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ON THE AUTOMORPHISM GROUP OF A SYMPLECTIC HALF-FLAT
6-MANIFOLD

FABIO PODESTA AND ALBERTO RAFFERO

ABSTRACT. We prove that the automorphism group of a compact 6-manifold M endowed
with a symplectic half-flat SU(3)-structure has abelian Lie algebra with dimension bounded
by min{5,b:1(M)}. Moreover, we study the properties of the automorphism group action
and we discuss relevant examples. In particular, we provide new complete examples on
TS? which are invariant under a cohomogeneity one action of SO(4).

1. INTRODUCTION

An SU(3)-structure on a six-dimensional smooth manifold M is the data of an almost
Hermitian structure (g,.JJ) with fundamental 2-form w = g(J-,-) and a complex volume

form W = ¢ + i € Q3O(M) such that

(1.1) WA= gws.

By [11], the whole data (g, J, ¥) is completely determined by the real 2-form w and the
real 3-form v, provided that they satisfy suitable conditions (see §3| for more details).

An SU(3)-structure (w,1)) is said to be symplectic half-flat if both w and 1 are closed.
In this case, the intrinsic torsion can be identified with a unique real (1,1)-form o which
is primitive with respect to w, i.e., 0 Aw? = 0, and fulfills d{p\ =0 Aw (see e.g. [4]). This
SU(3)-structure is half-flat according to [4, Def. 4.1], namely d(w?) = 0 and d¢ = 0, and the
corresponding almost complex structure J is integrable if and only if o vanishes identically.
When this happens, (M, w, ) is a Calabi- Yau 3-fold. Otherwise, the symplectic half-flat
structure is said to be strict.

In recent years, symplectic half-flat structures turned out to be of interest in supersym-
metric string theory. For instance, in [10] the authors proved that supersymmetric flux
vacua with constant intermediate SU(2)-structure [2] are related to the existence of special
classes of half-flat structures on the internal 6-manifold. In particular, they showed that
solutions of Type ITA SUSY equations always admit a symplectic half-flat structure. In [12],
the definition of symplectic half-flat structures, which are called supersymmetric of Type
ITA, is generalized in higher dimensions, and it is proved that semi-flat supersymmetric
structures of Type IIA correspond to semi-flat supersymmetric structures of Type IIB via
the SYZ and Fourier-Mukai transformations.
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In mathematical literature, symplectic half-flat structures were first introduced and stud-
ied in [6] and then in [8], while explicit examples were exhibited in [5, [7, @] 16, [20]. Most of
them consist of simply connected solvable Lie groups endowed with a left-invariant symplec-
tic half-flat structure. Moreover, in [9] it was proved that every six-dimensional compact
solvmanifold with an invariant symplectic half-flat structure also admits a solution of Type
ITA SUSY equations.

Let M be a 6-manifold endowed with a strict symplectic half-flat structure (w,). In
the present paper, we are interested in studying the properties of the automorphism group
Aut(M,w, ) = {f € Diff(M) | f*w =w, f*y =1}, aiming at understanding how to con-
struct non-trivial examples with high degree of symmetry.

In [I6], we proved the non-existence of compact homogeneous examples and we classified
all non-compact cases which are homogeneous under the action of a semisimple Lie group
of automorphisms. Here, in Theorem we show that the Lie algebra of Aut(M,w,) is
abelian with dimension bounded by min{5,b; (M)} whenever M is compact. This allows to
obtain a direct proof of the aforementioned non-existence result. In the same theorem, we
also provide useful information on geometric properties of the Aut’(M,w,)-action on the
manifold, proving in particular that the automorphism group acts by cohomogeneity one
only when M is diffeomorphic to a torus. Some relevant examples are then discussed in
order to show that the automorphism group can be non-trivial and that the upper bound
on its dimension can be actually attained.

As our previous result on non-compact homogeneous spaces suggests, the non-compact
ambient might provide a natural setting where looking for new examples. In section [3| we
obtain new complete examples of symplectic half-flat structures on the tangent bundle T'S?
which are invariant under the natural cohomogeneity one action of SO(4). These include
also the well-known Calabi-Yau example constructed by Stenzel [19].

2. THE AUTOMORPHISM GROUP

Let M be a six-dimensional manifold endowed with an SU(3)-structure (w,?). The
automorphism group of (M, w, ) consists of the diffeomorphisms of M preserving the SU(3)-
structure, namely

Aut(M,w, ) = {f € Diff(M) | f'w = w, f* = 1}.

Clearly, Aut(M,w,®) is a closed Lie subgroup of the isometry group Iso(M,g), as every
automorphism preserves the Riemannian metric ¢ induced by the pair (w,). The Lie
algebra of the identity component G := Aut’(M,w, ) is

g={XeX(M) | Lxw=0, Lxip =0},

and every X € g is a Killing vector field for the metric g. Moreover, the Lie group
Aut(M,w, ) C Iso(M, g) is compact whenever M is compact.

If (M,w, ) is a Calabi-Yau 3-fold, i.e., if w, ¢ and 121\ are all closed, then the Riemannian
metric g is Ricci-flat and Hol(g) € SU(3). When M is compact and the holonomy group is
precisely SU(3), it follows from Bochner’s Theorem that Aut(M,w, ) is finite.
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We now focus on strict symplectic half-flat structures, namely SU(3)-structures (w, 1))
such that

do=0, dp=0, di)=0Aw,
with o € [Q'(M)] = {rk € Q*(M) | J& = K, kK Aw? =0} not identically vanishing. Notice
that the condition on ¢ is equivalent to requiring that the almost complex structure J

induced by (w,) is non-integrable (cf. e.g. [4]). In this case, we can show the following
result.

Theorem 2.1. Let M be a compact siz-dimensional manifold endowed with a strict sym-
plectic half-flat structure (w,). Then, there ezists an injective map

Fg— AN M), X ixw,
where 1 (M) is the space of Ay-harmonic 1-forms. Consequently, the following properties
hold:

1) dim(g) < by(M);

2) g is abelian with dim(g) < 5;

3) for every p € M, the isotropy subalgebra g, has dimension dim(g,) < 2. If dim(g,) = 2
for some p, then G, = G;

4) the G-action is free when dim(g) > 4. In particular, when dim(g) = 5 the manifold M
is diffeomorphic to TS.

Before proving the theorem, we show a general lemma.

Lemma 2.2. Let (w, 1)) be an SU(3)-structure. Then, for every vector field X the following
identity holds
LxP AN = =2 % (1xw),

where x denotes the Hodge operator determined by the Riemannian metric g and the orien-

tation dVy = %w?’.

Proof. From the equation tx ¥V A ¥ = 0, which holds for every vector field X, we have
WA = i A, i A= =i A,

Using the above identities and the relations ¢y = LJX@Z, LyxW = —LX'(Z, we get
YN = ux AP
= ux(WAY)+ D Aux

= LJX({D\/\ 7/1) - QZ/\ LX{D\
= ux(WANY) =P ANixy.

Hence, 2xy AN = 1% (12/\ ¥). Now, from condition (1.1) we know that 12/\ RS —% w3 =
—4dVy. Thus,

ix At = =20,5dV, = =2 (JX)’ = =2 % (1xw).
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Proof of Theorem [2.1]

Let X € g. Then, using the closedness of w we have 0 = Lxw = d(1xw). Moreover, since
dip = 0 and Ly = 0, then d(tx¥ A ) = 0 and Lemma implies that d x (txw) = 0.
Hence, the 1-form txw is Ag-harmonic and .# coincides with the injective map Z — 1w
restricted to g. From this|1f) follows.

In order to prove , we begin recalling that every Killing field on a compact manifold
preserves every harmonic form. Consequently, for all X, Y € g we have

0=Ly(1xw) = Ly, x)W =+ Lx (Lyw) = Ly, xW-

Since the map Z — ¢ w is injective, we obtain that g is abelian. Now, G is compact abelian
and it acts effectively on the compact manifold M. Therefore, the principal isotropy is
trivial and dim(g) < 6. When dim(g) = 6, M can be identified with the 6-torus T% endowed
with a left-invariant metric, which is automatically flat. Hence, if (w, ) is strict symplectic
half-flat, then dim(g) < 5.

As for |3)), we fix a point p of M and we observe that the image of the isotropy represen-
tation p : G, — O(6) is conjugate into SU(3). Since SU(3) has rank two and G, is abelian,
the dimension of g, is at most two. If dim(g,) = 2, then the image of p is conjugate to a
maximal torus of SU(3) and its fixed point set in T, M is trivial. As Tp,(G - p) C (T,M)%»,
the orbit G - p is zero-dimensional, which implies that dim(g) = 2.

Assertion is equivalent to proving that Gy, is trivial for every p € M whenever dim(g) >
4. In this case, dim(g,) < 1 by [3)), and therefore dim(G - p) > 3. If G, contains a non-trivial
element h, then p(h) fixes every vector in T,(G - p) and, consequently, its fixed point set
in T, M must be non-trivial of dimension at least three. On the other hand, a non-trivial
element of SU(3) is easily seen to have a fixed point set of dimension at most two. This
shows that G, = {1g}. The last assertion follows immediately from [14]. O

Point [2]) in the above theorem gives a direct proof of a result obtained in [16].

Corollary 2.3. There are no compact homogeneous 6-manifolds endowed with an invariant
strict symplectic half-flat structure.

It is worth observing here that the non-compact case is less restrictive. For instance, it
is possible to exhibit non-compact examples which are homogeneous under the action of a
semisimple Lie group of automorphisms (see e.g. [16]). Moreover, in the next section we
shall construct non-compact examples of cohomogeneity one with respect to a semisimple
Lie group of automorphisms.

The next example was given in [8]. It shows that G can be non-trivial, that the upper
bound on its dimension given in can be attained, and that|4]) is only a sufficient condition.

Example 2.4. On R® with standard coordinates (z!,...,z%) consider three smooth func-
tions a(z!), b(2?), c(x3) in such a way that

A= b(a?) — (@), A= c(@®) —a(zh), 3= a(a) —b(a?),

are ZS-periodic. Then, the following pair of Z%-invariant differential forms on RS induces
an SU(3)-structure on T = R%/Z5:

w=dz' +da® + d2®0, P = —e™ da'?® + M2 a3 — M da?3t + da?S,
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where dz*/* is a shorthand for the wedge product dz? Adx?d Adx® A---. It is immediate to
check that (w, ) is strict symplectic half-flat whenever the functions \; are not all constant.
The automorphism group of (T, w, ) is T when a(x!) b(z?) ¢(x®) # 0, while it becomes
T* (T%) when one (two) of them vanishes identically.

Finally, we observe that there exist examples where the upper bound on the dimension
of g given in (1)) is more restrictive than the upper bound given in .

Example 2.5. In [5], the authors obtained the classification of six-dimensional nilpotent
Lie algebras admitting symplectic half-flat structures. The only two non-abelian cases are
described up to isomorphism by the following structure equations

(0,0,0,0,e'2,e13),  (0,0,0,e'? '3, e2).

Denote by N the simply connected nilpotent Lie group corresponding to one of the above
Lie algebras, and endow it with a left-invariant strict symplectic half-flat structure (w, ).
By [13], there exists a co-compact discrete subgroup I' C N giving rise to a compact nil-
manifold I'\N. Moreover, the left-invariant pair (w,) on N passes to the quotient defining
an SU(3)-structure of the same type on I'\N. By [15], we have that b;(I"\N) is either four
or three.

3. NON-COMPACT COHOMOGENEITY ONE EXAMPLES

In this section, we construct complete examples of strict symplectic half-flat structures
on a non-compact 6-manifold admitting a cohomogeneity one action of a semisimple Lie
group of automorphisms. This points out the difference between the compact and the non-
compact case, and together with the results in [16l §4.3] it suggests that the non-compact
ambient provides a natural setting to obtain new examples.

From now on, we consider the natural cohomogeneity one action on M = T'S? = §? x R3
induced by the transitive SO(4)-action on S3. Then, we have

TS? 2 SO(4) Xs0es) R®.

We refer the reader to [Il, 14, 17, (18] for basic notions on cohomogeneity one isometric
actions. Following the notation of [I§], we consider the Lie algebra so(4) = su(2) + su(2)
and we fix the following basis of su(2)

1 i 0 1 0 1 1 0 1
H:=— . EF=— = —— . .
(0 %) mmas (o) veaa(B0)

Let v : R — M be a normal geodesic such that p = 7(0) € S? and v, == 7(t) is a
regular point for all £ # 0. The singular isotropy subalgebra is 50(4), = s1(2)4i.s, While the
principal isotropy subalgebra ¢ := s0(4),,, t # 0, is one-dimensional and spanned by (H, H).
We consider the following basis of so(4) = su(2) + su(2)

E, = (E0), V;:=(V,0), Ey:=(0,F), Vo :=(0,V),
U= (H,H), A= (H,—H).



6 FABIO PODESTA AND ALBERTO RAFFERO

We let € == %, and for any Z € s0(4) we denote by Z the corresponding fundamental vector
field on M. Then, a basis of T, M for ¢t # 0 is given by
(€, A, By, Vi, Ba, Va),,.

We shall denote the dual coframe along v by (£*, A*, EY, V", E5, V5),,, where £* := dt.
Let K € SO(4) be the principal isotropy subgroup corresponding to the Lie algebra ¢.
The space of K-invariant 2-forms on 7', M, t # 0, is spanned by

wy =& N A, wy = E} ANV, w3 = FE3 AN V5,

wy = EfNE; + VAV, ws = E}f ANVy — V" NES.

These forms extend as SO(4)-invariant 2-forms on the regular part M, := S x R*. By [18],
their differentials along 4 are

dw1|% = %f* AN (UJQ — LL)3), ch)QHt = dLU3|% =0,

(3.1)
d(,U4|% = —2A" A\ ws, dw5]% =2A% Nwy.

We now describe the general SO(4)-invariant symplectic 2-form w on M. Along =, t # 0,
we have

5
Wl = Y filt) wi,
i=1

for suitable smooth functions f; € C*°(R*). By [18, Prop. 6.1], the SO(4)-invariant 2-form
w on M, corresponding to wl|,, admits a smooth extension to the whole M if and only if
the functions f; extend smoothly on R as follows:

i) f1 and fy4 are even and fo, f3, f5 are odd;
i) f5(0) = 5 f1(0) + £3(0), f5(0) = =1 f1(0) — £3(0), and f4(0) =0.
Moreover, w|, is non-degenerate if and only if f;(0) # 0.
Using , we compute dw and we see that w is closed if and only if

fo=—-1h
f:’i:ifl

Combining this with the extendability conditions, we obtain that every SO(4)-invariant
symplectic 2-form w on M can be written as

(3.2) w|% =fi (t) w1 + fg(t) wo + fg(t) w3, t#0,

with f; € C*°(R) even and nowhere vanishing, and

f4af5£07 {

flt) = =1 | his)ds = ~0).

Notice that w?’\% = —6f1f2 w1 Aws Aws at every regular point of the geodesic ;. As fi is
nowhere zero, we may assume that f; < 0, so that the volume form §*AA*AETAVAESAVY
defines the same orientation on 1., M as & w?|,, for all t € R*.
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We now search for an SO(4)-invariant closed 3-form ¢ € Q3(M)5°® so that the pair (w, )
defines an SO(4)-invariant symplectic half-flat structure on M. For the sake of simplicity,
we make the following Ansatz

Y = du, u € Q*(M)%°W.

As before, along ¢, t # 0, we can write

5
(3.3) uly = 3 dilt) wi,
=1

for some smooth functions ¢; € C*°(R") satisfying the same extendability conditions as the
fi’s. Then, omitting the dependence on ¢ for brevity, we have

(34)  Yly, =2 Awa + 3" Aws + 34 & Nws + 35 E ANws +2 A A (¢p5wa — daws),

where 1o == igf)l + ¢4 and 3 == ¢f — iqbl.
By [11]], the pair (w,1)) defines an SU(3)-structure if and only if the following conditions
hold:
a) the compatibility condition w A ¢ = 0;
b) the stability condition P(¢) < 0, P being the characteristic quartic polynomial defined
on 3-forms (see below for the definition);
c¢) denoted by J the almost complex structure induced by (w, ), then the complex volume
form W =1 +1 @/ZJ\ with {D\ := Ju fulfills the normalization condition ;
d) the symmetric bilinear form g := w(-, J-) is positive definite.
The compatibility condition E{) along y; reads fois + fape = 0. Since fo = —f3 # 0, this
implies

(3.5) a2 = 3.

Recall that at each point ¢ € M the 3-form 1 gives rise to an endomorphism S €
End(7; M) defined as follows for every 0 € T, M and every v € TyM

W3
LY ANY NG = Q(S(U))E.
The endomorphism S satisfies S? = P(1))Id, and it gives rise to the almost complex structure

Ji= 1§ when P(s) < 0.
ey When P(¥) <

From the expressions
et AP, = 2(¢3 — (¢4)? — (65)%) € Awy Aws — 4 (¢ — dadl) A™ Awy Aws,
L AY|, = 4 (padh — Bds) € Awar Aws — 8 (¢ + ¢3) A* Awa Aws,

we see that the endomorphism S € End(T), M) maps the subspace of T, M spanned by £
and Al,, into itself with associated matrix given by

1 ( 4(B)65 — $adh) 8 (03 + 62) )

(3.6) - =5
A3\ 2(¥3 = (04)2 = (¢5)2)  —4(¢hes — dadh)
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Since the curve 7y must be a normal geodesic for the metric g induced by (w, ), it follows
that the tangent vector £ is orthogonal to the orbit SO(4) - 4, at every regular point of ~;.
In particular, we have

~ ~ 1 ~ 4
0 — ,A — ,J A = — ’S A e — / — / ,
916, 2) = (6, T (D) = sl SUD) = o (66— a8
from which we get
(3.7) Oyds = Pads.
Using (B.5), and the definition of P(v), we obtain
16
(3.8) P(y) = —5 g (61 + ¢3) (3 — (91)” — (¢5)°) -
fifs

Consequently, the stability condition |E[) reads

(3.9) ¥y = (64)° = (¢5)* <0, @i +d57#0,
for all t € R*.
We now note that the vector field J(§) is tangent to the SO(4)-orbits and it belongs to

the space of K-fixed vectors in T, (SO(4) -v;)¥, which is spanned by A\\%. Since the geodesic
v¢ has unit speed, we see that

2
3.10 1= ) = L J — (b2 — ()2 — (6)2) .
(3.10) 96,6 = w(, J(€) =~ (V3 — (#4)* = (¢5)%)
Using , the relation implies that
(3.11) 4¢3+ 8) = 17 ((60)% + (¢5)* — ¢3) .

Let us now focus on . From (3.6) and (3.11)), we obtain J(&§) = }}T‘Z”%‘ Using this and
the identity 1; =Jy =—¢(J-,-, ), we have
®s5

(3.12) L/D\Ht =& A <2i?;1w5 -2 fl(,U4> + 1A A (¢2 (w2 + ws3) + ¢ﬁlw4 + gf)g W5) .

Now, the normalization condition ¥ A 121\ = %w?’ gives
4o+ 05) — T (5 — (60)* — (65)") =2 i f5.
Combining this with (3.11)), we obtain

1
(3.13) o5+ 93 = Z(flf2)2‘
Note that (3.8, (3.11)) and (3.13) imply
P(y)=—4

along the geodesic ;. Thus, the stability of ¥ holds also at t = 0.

Going back to (3.7), we see that either ¢4 = A\d5 or ¢5 = A4 for some A € R~ {0}. Since
¢4 and ¢5 extend as an even and an odd function on R, respectively, we see that either
¢s =0 or ¢5 =0. As fifs is an odd function on R, implies that

(3.14) B=0, G= fifs
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The matrix associated with the symmetric bilinear form w(-, J-) along v, t € R, is

10 0 0 0 0
0 2 0 0 0 0
0 0 —2%% o ke
T 1)
00 —2pE0 2FE 0
00 0 -2gm0 29

and condition E[) can be written as

P505
fife

The former condition is equivalent to (f2)” > 0, while the latter is satisfied whenever 1 is
stable (cf. (3.9)).

Note that the metric g extends smoothly over the singular orbit S? to a Hermitian sym-
metric bilinear form. The restriction of g on T,,S? is positive definite as g,(4, 4) = fZ(0) > 0
and the orbit SO(4) - p is isotropy irreducible. Moreover, T,M = T,S? & J(T,,S?), and from
this we see that g, is positive definite.

Summing up, the existence of a complete SO(4)-invariant symplectic half-flat structure
(w,1) on M is equivalent to the existence of a smooth function f; € C*°(R) satisfying the
following conditions:

~2 >0, ¥5<(¢h)%

1) f1 is even and negative;

2) the function fo(t) == —% Otfl(s)ds satisfies (f3)” > 0;

3) there exists an even smooth function 1y € C*®(R) satisfying 3 = [(f3)"]* — f3.

Indeed, given f; we define the symplectic form w on M as in (3.2)), with f3 = —f5. As

for 1, we let g = 1, ¢4 == 0, and ¢5 == +£Lfi fo in (3-4). Then, (B.11) and (3.13) imply
Y3 = (¢%)? — f2, and we can choose the sign in the definition of ¢5 so that the extendability
condition ¢%(0) = —12(0) given in [ii]) is satisfied. It is also easy to see that we may choose

@1, P2, 3 S0 that 1y = %gbl + ¢ and 3 = ¢ — %(bl, and the corresponding u as in ([3.3)
extends to a global 2-form on M. The resulting 3-form ¢ is then stable by condition [3)) and
(3.8). The stability condition together with the inequality in [2)) implies that the induced
bilinear form g is everywhere positive definite. Hence, we have proved the following result.

Proposition 3.1. The existence of a complete SO(4)-invariant symplectic half-flat structure
(w, %) on TS? = SO(4) X503 R? with ¢ € dQ?(M) is equivalent to the existence of a smooth

function f1 € C*°(R) satisfying conditions , , .

Recall that the symplectic half-flat structure (w,) is strict if and only if the unique
2-form o € [Qg"'(M)] fulfilling dyy = o A w is not identically zero. Starting from (3.12)),
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using (3.I) and the identity dA*|,, = 1 (w3 — w2) (cf. [18, (3.27)]), we obtain

i), = ((fléf)%)/ -4 jif) w1 Aws + (fip2) wi A (w2 + ws),

whence 5

1 1 / 5

al,, = 7 (f12) (w2 + ws) + 7 <(f1¢>'5) —4 fl) ws.
By [3], we know that the scalar curvature of the metric g induced by a symplectic half-flat
structure is given by Scal(g) = —3|o|?. Hence, in our case we have
2
1 2 A (frva)'
Scal =——— ! —( 5) — > —-( )
(g)’% f12f22 [((fle) ) (f1¢5) fl ] fl¢{5

where the second equality follows from the relations obtained so far.
We may construct plenty of complete SO(4)-invariant strict symplectic half-flat structures
on M by choosing a suitable f; as above. For instance, the function

fi(t) == —cosh(t), teR,
fits in with conditions , , . With this choice, the scalar curvature is
(6 cosh?(t) — 5)2

4 cosh(t) — 8cosh?(t) + 5’
This shows that the resulting symplectic half-flat structure is strict and non-homogeneous.

Note that the vanishing of o is equivalent to the vanishing of Scal(g). Hence, setting
(f112)" = 0, the resulting SU(3)-structure (w, ) is Calabi-Yau and the associated metric is
the well-known Stenzel’s Ricci-flat metric on T'S? (cf. [19]).

Finally, we remark that the scalar curvature always vanishes at t = 0. Indeed, (f112)'(0) =
0, as f1¢2 is even, while f;(0)¢5(0) # 0. This implies that an SO(4)-invariant symplectic

half-flat structure (w, ) with ¢ exact has constant scalar curvature if and only if it is
Calabi-Yau.

Scal(g)|,, = — tanh?(t)

’7t
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