, and this
leads us to Principle 4. An organization may not obligate agents to complete goals without prior
agreement. In other words, an organization must always communicate to each agent the goals it would
like the agent to pursue, and accountability will not be attributable in the presence of impossibilities,
that is, when the agent does not have control of the condition or action to perform. Correspondingly,
agents must be able to stipulate the conditions under which a given goal’s achievement becomes
possible, that is, the agent’s requested provisions. The burden of discovery for impossibilities, therefore,
rests upon an agent collective: A goal becomes effectively impossible for a group of agents should no
agent stipulate a method of achievement. Conversely, an agent declares a goal possible the moment
it provides provisions to that goal. Should a uniformed agent stipulate insufficient provisions for
an impossible goal that is then accepted by an organization, that agent will be held accountable because
by voicing its provisions, it declared an impossible goal possible. The opportunity to specify provisions,
therefore, is fundamental in differentiating between impossibilities and possibilities.

The next section introduces a high-level protocol that enables the creation and collection of that
contextualized information, which is necessary for accountability to be determined from any future
institutional state. The adoption of this protocol allows an organization to support accountability.

4. The ADOPT Accountability Protocol

ADOPT is a protocol that allows the realization of accountable MAS organizations. Agents and
organization will, thus, share the relevant information by exchanging messages, whose structure
follows the FIPA ACL specification [45]. In the protocol, the organization is considered as a persona
juris, a principal as any other principal, on which mutual expectations can be put. The protocol
is divided into two main phases, a role adoption phase and a goal agreement one (explained in
Sections 4.1 and 4.2, respectively), which are shown in Figures 1 and 2 as UML sequence diagrams.
Such diagrams provide a sequencing of the messages, but what produces the accountability is the set
of commitments that is created and that evolves with the messages, of both the role-adoption and the
goal-agreement phases. Along with the message exchanges, in fact, the protocol records and tracks
the evolution of accountability relationships between the parties, that we represent by way of social
commitments [19,46]. In principle, other sequencings can be allowed as long as the the commitments
are satisfied.

A social commitment is formally specified as C(x, y, p, q), where x is the debtor, who commits
to the creditor y to bring about the consequent condition q should the antecedent condition p hold.
Social commitments embody the capacity of an agent to take responsibilities autonomously towards
bringing about some conditions. They can be manipulated by the agents through the standard
operations create, cancel, release, discharge, assign, delegate [19]. Commitment evolution follows
the life-cycle formalized in [47]. A commitment is Violated either when its antecedent is true but its
consequent is false, or when it is canceled when detached. It is Satisfied when the engagement is
accomplished. It is Expired when it is no longer in effect. A commitment should be Active when it
is initially created. Active has two sub-states: Conditional as long as the antecedent does not occur,

Appl. Sci. 2018, 8, 489 9 of 29

and Detached when the antecedent has occurred. A commitment is autonomously taken by a debtor
towards a creditor on its own initiative. This preserves the autonomy of the agents and is fundamental
to harmonize deliberation with goal achievement. An agent will create engagements towards other
agents while it is trying to achieve its goals or to the aim of achieving them. Commitments concern the
observable behavior of the agents and have a normative value, meaning that debtors are expected to
satisfy their engagements, otherwise a violation will occur. Commitment-based approaches assume
that a (notional) social state is available and inspectable by all the involved agents. The social state
traces which commitments currently exist and the states of these commitments according to the
commitments life-cycle. By relying on the social state, an agent can deliberate to create further
commitments, or to bring about a condition involved in some existing commitment.

alt

alt

alt

call_ f or_proposal(adopt_role(Ag, R))

re f use(adopt_role(Ag, R))

propose(adopt_role(Ag, R))

reject_proposal(adopt_role(Ag, R))

accept_proposal(adopt_role(Ag, R))

Ag Org

in f orm(done(adopt_role(Ag, R)))

f ailure(adopt_role(Ag, R))

propose(adopt_role(Ag, R)) :: create(C1)

in f orm(done(adopt_role(Ag, R))) :: create(C2,k) ∀pwrk ∈ PR

C1 = C(Ag, Org, accept_proposal(adopt_role(Ag, R)),
∧

pwrk∈PR
C2,k)

C2,k = C(Ag, Org, C(Ag, Z, pwrk), pwrk)

f ailure(adopt_role(Ag, R)) :: violate(C1)

Figure 1. The first phase of the accountability protocol (role adoption).

Appl. Sci. 2018, 8, 489 10 of 29

in f orm(done(prov))

reject_proposal(achieve(g), prov) :: release(C3)

propose(achieve(g), prov) :: create(C3)

C3 = C(Ag, Org, accept_proposal(g, prov) ∧ request(achieve(g, prov)), agree(achieve(g, prov)))

C4 = C(Org, Ag, request(achieve(g, prov)) ∧ agree(achieve(g, prov)), in f orm(done(prov)))

C5 = C(Ag, Org, in f orm(done(prov)), in f orm(done(achieve(g, prov)))

accept_proposal(achieve(g), prov) :: create(C4)

agree(achieve(g, prov)) :: create(C5)

f ailure(prov)

in f orm(done(achieve(g, prov)))

f ailure(achieve(g, prov))

re f use(achieve(g, prov)) :: release(C4)

re f use(achieve(g, prov)) :: violate(C3)

f ailure(prov) :: violate(C4)

f ailure(achieve(g, prov)) :: violate(C5)

re f use(achieve(g))

agree(achieve(g, prov))

propose(achieve(g), prov)

reject_proposal(achieve(g))

accept_proposal(achieve(g), prov)

alt

alt

alt

alt

alt

Ag Org

call_ f or_proposal(achieve(g))

request(achieve(g, prov))

re f use(achieve(g, prov))

Figure 2. The second phase of the accountability protocol (goal agreement).

4.1. Role Adoption

The first phase of the protocol, reported in Figure 1, regulates the interaction that occurs when
a new agent joins an organization by adopting an organizational role. The organization provides
the context that gives significance to the actions that will be executed, thus satisfying Principle 1.
Moreover, an agent will have an impact inside an organization only if the role adoption is successful,
thus satisfying Principle 2. The interaction pattern follows the well-known Contract Net Protocol
(CNP) [48,49]. (In the description of the messages we omit those arguments of the FIPA speech acts that

Appl. Sci. 2018, 8, 489 11 of 29

are not strictly necessary to manage accountability.) There are two different types of agents, one initiator
and one or more participants. CNP provides a means for contracting as well as subcontracting tasks,
where the initiator is the agent willing to delegate the task and participants are contractors. In our case,
the organization is the initiator, the agents in the system are participants and the task corresponds to
role adoption. The messages that are exchanged in this phase are the following:

• call_for_proposal(adopt_role(Ag, R)): this message notifies an agent Ag that the organization Org is
looking for someone to play role R. A specification of R is provided, including the set PR of the
powers a player of that role will be provided with. Such powers allow a role player to operate in
the organizational context, and the role player will have to commit towards the organization for
their use, thus becoming accountable to the organization (see propose). We invoke a knowledge
condition, and stipulate that an agent can only be accountable for exercising the powers that are
publicly given to it by the roles it plays, thus realizing Principle 3.

• refuse(adopt_role(Ag, R)): with this message the agent declares that it is not interested in playing
role R.

• propose(adopt_role(Ag, R)): this message is, instead, used by an agent to candidate for
playing role R. This amounts to creating a commitment C1 = C(Ag, Org, accept_proposal
(adopt_role(Ag, R)),

∧
pwrk∈PR

C(Ag, Org, C(Ag, Z, pwrk), pwrk)). In the following we denote by
C2,k the inner commitment concerning power pwrk. Note that this commitment amounts to
a declaration of awareness by the agent to the organization of the powers it has, and also that it
will exercise such powers when requested by the legal relationships it will create towards other
principals. In this way, the agent’s behavior becomes accountable towards the organization itself.

• reject_proposal(adopt_role(Ag, R)): with this message the organization rejects the agent’s proposal.
• accept_proposal(adopt_role(Ag, R)): with this message the organization accepts the agent as a player

of role R. The commitment C1, having the organization as creditor and the agent as debtor,
will be detached.

• inform(done(adopt_role(Ag, R))): this message from the agent notifies the organization that the
agent has successfully adopted role R, and creates all the commitments C2,k with pwrk ∈ PR.
Commitment C1 is satisfied.

• failure(adopt_role(Ag, R)): this message from the agent notifies the organization that the role
adoption operation has not succeeded. This means that C1 will not be satisfied.

We assume that reject_proposal(adopt_role(Ag, R)) is mutually exclusive with accept_proposal
(adopt_role(Ag, R)), and also that failure(adopt_role(Ag, R)) is mutually exclusive with inform
(done(adopt_role(Ag, R))). This means that the occurrence of reject_proposal(adopt_role(Ag, R)) will make
C1 expire. Instead, occurrence of failure(adopt_role(Ag, R)) will cause the violation of C1, neglecting
what was previously stipulated.

After the role-adoption phase is successfully concluded, the organization can request the agents
to pursue goals. This aspect is addressed in the second phase of the protocol.

4.2. Goal Agreement

This phase of the protocol regulates the agreement process between an agent and an organization
for the achievement of a given organizational goal. Figure 2 shows the sequencing of the exchanged
messages, which combines FIPA Request Interaction Protocol [50] with the already described CNP.
When an organizational goal is to be pursued, the organization asks an agent to achieve it. The agent
has, then, the possibility to accept or refuse the request made by the organization, or to make further
requests of certain provisions that are considered by the agent as necessary to achieve the goal.
This realizes Principles 4 and 5. The messages that are exchanged in this phase are the following:

• call_for_proposal(achieve(g)): by this message Org starts an interaction with Ag with the aim of
assigning it a goal g to pursue.

Appl. Sci. 2018, 8, 489 12 of 29

• refuse(achieve(g)): the agent refuses the request made by the organization to achieve g.
• propose(achieve(g), prov): with this message, an agent creates a commitment C3 = C(Ag, Org,

accept_proposal(g, prov)∧ request(achieve(g, prov)), agree(achieve(g, prov))). This means that on
receiving a request to achieve g, given that the provisions prov were accepted, the agent is expected
to agree to pursue the goal. It is up to the organization to decide whether prov is acceptable or not.
Only in case prov is accepted, the commitment will eventually be detached. When no provisions
are needed, prov will amount to >.

This is a necessary step to reach two ends: agent’s awareness of assigned goals, and agent’s
acknowledgement to exert the necessary control to reach the goal. The rationale is that an agent, by
being aware of its own capabilities, will not promise to pursue a goal it is not capable to pursue—even
indirectly by enticing other agents to act—and that the relevant conditions that are necessary for goal
achievement, but that the agent does not control (prov), are clearly stipulated.

• reject_proposal(achieve(g), prov): with this message the organization rejects the request for provisions
prov made by the agent for goal (g). It will release C3.

• accept_proposal(achieve(g), prov): with this message the organization accepts to provide the
provisions prov that were requested by the agent for goal g. This creates a commitment C4 =

C(Org, Ag, request(achieve(g, prov))∧ agree(achieve(g, prov)), in f orm(done(prov))). With this
commitment the organization ties the request to the agent to pursue a goal with the supply
of provisions prov. The commitment will be detached by the final word of the agent, and its
possible agreement to the pursuit. The rationale is that, since provisions may come at a cost,
before supplying them, the organization waits for a confirmation by the agent.

• request(achieve(g, prov)): with this message the organization Org asks agent Ag to achieve goal
g, with provisions prov. Note that stipulation of what provisions should be supplied was done
earlier through propose and accept_proposal, but while that was an interaction aimed at deciding
whether to assign g to Ag, now Org wants the goal achieved. Generally, request may be uttered
after call_for_proposal. The occurrence of a request contributes to detaching both C3 and C4.

• refuse(achieve(g, prov)): with this message the agent refuses to achieve g with provisions prov.
It, thus, releases C4, meaning that Org does not have to actually supply prov. We assume that this
message is mutually exclusive with agree(achieve(g, prov)), thus, by this refuse the agent violates C3,
which at this point is already detached.

• agree(achieve(g, prov)): with this message the agent creates the commitment where C5 = C(Ag, Org,
in f orm(done(prov)), in f orm(done(achieve(g, prov))), meaning that it will pursue the goal if prov
is actually provided. Org is now expected to supply provisions.

• failure(prov): the organization did not succeed in supplying provisions. We assume this message
to be mutually exclusive with inform(done(prov)), thus, C5 will expire and C4 will be violated.

• inform(done(prov)): the organization succeeded in supplying the provisions, thus, C5 will be
detached and C4 will be satisfied.

• inform(done(achieve(g, prov))): the agent achieved g and C5 is satisfied.
• failure(achieve(g, prov)): the agent failed in achieving g with prov. Commitment C5 is violated.

4.3. Verifying ADOPT

We now verify the correctness of the ADOPT protocol discussed above. To this end, we have to
verify two aspects: first, the adherence of ADOPT to the five principles we have identified as necessary
conditions for accountability; and second, the satisfaction of some fundamental properties that any
good protocol should possess, specifically safety and liveness conditions. According to the literature
about protocol verification [51–53], safety means that a protocol never enters an unacceptable state,
whereas liveness, strictly related to state reachability, means that the protocol always progresses
towards its completion. As usual in protocol verification, we will turn to a temporal logic for

Appl. Sci. 2018, 8, 489 13 of 29

formalizing and validating the protocol dynamics. In particular, the verification of ADOPT has
to be focused on the treatment of the commitments that are created along the interaction, since these
encode the relations upon which the accountability is established. Intuitively, we have to demonstrate
that ADOPT allows the commitments to progress towards satisfaction. This demands for logics that
are capable of handling commitments directly. El-Menshawy et al. [54] have proposed a temporal logic,
named CTLC (i.e., computation-tree logics with commitments), which is an extension of CTL [55] with
a modality operator for social commitments. In addition, the authors show how commitment-based
protocols, specified in CTLC, can be checked by resorting to existing model-checking engines.
Specifically, CTLC can be reduced to CTLK [56], an epistemic logic on branching time whose calculus
has been implemented in the MCMAS model checker [57]. In a nutshell, the CTLC syntax is as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | C(i, j, ϕ),

where p is an atomic proposition, and where the temporal modalities have the same semantics as in
CTL. For example, EXϕ means that “there is a path where ϕ holds at the next state in the path”, whereas
EGϕ means that “there is a path where ϕ holds in every state along that path”. Finally, E(ϕ1Uϕ2) means
that “there is a path along which ϕ1 holds in every state until ϕ2 holds”. The same shortcuts defined
for CTL are also valid in CTLC: ¬EX¬ϕ ≡ AXϕ can be read as “ϕ holds in all the next states reachable
from the current one”; ¬EF¬ϕ ≡ AGϕ: “ϕ holds in every state of each path outgoing from the current
state”; and ¬EG¬ϕ ≡ AFϕ: “ϕ will eventually hold in every path outgoing from the current state”.

The peculiar characteristic of CTLC is the modality C(i, j, ϕ), that is read: “agent i commits towards
agent j to bring about proposition ϕ”. Since the modality operator only tackles base commitments,
a conditional commitment C(i, j, ψ, ϕ) must be reduced to the formula ψ → C(i, j, ϕ), and in the
following we will use CC(i, j, ψ, ϕ) as a shortcut of such a reduction. The interpretation of a CTLC
formula is based on Kripke models where a specific accessibility relation Rsc is defined for the
commitment modality C. Providing a detailed reporting of the CTLC semantics is out of the scope of
this paper. For our purposes, it is sufficient to say that a commitment modality C(i, j, ϕ) is satisfied in
a model M at a state w iff ϕ is true in every accessible state from w using the accessibility relation Rsc.

For the sake of readability, we will just report some of the formulas that have actually been used
for the verification of the ADOPT protocol. The usage of the CTLC language allows us to provide
a synthetic yet formal account of how the protocol can be verified. Of course, in order to prove
concretely the CTLC formulas above, we have to reduce them into equivalent CTLK formulas so as
to use the MCMAS model checker. We leave these details out of this paper, as our intent, here, is to
provide just some insights about the correctness of ADOPT, while the substantial contribution lies in
the engineering of accountability in MAS enabled by ADOPT.

4.3.1. Principles 1, 2 and 3

Let us take into account the principles, and observe that the usage of commitments as a means
for representing accountability relationships imposes some design choices. Commitments, in fact,
are meaningful only when placed into a context, and the context is provided by the organization, the set
of its roles, and its social state. Thus, when an agent is willing to play a role within an organization
Org, it must be aware of the organization itself, the role R, and the powers PR that come along with
R. Only by having this knowledge, Ag can, during the role-adoption phase, create the commitment
C2,k for each of the powers pwrk in PR. Summing up: (1) The organization must exist; (2) roles
must be defined in the context of an organization; and (3) power associated with roles must be
known at the time of role enactment. When these elements are all known to an agent before joining
an organization, the system implicitly satisfies the Principles 1, 2 and 3, which are structurally satisfied
by the adoption of commitments as a means to represent accountability relations. Indeed, in the
role-adoption phase of ADOPT, the only elements that come into play are the structural (i.e., static)
properties of the organization.

Appl. Sci. 2018, 8, 489 14 of 29

4.3.2. Reachability Property and Principles 4 and 5

Principles 4 and 5, instead, concern goals, which are dynamic by nature. Specifically, Principle 4
states that an agent is only accountable for those goals for which it has taken an explicit commitment,
whereas Principle 5 allows an agent to negotiate the provisions necessary for achieving a specific
goal. The verification of these principles requires one to consider the dynamics of the accountability
protocol, and overlaps with the reachability property we are interested in verifying in ADOPT. Relying
on CTLC, it is possible to express useful properties about commitment satisfaction, and hence,
about the correctness of the ADOPT protocol. For instance, for each commitment C(i, j, ψ, ϕ) that is
foreseen by the protocol, one can verify that when the commitment is created it can also be satisfied.
This corresponds to expression of the following reachability property in CTLC: AF EF(createdC →
CC(i, j, ψ, ϕ)), where createdC is an atomic proposition that becomes true when the given commitment
C(i, j, ψ, ϕ) is created (i.e., when a specific message is sent by the debtor agent). This formula is valid if
and only if in all the possible paths (i.e., runs of ADOPT), a state will be reached from which there exists
at least one path along which either createdC is false (the commitment is not created), or createdC
is true and the modality CC(i, j, ψ, ϕ) will eventually be satisfied. Please recall that CC(i, j, ψ, ϕ) is just
a shortcut for ψ→ C(i, j, ϕ). This formula is satisfied either when ψ is false, corresponding to the case
in which the commitment expires (for example, released by the creditor); or when ψ is true and hence
C(i, j, ϕ) must hold. The latter corresponds to the case in which the commitment is, firstly, detached
by the creditor and, then, satisfied by the debtor. Intuitively, this can be verified simply by looking
at the sequence diagrams in Figures 1 and 2, and observing that whenever a commitment is created
by a message of the debtor, the creditor has always the chance to release that commitment or detach
it. Similarly, whenever a commitment is detached, the protocol encompasses at least a run along
which the debtor can send a message whose meaning consists of the progression of that commitment
to satisfaction.

In short, it is possible to show that the above formula holds for every commitment that may
arise in ADOPT. This means that in every possible run of ADOPT, there is always an execution
path along which the conditional commitment C(i, j, ψ, ϕ), once created, can always be released
by the creditor, or satisfied by the debtor. As a consequence, we can conclude that Principles 4
and 5 of the accountability requirements are actually satisfied, since the agent will have also the
chance to agree to achieve a goal by creating a commitment (specifically C4 of the goal-agreement
phase), and by negotiating its provisions again via a commitment (specifically C3). An agent, thus,
will only be accountable for the goals it has agreed upon, possibly having also established some
necessary provisions.

4.3.3. Safety

To verify the safety condition, we have to show that “bad” conditions will never be reached. In the
specific case of ADOPT, an unwanted condition is the impossibility to satisfy a commitment C(i, j, ψ, ϕ)

after the commitment has been created. This condition can be formulated in CTLC as the formula
¬AF EF(createdC→ CC(i, j, ψ, ϕ)). Also in this case, we can show intuitively that the above formula
is false in every possible run of the protocol. In fact, the only situation in which the role-adoption
phase completes without the satisfaction of any commitment is when the agent answers with a refuse
message to the call for proposal from the organization, but in this case no commitment is created. In all
the other possible runs of the first phase, for every commitment that is created there exists at least one
run along which it will be eventually satisfied. A similar consideration holds for the goal-agreement
phase, too. This means that ADOPT is safe.

4.3.4. Liveness and Nested Commitments

The nested commitments in ADOPT also deserve some special attention. In the role-adoption
phase, the following nested commitments are created: C1 = C(Ag, Org, accept_proposal(adopt_role

Appl. Sci. 2018, 8, 489 15 of 29

(Ag, R)),
∧

pwrk∈PR
C2,k); where, as before, C2,k = C(Ag, Org, C(Ag, Z, pwrk), pwrk) for every power

pwrk ∈ PR. In this case it is interesting to verify whether whenever C1 is detached by Org, Ag has the
chance to satisfy C1 by creating the commitments C2,k. That is, whether there exists at least one run
of the protocol where these commitments will be actually created. This corresponds to verifying the
liveness of the protocol by asking whether something “good” will eventually happen. The following
CTLC formula serves this purpose: AG(detachedC1 → EF(createdC2k))), where detachedC1
is an atomic proposition that becomes true when Org sends message propose(adopt_role(Ag,R)),
whereas createdC2k is another proposition that becomes true when Ag sends the message
inform(done(adopt_role(Ag, R))). Indeed, looking at the sequence diagram in Figure 1, it is apparent
that once the commitment C1 is detached, there exists at least one run of the protocol along which the
message inform(done(adopt_role(Ag, R))) is actually sent by the agent. The formula is thus satisfied, and
the protocol enjoys the liveness property.

5. Case Study: Accountability in the JaCaMo Framework

JaCaMo [11] is a conceptual model and programming platform that integrates agents, environments
and organizations. It is built on the top of three platforms, namely Jason [8] for programming
agents, CArtAgO [9] for programming environments, and Moise [58] for programming organizations.
More specifically, Jason is a platform for agent development based on the language AgentSpeak [59]. Here,
an agent is specified by a set of beliefs, representing both the agent’s current state and knowledge
about the environment, a set of goals, and a set of plans which are courses of actions, triggered by
events. CArtAgO, based on the Agents & Artifacts meta-model [60], is a framework for environment
programming which conceives the environment as a layer encapsulating functionalities and services
that agents can explore and use at runtime [61]. An environment is programmed as a dynamic set
of artifacts, whose observable states can be perceived by the agents. Agents can act upon artifacts by
executing the operations that are provided by the artifact’s usage interface. Finally, Moise implements
a programming model for the organizational dimension. It includes an organization modeling language,
an organization management infrastructure [62] and a support for organization-based reasoning at the
agent level. A JaCaMo multiagent system is, then, given by an agent organization, programmed in Moise,
organizing autonomous agents, programmed in Jason, working in a shared, artifact-based environment,
programmed in CArtAgO.

According to [62], the Moise organizational model, adopted in JaCaMo, decomposes the
specification of an organization into three dimensions. The structural dimension specifies roles,
groups and links between roles in the organization. The functional dimension is composed of one
or more schemes that elicit how the global organizational goals are decomposed into subgoals
and how these subgoals are grouped in coherent sets, called missions, to be distributed to the
agents. Finally, the normative dimension binds the two previous dimensions by specifying the
roles’ permissions and obligations for missions. One important feature of Moise is to avoid a direct
link between roles and goals. Roles are linked to missions by means of permissions and obligations,
thereby keeping the structural and functional specifications independent. This independence, however,
is source of problems from the viewpoint of accountability determination. The reason is that schemes,
in principle, can be dynamically created during the execution (thus modifying the organizational
specification), and assigned to groups within an organization when agents are already playing
the associated roles. This means that agents, when entering into an organization by adopting
an organizational role, in principle have no information about what they could be asked to do in the
future. At the same time, the organizational infrastructure implemented in JaCaMo does not provide
any mechanism for agents to explicitly accept a given organizational goal or to negotiate any provision
for it. This is, indeed, in contrast with what was discussed in Section 3.

JaCaMo provides various kinds of organizational artifacts that altogether allow encoding
the state and behavior of an organization, in terms of groups, schemes and normative states.
These organizational artifacts provide both the actions the agents will use (to take part in

Appl. Sci. 2018, 8, 489 16 of 29

an organization and act upon it) and the observable properties that allow the state of the organization
(and its evolution) to be perceived by the agents. Artifacts’ observable properties are automatically
mapped to agents’ beliefs. The main organizational artifacts are the following:

• OrgBoard artifacts, which keep track of the overall current state of the organizational entity,
one instance for each organization (optional);

• GroupBoard artifacts, which manage the life-cycle of specific groups of agents, one for each group;
• SchemeBoard artifacts, each of which manages the execution of one scheme;
• NormativeBoard artifacts, used to maintain information concerning the agents’ compliance

to norms.

5.1. Accountability Issues and Their Reasons

In order to explain the lack of accountability of JaCaMo, let us now consider a scenario based on
an excerpt of the building-a-house example presented in [11]:

Example 2. An agent, called Giacomo, wants to build a house on a plot. In order to achieve the goal he will
have to hire some specialized companies, and then ensure that the contractors coordinate and execute in the right
order the various subgoals. Some tasks depend on other tasks while some other tasks can be performed in parallel.
This temporal ordering is specified in the functional specification of the scheme describing the process.

As soon as the building phase starts, Giacomo creates a GroupBoard artifact, called here
bh_group (for sake of discussion, the example is slightly revised with respect to the original version,
presented in [11]. This includes a change in the artifacts’ names), following the organization
specification. Roles are gathered in a group that will, then, be responsible for the house construction.
After that, he adopts his role and asks the hired agents to adopt theirs. Roles are adopted by
executing an operation that is provided by the GroupBoard artifact. Finally, a SchemeBoard artifact,
called bh_scheme, is created. When all agents have adopted their roles (i.e., when the group is
well-formed), this is added to the schemes the group is responsible for.

After this step, the involved agents could be asked to commit to some “missions”—in JaCaMo,
the term “commit” does not refer to social commitments but it is used in a general sense. This is
done by relying on obligations that are issued by the organization, according to the normative
specification. Figure 3 shows the general interaction pattern which is used in JaCaMo for role
adoption, mission distribution and goal assignment, as it would be instantiated for a companyA

agent, a plumber role and an install_plumbing mission (which in turn contains a plumbing_installed

goal). Agent companyA is asked to commit to install_plumbing with an obligation of the form
obligation(companyA, n8, committed(companyA, install_plumbing, ...), ...), where n8 is the norm
that binds the plumber role with the install_plumbing mission in the normative specification. This does
not yet mean the agent has to pursue the goal; this other obligation, however, may now be issued
by the organization. Indeed, the main purpose of the SchemeBoard artifact, bh_scheme, is to keep
track of which goals are ready to be pursued and create obligations for the agents accordingly.
For instance, when the plumbing_installed goal will be ready to be pursued, companyA will receive
a new an obligation obligation(companyA, ..., achieved(..., plumbing_installed, companyA),...),
and so forth with other organizational goals as soon as they become ready. Such obligations are
observed by the agents and the corresponding internal goals are automatically created.

Listing 1 shows an excerpt of the companyA agent. The above-mentioned obligation, through the
plan at line 15, creates the (internal) goal that is then pursued by following the plan at line 21. After that,
the organizational goal is set as achieved, too (line 19), using the goalAchieved operation provided by
the SchemeBoard artifact.

Appl. Sci. 2018, 8, 489 17 of 29

giacomo bh_group bh_scheme

adoptRole(plumber)

obligation(companyA, n8, committed(companyA, install_plumbing, ...,) ...)

commitMission(install_plumbing)

obligation(companyA, ..., achieved(..., plumbing_installed, companyA), ...)

goalAchieved(plumbing_installed)

Figure 3. Interaction between the companyA agent and the organization in the building-a-house example.

Listing 1. Excerpt of the Jason code of the companyA agent.

1 task_roles (" Plumbing", [plumber]).
2
3 +! contract(Task ,GroupName)
4 : task_roles(Task ,Roles)
5 <- lookupArtifact(GroupName , GroupId);
6 for (. member(Role , Roles)) {
7 adoptRole(Role)[artifact_id(GroupId)];
8 focus(GroupId)
9 }.

10
11 +obligation(Ag,Norm ,committed(Ag,Mission ,Scheme),Deadline)
12 : .my_name(Ag)
13 <- commitMission(Mission)[artifact_name(Scheme)].
14
15 +obligation(Ag,Norm ,What ,Deadline)[artifact_id(ArtId)]
16 : .my_name(Ag) &
17 (satisfied(Scheme ,Goal)=What | done(Scheme ,Goal ,Ag)=What)
18 <- !Goal[scheme(Scheme)];
19 goalAchieved(Goal)[artifact_id(ArtId)].
20
21 +! plumbing_installed
22 <- installPlumbing.

Now, let us suppose that Giacomo decides to have an air conditioning system installed, a thing
he had initially not thought of for this house. Suppose also that he wants to exploit the contracted
companies to achieve this purpose, which is related to the house construction, but was not discussed.
Let us also suppose he decides to assign an air_conditioning_installed goal to the agent playing the
plumber role. Giacomo’s exploitive plan would work because when an agent adopts a role in a group,
that agent has no information about the tasks that could be assigned to it. The bh_scheme SchemeBoard
artifact could even not have been created yet. In fact, tasks could be created independently of roles,
and only subsequently associated with them. In the example, however, the companyA agent, playing the
plumber role reasonably will not have a plan to achieve the air_conditioning_installed goal (indeed,
it has no such plan). Thus, when the corresponding obligation is created, this will not be fulfilled.

Given the above scenario, who could we consider accountable for the failure of the organizational
goal air_conditioning_installed?

Appl. Sci. 2018, 8, 489 18 of 29

• Should the agent playing the plumber role be held accountable? The agent violated its obligation
but it could not have reasonably anticipated the goal’s introduction, which effectively made
achievement impossible.

• Should Giacomo be held accountable since he introduced an unachievable goal, however licit?
• Perhaps the system itself ought to bear the brunt of accountability since it permits such kind of

behavior? The system, however, does not know agent capabilities.

The inability to attribute accountability stems from the lack of adherence to Principles 4 and
5. Goal assignment is, in fact, performed through schemes, which can even be dynamically created
and associated with an existing group. Moreover, the very independence between roles and goals
violates Principle 4: When enacting a role in JaCaMo, agents do not have a say on the kind of goals
they could be assigned. For this reason they cannot be held accountable later for some organizational
goal they have not achieved. The problem, here, is that JaCaMo’s organizational infrastructure agents
do not have the possibility to discuss with the organization about the acceptability of organizational
goals, which is, instead, encoded in the goal-agreement phase of the ADOPT protocol. In particular,
it is impossible for agents to put before the organization the provisions needed to achieve a given
organizational goal. This contradicts Principle 5.

Another critical issue concerns the powers the agents gain by taking part in an organization.
Following JaCaMo’s conceptual meta-model, the only ways for an agent to affect the organizational
state are either to enter into a group, or to change the state of an organizational goal, for example,
by achieving it. In order to join a group, an agent must have access to the GroupBoard artifact
which manages that group—indeed, the adoptRole operation is provided by that artifact. Similarly,
to set an organizational goal as achieved, the agent must have access to the SchemeBoard artifact,
which manages the execution of the scheme to which the goal belongs. From an accountability
standpoint, then, the role adoption does not end when a given agent enters into a group, but only
when a scheme is associated with the group and, consequently, the agent gains access to it. However,
should a new scheme be added to the group, the agents inside the group would also receive new
powers (i.e., the powers to change the states of the goals in the new scheme). This clearly contradicts
Principle 2, which requires a declaration of awareness of the powers, associated with a role, that should
be done by each of its players. This awareness is, instead, guaranteed by the role-adoption phase of
the ADOPT accountability protocol.

5.2. Achieving Accountability

We now show how we implemented the ADOPT accountability protocol in JaCaMo. A new
kind of artifact, called AccountabilityBoard artifact, was added to the organizational infrastructure
to preserve modularity. (The source code of the AccountabilityBoard artifact can be found here:
http://di.unito.it/accountabilityboard.) In other words, this addition did not affect the implementation
of the other organizational artifacts that were previously in JaCaMo. The new artifact supports both
phases of ADOPT: the role-adoption phase and the goal-agreement phase. The artifact also provides
some observable properties, informing the agents that focus on it about the overall state of the interaction.
These observable properties represent the events occurring during the interaction, and allow encoding
of the created commitments. More precisely, the artifact keeps track, in the first phase, of which calls
for roles are pending, of the agents’ replies, of which proposals have been accepted (and which have
not), of which agents have successfully completed the role adoption, and which have failed. Later on,
in the goal-agreement phase, the observable properties encode which provisions were accepted and
which were not, which goals were agreed upon by which agents (and with what kinds of provisions),
which ones were refused, and which provisions were confirmed to be holding. All such observable
properties are created by executing the above described operations on the accountability artifact.
In case of inspection, the observable properties help to identify the accountable parties.

Concerning the role-adoption phase, the artifact provides an organization with the operations
to call for role players, and to accept or reject the agents’ proposals. Agents, on the other hand,

http://di.unito.it/accountabilityboard

Appl. Sci. 2018, 8, 489 19 of 29

are provided with the operations to answer calls (either by refusing, or by proposing themselves),
to declare the acquisition of organizational powers and to declare a failure in the role-adoption process.
With respect to the power awareness declaration, we assume here that an agent acquires the powers
to operate on a given scheme when the scheme is assigned to the group to which the agent belongs,
and when the agent commits to the missions associated with its role in the scheme itself. To stipulate
this awareness, the agent declares it has access both to the group and to the scheme artifacts, as player
of the given role, which together define the scope of the agents’ actions in the organizational context.
By doing so, the agent ensures that it is conscious that it could be requested to achieve organizational
goals defined in the given scheme as a role player in the given group (and it will have the possibility
to refuse them or agree to their achievement). Should a new scheme be added to a given group,
agents inside it should renegotiate the terms of role adoption (by executing again the first phase of
the protocol) in order to acquire the organizational powers needed to act on the new scheme, too.
The AccountabilityBoard artifact operations that allow all these things are:

• callForRole(String addressee, String role): implements ADOPT’s call_for_proposal(adopt_role(Ag,
R)). It allows the organization’s owner to open a call for a role, addressed to a given agent.
An observable property pendingRole(addressee, role) is defined;

• refuseRole(String role): implements propose(adopt_role(Ag,R)). It allows agents to answer to a call
for role, refusing to adopt it. Its execution creates an observable property refusedRole(agent, role);

• proposeForRole(String role): implements propose(adopt_role(Ag,R)), and allows agents to propose
themselves as role players. It creates an observable property proposedForRole(agent, role);

• rejectProposalForRole(String proposer, String role): implements propose(adopt_role(Ag, R)),
and allows an organization’s owner to reject a proposer agent’s proposal. An observable property
roleProposalRejected(proposer, role) is created;

• acceptProposalForRole(String proposer, String role): implements accept_proposal(adopt_role(Ag,
R)), and allows the organization’s owner to accept an agent’s proposal. It creates an observable
property roleProposalAccepted(proposer, role);

• declareAdoptionSuccess(String role, String group, String scheme): implements inform(done
(adopt_role(Ag, R))), and allows a role player to declare awareness of the powers given by
scheme scheme, belonging to group group as a player of role R. An observable property
powerAcquired(agent, role, group, scheme) is defined. The execution of this operation completes
the role-adoption phase of ADOPT;

• declareAdoptionFailure(String role, String group, String scheme): implements failure(done
(adopt_role(Ag, R))), and allows an agent to inform the organization that its role-adoption process
failed. An observable property powerAcquisitionFailed(agent, role, group, scheme) is defined.

With respect to the goal-agreement phase of ADOPT, instead, the artifact provides operations to
the agents for refusing a goal, for proposing themselves as goal achievers, for proposing provisions
for it, for agreeing to pursue a goal when the provisions are accepted by the organization, and for
declaring goal achievement or failure. At the same time, it allows the organization (i.e., the agent that
is the organization’s owner) to open a call for goal achievement, to accept or reject provisions proposed
by the agents, and to declare that a given provision holds or not. In particular, the operations provided
by the artifact are:

• callForGoal(String addressee, String goal): implements call_for_proposal(achieve(g)) and allows
the organization’s owner to open a call for goal goal addressed to agent addressee,
a pendingGoal(addressee, goal) observable property is defined;

• refuseGoal(String goal): implements ADOPT’s refuse(achieve(g)) and refuse(achieve(g,prov)).
With this operation, an agent that a goal is addressed to can refuse to achieve it.
A refusedGoal(agent, goal) observable property is defined;

Appl. Sci. 2018, 8, 489 20 of 29

• proposeProvision(String goal, String provision): realizes the propose(achieve(g), prov)
message. An agent can propose a provision provision for goal goal assigned to it.
A pendingProvision (agent, goal, provision) observable property is created;

• acceptProvision(String proposer, String goal, String provision): implements accept_proposal
(achieve(g), prov) and allows the organization’s owner to accept a provision provision proposed
by agent proposer for goal goal. An observable property acceptedProvision(proposer, goal,

provision) is defined;
• rejectProvision(String proposer, String goal, String provision): conversely, implements

reject_proposal(achieve(g), prov), and allows the organization’s owner to reject the provision
proposed by the agent for the goal. A rejectedProvision(proposer, goal, provision) property
is defined;

• requestGoal(String addressee, String goal): implements request(achieve(g,prov)) in ADOPT.
The organization’s owner asks addressee to agree to achieve goal since the provisions proposed
by it have been accepted. A requestedGoal(addressee, goal) property is created;

• agreeGoal(String goal): implements agree(achieve(g, prov)) and allows an agent to agree to achieve
a given goal previously requested. An agreedGoal(agent, goal) property is defined;

• informProvision(String goal, String provision): implements inform(done(prov)). The organization’s
owner agent confirms that a provision provision related to a goal goal is currently holding.
This operation defines an observable property holdingProvision (goal, provision);

• failureProvision(String provision): implements failure(prov). The organization’s owner agent
declares that a provision provision related to a goal goal cannot hold. This operation defines
an observable property failedProvision(provision).

• informGoal(String goal): implements inform(done(achieve(g,prov))). It allows an agent to confirm
that a goal has been achieved. This operation defines an observable property achievedGoal(goal);

• failureGoal(String goal): implements failure(achieve(g,prov)). The agent declares that it has not
been able to achieve goal goal. This operation defines an observable property failedGoal(goal).

5.3. Building-a-House Revisited

Let us, now, see how the AccountabilityBoard artifact supports the execution of the ADOPT
protocol with the help of a revised version of our example. (The full code of the revised example is
available here: http://di.unito.it/buildingahouse.) In this case, before starting with the actual house
construction, Giacomo will create an instance of the AccountabilityBoard artifact, thereby becoming
the organization’s owner. This will allow it to execute organization-reserved operations on the artifact,
such as acceptProposal, acceptProvision, confirmProvision, and so on.

The original implementation of the example presented in [11] also includes a contracting phase
before the building one, in which Giacomo hires the needed company agents and assigns roles to them
through an auction mechanism. Thus, we mainly focus here on the agreement of goals. With respect to
the first part of the protocol, however, agents, after having adopted their roles in the bh_group, still have
to declare their awareness of the powers they are endowed with when the bh_scheme is assigned to the
group. This is achieved by means of the plan reported in Listing 2. As soon as the scheme is added to
the ones the bh_group is responsible for, agents inside it will focus on it (lines 7 and 11) and declare
power awareness with respect to the bh_group and bh_scheme (line 8). At the same time, they will
commit to their missions as requested by the organizational infrastructure.

Role players will now have the possibility to explicitly refuse or agree to pursue the organizational
goals assigned to them (possibly asking for some provisions to hold) when asked by the organization’s
owner. This is achieved by means of the plans reported in Listing 3. For instance, the plan at line 2
is triggered when an acceptable goal (line 4) is proposed to the agent and there is no need to ask for
provisions (line 5). In this case, the agent will simply propose a dummy true_prov provision to achieve
the goal (line 6). The plan at line 9 deals with an unacceptable goal (line 11). In this case the agent

http://di.unito.it/buildingahouse

Appl. Sci. 2018, 8, 489 21 of 29

simply refuses it (line 12). The plan at line 15 allows the agent to propose a provision for a pending
goal (line 17). Should the provision be accepted (line 22) and the goal requested (line 20), the agent
would then agree to pursue the goal given the provision (line 23). Finally, the plan at line 26 is triggered
when a provision for a previously agreed-upon goal is declared to hold. In this case the agent works in
order to achieve the goal. An internal goal corresponding to the organizational one will be generated
30 and, if achieved, the organizational goal will be set to achieved (line 31), as well. As a final step,
the goal must be declared as achieved on the AccountabilityBoard, too (line 32).

Listing 2. Jason plan needed by an agent to declare powers awareness.

1 // declare powers awareness
2 +schemes(L)[artifact_name(_,Group), workspace(_,_,W)]
3 : .my_name(Ag) &
4 play(Ag,Role ,Group)
5 <- for (. member(Scheme ,L)) {
6 lookupArtifact(Scheme ,ArtId)[wid(W)];
7 focus(ArtId)[wid(W)];
8 declareAdoptionSuccess(Role ,Group ,Scheme);
9 .concat(Group ,".",Scheme ,NBName);

10 lookupArtifact(NBName ,NBId)[wid(W)];
11 focus(NBId)[wid(W)];
12 }.

Listing 3. Excerpt of the Jason plans needed by an agent playing a role in an organization to be compliant with
the goal-agreement phase of ADOPT.

1 //no provision needed
2 +pendingGoal(Ag,Goal)
3 : .my_name(Ag) &
4 acceptableGoal(Goal) &
5 not provision(Goal ,Prov)
6 <- proposeProvision(Goal , true_prov).
7
8 // refuse goal
9 +pendingGoal(Ag,Goal)

10 : .my_name(Ag) &
11 not acceptableGoal(Goal)
12 <- refuseGoal(Goal).
13
14 // propose provision
15 +pendingGoal(Ag,Goal)
16 : .my_name(Ag) & acceptableGoal(Goal) & provision(Goal ,Prov)
17 <- proposeProvision(Goal ,Prov).
18
19 //agree goal , provision accepted
20 +requestedGoal(Ag,Goal)
21 : .my_name(Ag) &
22 acceptedProvision(Ag,Goal ,_)
23 <- agreeGoal(Goal).
24
25 // provision confirmed , must satisfy goal
26 +holdingProvision(Goal ,Prov)
27 : .my_name(Ag) &
28 agreedGoal(Ag,Goal) &
29 acceptedProvision(Ag,Goal ,Prov)
30 <- !Goal[scheme(Scheme)];
31 goalAchieved(Goal)[artifact_id(ArtId)];
32 informGoal(Goal).

Listing 4, in turn, shows an excerpt of the plans needed by Giacomo, as organization owner, to be
compliant with the second phase of the ADOPT protocol. First of all, the plan at line 1 allows it to
open a call for the achievement of a given goal (line 3) when the corresponding obligation is issued
by the organizational infrastructure. The plans at lines 5 and 10, in particular, allow it to accept or

Appl. Sci. 2018, 8, 489 22 of 29

reject provisions for goals asked by the role players (lines 7 and 12) depending on whether they seem
acceptable or not (lines 6 and 11). If a provision is accepted, then the goal is requested to the agent,
too (8). The plans at lines 14 and 19, finally, allow the organization’s owners to inform that a given
provision which has been agreed by some agent for a goal is holding. To this end, the provision must
be present in the agent’s belief base (i.e., the agent must believe that the proposition representing the
provision is true).

Going back to the companyA agent, playing the plumber role, should an air_conditioning_installed
(aci for short) goal be requested via call_for_proposal(achieve(aci)), the agent would have
the legitimate possibility to refuse the proposal or to conditionally accept by specifying
a provision. It could therefore ask that the walls be built in order to successfully install
the air conditioning by adding provision(aci, walls_built). The plan in line 15 in Listing 3
would be consequently triggered. As a result of executing proposeProvision, the following
commitment would be created: C1 = C(companyA, Giacomo, accept_proposal(aci, walls_built) ∧
request(achieve(aci, walls_built)), agree(achieve(aci, walls_built))). Giacomo in turn has the freedom
to either accept or reject companyA’s proposal. Since in the scheme specification walls
are built beforehand, Giacomo will reasonably accept the provision by executing the
acceptProvision operation in line 7 of Listing 4, leading to the creation of the commitment
C2 = C(Giacomo, companyA, request(achieve(aci, walls_built)) ∧ agree(achieve(aci, walls_built)),
in f orm(done(walls_built))). Moreover, it will subsequently execute requestGoal, which in turn
detaches C1 and partially satisfies the antecedent in C2.

Listing 4. Jason plans needed by an organization’s owner agent to be compliant with the second phase of the
accountability protocol.

1 +obligation(Ag,_,What ,_)[artifact_id(ArtId)]
2 : (satisfied(Scheme ,Goal)=What | done(Scheme ,Goal ,Ag)=What)
3 <- callForGoal(Ag ,Goal).
4
5 +pendingProvision(Agent ,Goal ,Provision)
6 : acceptableProvision(Goal ,Provision)
7 <- acceptProvision(Agent ,Goal ,Provision);
8 requestGoal(Agent ,Goal).
9

10 +pendingProvision(Agent ,Goal ,Provision)
11 : not acceptableProvision(Goal ,Provision)
12 <- rejectProvision(Agent ,Goal ,Provision).
13
14 +agreedGoal(Ag,Goal)
15 : acceptedProvision(Ag ,Goal ,Prov) &
16 Prov
17 <- informProvision(Goal ,Prov).
18
19 +Prov
20 : acceptedProvision(Ag ,Goal ,Prov) &
21 not achievedGoal(Goal)
22 <- informProvision(Goal ,Prov).

At this point, companyA should agree to achieve the aci goal to satisfy C1, given walls_built.
The agreement will also detach C2 and will create a commitment C3 = C(companyA,
Giacomo, in f orm(done(walls_built)), in f orm(done(achieve(aci, walls_built)))). Giacomo will, then,
execute informProvision, thereby satisfying C2 and detaching C3. As a final step, companyA will
achieve the goal by installing the air conditioning (see plan 26 in Listing 3), and will communicate
success via informGoal. After this step, C3 will be satisfied, and hopefully the house construction will
be successfully completed as expected.

At the same time, in case of organizational goal failure, an investigative entity, possibly Giacomo
himself, could inspect the observable properties of the AccountabilityBoard artifact defined during
the interaction, which altogether allow one to reconstruct the previously described commitments,

Appl. Sci. 2018, 8, 489 23 of 29

and, on this foundation, discern accountability comprehensively. For instance, should the walls not be
built, Giacomo would not be able to inform companyA that the previously accepted provision walls_built
holds. Consequently, companyA would not start to pursue the goal because C3 would not be detached.
At the same time, this would cause the violation of commitment C2, which would correctly lead to
considering Giacomo as accountable for the failure, since it was Giacomo who failed to provide an
agreed-upon provision. Similarly, should the provision hold and companyA not pursue the goal and
therefore be unable to preform informGoal, the violation of commitment C3 would allow one to consider
the company agent itself accountable. In any case, the investigation process is outside the scope of this
work, but the infrastructure provided by the artifact keeps track of the necessary information.

6. Impact and Discussion

MASs have demonstrated to be a viable approach for developing complex, distributed systems.
Indeed, several methodologies for designing MASs have been discussed in the literature [1–4,6,7]
and, correspondingly, different agent platforms [5,8–11] have been proposed as technological means
for practically implementing distributed applications. As discussed in Section 2, most of these
design methodologies and platforms adopt the organizational metaphor as a way for distributing
and coordinating agents. The organization provides a functional decomposition of organizational
goals into subgoals that can be assigned to agents. In addition, norms and obligations arising within
an organization specify the good conduct of agents. As we have already pointed out, this approach
has been criticized by some recent work [13,16], since such organizations lack a fundamental
characterization: the specification of accountability relationships among the agents. In [13], the need
for accountability relationships is motivated by the necessity of robustness even in open and dynamic
environments. Open systems, in fact, are particularly challenging from the point of view of software
engineering, because agents see an organization as a complex resource to be used in order to get
their own goals, which may not match with the organizational ones. As shown in [16], the functional
decomposition of organizational goals, and their attribution to agents, is not a viable solution for
assuring software robustness. In fact, when an agent fails an obligation and does not achieve a goal,
it cannot be held accountable since the contextual information is not sufficient to find out the causes,
and hence assign the blame. Did the agent have the control over the goal? In other words, did the
agent have a plan for reaching the goal? Was it legitimate from the point of view of the organization to
expect that the agent had and used such a plan? The impossibility to precisely determine the causes of
a failure makes the overall system vulnerable and poorly debugged.

ADOPT provides a mechanism for answering the above questions. By imposing agents to follow
a protocol, for enacting a role and for explicitly agreeing to accomplish a goal, our approach makes
agents accountable for their activities within the organization. When an agent agrees to achieve a goal,
it implicitly declares that is has control over that goal. This is consistent with the fact that agents
are not inspectable, and hence only the agent itself knows the tasks it can perform. On the other
hand, the agent’s declaration allows an organization to expect that the agent will bring about the goal
condition. When an agent fails to achieve a goal, thus, the fault can be easily isolated to the agent,
if it agreed with the goal, or to the organization, if it assigned that goal to an agent despite the agent
not previously accepting the goal. The ADOPT protocol is specified in terms of social commitments.
Commitments are indeed a powerful software engineering tool, since they provide a standard for
agent correctness. To verify the compliance of an agent to a protocol, in fact, it is sufficient to verify
whether the agent is capable of fulfilling the commitments associated with a specific protocol role.
This paves the way for methodologies implementing agents driven by the commitments (see for
example, the CoSE methodology [63]), and also mechanisms of agent-type checking, in which agent
behaviors are typed with the set of commitments they make progress on [64].

Concerning human organizations, business ethics and compliance programs (and, more in general,
self-regulatory initiatives) are becoming more and more central [20,21,65,66], bringing to the forefront
the importance of accountability. Many organizations and companies voluntarily adopt monitoring

Appl. Sci. 2018, 8, 489 24 of 29

and accountability frameworks, for example, [20,21], or comply to social accountability standards,
like [67], which aim at increasing awareness about values (like health and safety, sustainability, no use
of child labor, gender equality, and so on.) and also behaviors that account for such values. Principals
must be held accountable for their (mis)behavior and, therefore, provide feedback about the reasons of
performance.

Accountability frameworks vary considerably, depending on the kind of actors that are involved,
on the kind of commitments, and on the activities that may be put under scrutiny. Figure 4 summarizes
a general cycle that can be found (declined in many ways) in many organizations. (The picture is
inspired by the framework schemas described in [20,22].) An accountability framework relies on
further frameworks, not in the picture for simplicity: for monitoring, for risk assessment, and for
managing complaint responses. Of these, the monitoring framework is strictly necessary, as monitoring
pairs with and completes the obligation to report that is inherent in accountability.

Figure 4. A general scheme for accountability frameworks.

Developing and implementing self-regulatory initiatives is a difficult task which requires human
and financial resources. Stronger compliance mechanisms risk reducing participation to a small group
of well-resourced organizations. Smaller organizations, often those most in need of support to improve
quality and accountability, may be unable to participate [24]. Figure 5 shows the mechanisms through
which self-regulation is realized: more often than not, realization of compliance (and its assessment)
requires the intervention of external agencies and auditors. Informal structures have a limited impact.
Accountability frameworks are currently very-little supported by software and information systems.
The commitments that involve the parties are basically hand-written by filling in forms [22,23], and the
assessment of satisfaction or violation of the involved liabilities, as well as the actual accounting
process, is totally handled by authorized human parties [24]. The problem is that when accountability
channels are informal or ambiguous in the long run, all these processes will be thwarted, leading to
little effectiveness and poor performance, in particular when cross-organizational relationships must
be established and maintained.

The proposal presented in this paper can help in supporting organizations, big and small,
in realizing self-regulatory initiatives. Specifically, it allows creating software support to the
commitment-creation phase, the monitoring-of-the-act phase, and the identification of the accountable
parties who should report about circumstances under scrutiny. The subsequent revision, embodied by
the review and learn phases, will instead be carried out by the involved principals. This can be done
because the way in which accountability is modeled finds correspondence in the way accountability is
understood in human accountability frameworks. Most of these (among which [20,22,23,65,66] share
a common interpretation of accountability that is well described by [66] as a relationship between two
or more parties that implies responsibilities and consequences) share obligation to take responsibility
(belonging to the development of commitments and to the act phase), to demonstrate performance,
to review. In particular, taking responsibility belongs to the development of commitments and to the
act phase: it entails awareness to answer for what was (not) accomplished and also for the means used
in the effort. Expectations about outcomes are intended to be agreed expectations (even in hierarchic
contexts), and to stem from either a formal or informal agreement on what should be accomplished.

Appl. Sci. 2018, 8, 489 25 of 29

Weak compliance Strong compliance

Formalized structure

Informal structureWeaker self-regulation

Stronger self-regulation

Codes of conduct / ethics

W
or

ki
ng

gr
ou

ps

In
fo

rm
at

io
n

se
rv

ic
es

A
w

ar
ds

sc
he

m
es

Self
assessments

Rating
agencies

Peer
assessment

Third-party
accreditation

Figure 5. Types of self-regulatory initiatives within individual civil– social organizations [24].

7. Conclusions

Accountability is an important asset in human societies. In this paper we have shown how
accountability plays a central role also in MAS engineering. Specifically, we have argued that while
MASs rely on the metaphor of (human) organizations as a way for distributing goals and for establishing
norms of good behavior, the organizational models in the state of the art are inadequate for developing
robust open systems. In open systems, the agents see an organization as a means for reaching their
own goals, which may not coincide with the organizational ones. Thus, when an organization assigns
a goal to an agent, that organization cannot hold the expectation that the agent will pursue that goal.
This poses a question about the robustness of an open MAS, which can only be obtained by relying
on the commitments that each agent voluntarily takes towards the organization as a whole. This is
the rationale that has driven us in proposing the ADOPT protocol, whose objective is to make agents,
and the organization to which they belong, mutually accountable.

We plan to continue this study along two main research directions. The first concerns the
specification of a conceptual model of accountability for use in MASs. We believe the notions of
expectation and of control to be at the heart of accountability, and find a challenge in capturing the
relational nature of this concept. Among the repercussions of such a model lies the possibility to
provide organizations with a tool that will enable them to evaluate, and possibly improve, the processes
put in place, as well as the whole organizational structure. The second is to account in the model,
and also in the protocol, for a notion of negative accountability. This means not only accounting for
what agents should have achieved and have not, but also for active interferences, by which agents
may impede social progress. In addition, the ADOPT protocol presented in this paper could be
complemented with some reasoning mechanism on the forum side. ADOPT, in fact, aims at tracing,
during the interaction, the relevant information for the computation of accountability, but it does
not address how to use such information to identify who is accountable. Indeed, this is the task
of the forum [38]. A possible way to support the forum, thus, could be represented by the Delphi
protocol, whose first formalization in terms of a MAS organization is given in [68] by means of the
INGENIAS [69] methodology. In the Delphi protocol, a client submits to a group of experts a question,
and one, or more, monitor agents set up an iterative interaction among the experts until a consensus

Appl. Sci. 2018, 8, 489 26 of 29

is reached about the answer to the question. A similar mechanisms for consensus reaching can be
adopted for automating, at least in part, the task of the forum.

Supplementary Materials: The source code of the AccountabilityBoard artifact and of the examples presented in
Section 5 is available at http://di.unito.it/adoptjacamo.

Acknowledgments: This work was partially supported by the Accountable Trustworthy Organizations and Systems
(AThOS) project, funded by Università degli Studi di Torino and Compagnia di San Paolo (CSP 2014).

Author Contributions: All authors equally contributed to this research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNP Contract Net Protocol
CTL Computation tree logic
CTLC Computation tree logic with commitment modality
CTLK Computation tree logic with epistemic modality
FIPA Foundation for Intelligent Physical Agents
IOSE Interaction-oriented software engineering
MAS Multiagent system
STS Socio–technical system

References

1. Esteva, M.; Rodríguez-Aguilar, J.A.; Sierra, C.; Garcia, P.; Arcos, J.L. On the Formal Specification
of Electronic Institutions. In Agent Mediated Electronic Commerce: The European AgentLink Perspective;
Dignum, F., Sierra, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 126–147.

2. Dignum, V. A Model for Organizational Interaction: Based on Agents, Founded in Logic; SIKS: Lyon, France, 2004.
3. Dignum, V.; Vázquez-Salceda, J.; Dignum, F. OMNI: Introducing Social Structure, Norms and Ontologies into

Agent Organizations; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2004;
Volume 4, pp. 181–198.

4. Fornara, N.; Viganò, F.; Verdicchio, M.; Colombetti, M. Artificial institutions: A model of institutional
reality for open multiagent systems. Artif. Intell. Law 2008, 16, 89–105.

5. Mariani, S.; Omicini, A. Coordinating activities and change: An event-driven architecture for situated
MAS. Eng. Appl. Artif. Intell. 2015, 41, 298–309.

6. Zambonelli, F.; Jennings, N.R.; Wooldridge, M. Developing multiagent systems: The Gaia methodology.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 2003, 12, 317–370.

7. Kolp, M.; Giorgini, P.; Mylopoulos, J. Multi-agent architectures as organizational structures. Auton. Agents
Multi-Agent Syst. 2006, 13, 3–25.

8. Bordini, R.H.; Hübner, J.F.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak Using Jason;
John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 8.

9. Ricci, A.; Piunti, M.; Viroli, M.; Omicini, A. Environment Programming in CArtAgO. In Multi-Agent
Programming: Languages, Tools and Applications; Springer: Boston, MA, USA, 2009; pp. 259–288.

10. Dastani, M.; Tinnemeier, N.A.; Meyer, J.J.C. A programming language for normative multiagent systems.
In Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models; IGI Global:
Hershey, PA, USA, 2009; pp. 397–417.

11. Boissier, O.; Bordini, R.H.; Hübner, J.F.; Ricci, A.; Santi, A. Multi-agent Oriented Programming with
JaCaMo. Sci. Comput. Program. 2013, 78, 747–761.

12. Wooldridge, M.J. Introduction to Multiagent Systems; Wiley: Hoboken, NJ, USA, 2009.
13. Chopra, A.K.; Singh, M.P. From social machines to social protocols: Software engineering foundations for

sociotechnical systems. In Proceedings of the 25th International Conference on World Wide Web, Montréal,
QC, Canada, 11–15 April 2016.

http://di.unito.it/adoptjacamo

Appl. Sci. 2018, 8, 489 27 of 29

14. Baldoni, M.; Baroglio, C.; May, K.M.; Micalizio, R.; Tedeschi, S. Computational Accountability.
In Proceedings of the AI*IA Workshop on Deep Understanding and Reasoning: A challenge for
Next-Generation Intelligent Agents, URANIA 2016, Genova, Italy, 28 November 2016; Chesani, F., Mello, P.,
Milano, M., Eds.; Volume 1802, pp. 56–62.

15. Baldoni, M.; Baroglio, C.; Capuzzimati, F.; Micalizio, R. Commitment-based Agent Interaction in JaCaMo+.
Fundam. Inform. 2018, 159, 1–33.

16. Baldoni, M.; Baroglio, C.; May, K.M.; Micalizio, R.; Tedeschi, S. ADOPT JaCaMo: Accountability-Driven
Organization Programming Technique for JaCaMo. In PRIMA 2017: Principles and Practice of Multi-Agent
Systems; Bo, A., Bazzan, A., Leite, J., van der Torre, L., Villata, S., Eds.; Lecture Notes in Artificial Intelligence;
Springer: Nice, France, 2017; Volume 10621, pp. 295–312.

17. Anderson, P.A. Justifications and Precedents as Constraints in Foreign Policy Decision-Making. Am. J.
Political Sci. 1981, 25, 738–761.

18. Castelfranchi, C. Commitments: From Individual Intentions to Groups and Organizations. In Proceedings
of the First International Conference on Multiagent Systems, ICMAS 1995, San Francisco, CA, USA,
12–14 June 1995; Lesser, V. R., Gasser, L., Eds.; pp. 41–48.

19. Singh, M.P. An ontology for commitments in multiagent systems. Artif. Intell. Law 1999, 7, 97–113.
20. Zahran, M. Accountability Frameworks in the United Nations System; UN Report A/66/710; United Nations:

New York, NY, USA, 2012. Available online: http://repository.un.org/handle/11176/293914 (accessed on
22 March 2018).

21. United Nations Children’s Fund. Report on the Accountability System of UNICEF; E/ICEF/2009/15; UNICEF:
New York, NY, USA, 2009. Available online: https://www.unicef.org/about/execboard/files/09-15-
accountability-ODS-English.pdf (accessed on 22 March 2018).

22. Sustainable Energy for All Initiative. Accountability Framework; United Nations: New York, NY, USA, 2014.
Available online: https://sustainabledevelopment.un.org/content/documents/1644se4all.pdf (accessed
on 22 March 2018).

23. Obrecht, A. Effective Accountability? The Drivers, Benefits and Mechanisms of CSO Self-Regulation; Technical
Report Briefing No. 130; One World Trust: London, UK, 2012.

24. Warren, S.; Lloyd, R. Civil Society Self-Regulation; Technical Report Briefing Paper Number 119; One World
Trust: London, UK, 2009.

25. Baldoni, M.; Boella, G.; Genovese, V.; Mugnaini, A.; Grenna, R.; van der Torre, L. A Middleware for
Modelling Organizations and Roles in Jade. In Proceedings of the Programming Multi-Agent Systems
(ProMAS 2009), Budapest, Hungary, 10–15 May 2009; Braubach, L., Briot, J.P., Thangarajah, J., Eds.; Lecture
Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; Volume 5919, pp. 100–117.

26. Boella, G.; van der Torre, L. The ontological properties of social roles in multiagent systems: Definitional
dependence, powers and roles playing roles. Artif. Intell. Law 2007, 15, 201–221.

27. Chopra, A.K.; Dalpiaz, F.; Aydemir, F.B.; Giorgini, P.; Mylopoulos, J.; Singh, M.P. Protos: Foundations for
engineering innovative sociotechnical systems. In Proceedings of the IEEE 22nd International Requirements
Engineering Conference (RE 2014), Karlskrona, Sweden, 25–29 August 2014; pp. 53–62.

28. Bella, G.; Paulson, L.C. Accountability Protocols: Formalized and Verified. ACM Trans. Inf. Syst. Secur.
2006, 9, 138–161.

29. De Oliveira, A.S.; Charfi, A.; Schmeling, B.; Serme, G. A Model-Driven Approach for Accountability in
Business Processes. In Enterprise, Business-Process and Information Systems Modeling; Bider, I., Gaaloul, K.,
Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P., Eds.; Lecture Notes in Business Information
Processing; Springer: Berlin/Heidelberg, Germany, 2014; Volume 175, pp. 184–199.

30. Yumerefendi, A.R.; Chase, J.S. The Role of Accountability in Dependable Distributed Systems.
In Proceedings of the First Conference on Hot Topics in System Dependability, Yokohama, Japan,
28 June–1 July 2005; USENIX Association: Berkeley, CA, USA, 2005; p. 3.

31. Haeberlen, A.; Kouznetsov, P.; Druschel, P. PeerReview: Practical Accountability for Distributed Systems.
SIGOPS Oper. Syst. Rev. 2007, 41, 175–188.

32. Kramer, S.; Rybalchenko, A. A Multi-Modal Framework for Achieving Accountability in Multi-Agent
Systems. In Proceedins of the Workshop on Logics in Security, Copenhagen, Denmark, 9–13 August 2010;
pp. 148–174.

33. Nissenbaum, H. Accountability in a computerized society. Sci. Eng. Ethics 1996, 2, 25–42.

http://repository.un.org/handle/11176/293914
 https://www.unicef.org/about/execboard/files/09-15-accountability-ODS-English.pdf
 https://www.unicef.org/about/execboard/files/09-15-accountability-ODS-English.pdf
https://sustainabledevelopment.un.org/content/documents/1644se4all.pdf

Appl. Sci. 2018, 8, 489 28 of 29

34. Mao, W.; Gratch, J. Modeling Social Causality and Responsibility Judgment in Multi-agent Interactions.
J. Artif. Intell. Res. 2012, 44, 223–273.

35. Feltus, C.; Petit, M. Building a Responsibility Model Including Accountability, Capability and Commitment.
In Proceedings of the International Conference on Availability, Reliability and Security, Fukuoka, Japan,
16–19 March 2009; pp. 412–419.

36. Küsters, R.; Truderung, T.; Vogt, A. Accountability: Definition and Relationship to Verifiability. In Proceedings
of the 17th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 4–8 October
2010; ACM: New York, NY, USA, 2010; pp. 526–535.

37. Bovens, M.; Goodin, R.E.; Schillemans, T. The Oxford Handbook of Public Accountability; Oxford University
Press: Oxford, UK, 2014.

38. Burgemeestre, B.; Hulstijn, J. Designing for Accountability and Transparency: A value-based argumentation
approach. In Handbook of Ethics, Values, and Technological Design: Sources, Theory, Values and Application
Domains; Springer: Basel, Switzerland, 2015.

39. Simon, J. The Online Manifesto: Being human in a Hyperconnected Era; Floridi, L., Ed.; Springer: Basel,
Switzerland, 2015.

40. Chopra, A.K.; Singh, M.P. The thing itself speaks: Accountability as a foundation for requirements
in sociotechnical systems. In Proceedings of the IEEE 7th International Workshop on Requirements
Engineering and Law (RELAW), Karlskrona, Sweden, 26 August 2014; p. 22.

41. Braham, M.; van Hees, M. An Anatomy of Moral Responsibility. Mind 2012, 121, 601–634.
42. Marengo, E.; Baldoni, M.; Baroglio, C.; Chopra, A.K.; Patti, V.; Singh, M.P. Commitments with Regulations:

Reasoning about Safety and Control in REGULA. In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, 2–6 May 2011; Tumer, K.,
Yolum, P., Sonenberg, L., Stone, P., Eds.; Volume 2, pp. 467–474.

43. Dastani, M.; Lorini, E.; Meyer, J.C.; Pankov, A. Other-Condemning Anger = Blaming Accountable Agents
for Unattainable Desires. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, São Paulo, Brazil, 8–12 May 2017; pp. 1520–1522.

44. Hohfeld, W.N. Some Fundamental Legal Conceptions as Applied in Judicial Reasoning. Yale Law J. 1913,
23, 16–59.

45. Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specification; Foundation for
Intelligent Physical Agents: Geneva, Switzerland, 2002.

46. Castelfranchi, C. Commitments: From Individual Intentions to Groups and Organizations; The MIT Press:
Cambridge, MA, USA, 1995; pp. 41–48.

47. Telang, P.R.; Singh, M.P.; Yorke-Smith, N. Relating Goal and Commitment Semantics; Lecture Notes in
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7217, pp. 22–37.

48. Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem
Solver. IEEE Trans. Comput. 1980, 29, 1104–1113.

49. Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol Specification; Foundation
for Intelligent Physical Agents: Geneva, Switzerland, 2002.

50. Foundation for Intelligent Physical Agents. FIPA Request Interaction Protocol Specification; Foundation for
Intelligent Physical Agents: Geneva, Switzerland, 2002.

51. Lai, R.; Jirachiefpattana, A. Protocol Verification. In Communication Protocol Specification and Verification;
Springer: Boston, MA, USA, 1998; pp. 143–163.

52. Alpern, B.; Schneider, F.B. Recognizing safety and liveness. Distrib. Comput. 1987, 2, 117–126.
53. Sajkowski, M. Protocol Verification Techniques: Status Quo and Perspectives. Protocol Specification,

Testing and Verification IV. In Proceedings of the IFIP WG6.1 Fourth International Workshop on Protocol
Specification, Testing and Verification, Skytop Lodge, PA, USA, 11–14 June 1984; pp. 697–720.

54. El-Menshawy, M.; Bentahar, J.; Dssouli, R. Symbolic model checking commitment protocols using reduction.
In Proceedings of the 8th International Workshop on Declarative Agent Languages and Technologies,
DALT 2010, Toronto, ON, Canada, 10 May 2010; Lecture Notes in Artificial Intelligence; Volume 6619,
pp. 185–203.

55. Clarke, E.M.; Emerson, E.A.; Sistla, A.P. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program. Lang. Syst. 1986, 8, 244–263.

Appl. Sci. 2018, 8, 489 29 of 29

56. Penczek, W.; Lomuscio, A. Verifying Epistemic Properties of Multi-agent Systems via Bounded Model
Checking. Fundam. Inform. 2003, 55, 167–185.

57. Lomuscio, A.; Qu, H.; Raimondi, F. MCMAS: An open-source model checker for the verification of
multiagent systems. Int. J. Softw. Tools Technol. Transf. 2017, 19, 9–30.

58. Hubner, J.F.; Sichman, J.S.; Boissier, O. Developing Organised Multiagent Systems Using the MOISE+
Model: Programming Issues at the System and Agent Levels. Int. J. Agent-Oriented Softw. Eng. 2007,
1, 370–395.

59. Rao, A.S. AgentSpeak(L): BDI agents speak out in a logical computable language. In Agents Breaking
Away; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1038,
pp. 42–55.

60. Omicini, A.; Ricci, A.; Viroli, M. Artifacts in the A&A meta-model for multiagent systems. Auton. Agents
Multi-Agent Syst. 2008, 17, 432–456.

61. Weyns, D.; Omicini, A.; Odell, J. Environment as a first class abstraction in multiagent systems.
Auton. Agents Multi-Agent Syst. 2007, 14, 5–30.

62. Hübner, J.F.; Boissier, O.; Kitio, R.; Ricci, A. Instrumenting multiagent organisations with organisational
artifacts and agents. Auton. Agents Multi-Agent Syst. 2010, 20, 369–400.

63. Baldoni, M.; Baroglio, C.; Capuzzimati, F.; Micalizio, R. Empowering Agent Coordination with Social
Engagement. In AI*IA 2015, Advances in Artificial Intelligence; Lecture Notes in Artificial Intelligence;
Springer: Berlin/Heidelberg, Germany, 2015; Volume 9336, pp. 89–101.

64. Baldoni, M.; Baroglio, C.; Capuzzimati, F.; Micalizio, R. Type checking for protocol role enactments via
commitments. Auton. Agents Multi-Agent Syst. 2018, 1–38, doi:10.1007/s10458-018-9382-3.

65. World Health Organization. WHO Accountability Framework. 2015. Available online: http://www.who.
int/about/who_reform/managerial/accountability-framework.pdf (accessed on 22 March 2018).

66. Office of the Auditor General of Canada. Modernizing Accountability in the Public Sector. In Report
of the Auditor General of Canada; Minister of Public Works and Government Services Canada: Ottawa,
ON, Canada, 2002; Chapter 9. Available online: http://www.oag-bvg.gc.ca/internet/English/parl_oag_
200212_09_e_12403.html (accessed on 22 March 2018).

67. Social Accountability International. Social Accountability 8000 International Standard; Social Accountability
International: New York, NY, USA, 2014.

68. García-Magariño, I.; Gómez-Sanz, J.J.; Pérez-Agüera, J.R. A multiagent based implementation of a Delphi
process. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal, 12–16 May 2008; Volume 3, pp. 1543–1546.

69. Gómez-Sanz, J.J.; Pavón, J. Implementing Multi-agent Systems Organizations with INGENIAS.
In Proceedings of the Third International Workshop on Programming Multi-Agent Systems (ProMAS 2005),
Utrecht, The Netherlands, 26 July 2005; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3862, pp. 236–251.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

 http://www.who.int/about/who_reform/managerial/accountability-framework.pdf
 http://www.who.int/about/who_reform/managerial/accountability-framework.pdf
http://www.oag-bvg.gc.ca/internet/English/parl_oag_200212_09_e_12403.html
http://www.oag-bvg.gc.ca/internet/English/parl_oag_200212_09_e_12403.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Multiagent Systems Need Accountability
	Computational Accountability in Organizational Settings
	The ADOPT Accountability Protocol
	Role Adoption
	Goal Agreement
	Verifying ADOPT
	Principles 1, 2 and 3
	Reachability Property and Principles 4 and 5
	Safety
	Liveness and Nested Commitments

	Case Study: Accountability in the JaCaMo Framework
	Accountability Issues and Their Reasons
	Achieving Accountability
	Building-a-House Revisited

	Impact and Discussion
	Conclusions
	References

