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Abstract

We provide an integral formula for the Maslov index of a pair (E,F )
over a surface Σ, where E → Σ is a complex vector bundle and F ⊂ E|∂Σ is
a totally real subbundle. As in Chern-Weil theory, this formula is written
in terms of the curvature of E plus a boundary contribution.

When (E,F ) is obtained via an immersion of (Σ, ∂Σ) into a pair (M,L)
where M is Kähler and L is totally real, the formula allows us to control
the Maslov index in terms of the geometry of (M,L). We exhibit natural
conditions on (M,L) which lead to bounds and monotonicity results.

1 Introduction

The goal of this paper is to investigate and generalize a rather surprising re-
lationship between two apparently unrelated quantities: the Maslov index of a
surface with boundary, and the mean curvature of its boundary constraint.

Some forms of this relationship are already known, cf. e.g. [10] concerning
Lagrangian boundary data in Cn or [3] concerning surfaces Σ immersed in a
Kähler-Einstein manifold M whose boundaries ∂Σ lie on a minimal Lagrangian
submanifold L ⊂M .

These geometric assumptions on (M,L) are, however, extremely strong. The
Maslov index is well-defined even with respect to non-integrable complex struc-
tures onM and totally real boundary data, while mean curvature can be defined
with respect to any metric. It is thus interesting to understand if such a rela-
tionship exists in a more general context.

Our tool for studying this issue is a very general integral formula for the
Maslov index of an abstract “bundle pair” (E,F ) over a surface with boundary
(Σ, ∂Σ), cf. Equation (2). Standard definitions of this index are either topo-
logical or axiomatic. The integrand in our formula involves data arising from a
connection on E. It thus provides a third, geometric, definition in the spirit of
Chern-Weil theory.

When the pair is determined by an immersion of (Σ, ∂Σ) into (M,L) we can
rephrase this formula in terms of geometric data on (M,L), cf. Equation (3).

∗University of Torino, Italy, tommaso.pacini@unito.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302263013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1711.07928v3


This formula holds under very general assumptions on (M,L). In the special
case where M is Kähler and L is totally real we show that the boundary con-
tribution can be expressed in terms of the “J-mean curvature” of L, defined in
terms of a perturbed volume functional specifically tailored towards totally real
submanifolds, introduced in [1]. Finally, when M is Kähler and L is Lagrangian
we recover the classical expression of the boundary contribution in terms of the
standard mean curvature of L. Going in the opposite direction, we thus find that
the “root cause” of the appearance of mean curvature is the same as that which
generates the whole body of differential geometry of totally real submanifolds
developed in [7], [6], [8].

Applications of our formulae are discussed in Section 5. We show that they
provide a unifying point of view on several results in the literature, also extend-
ing them to the more general context of non-constant curvature, totally real
boundary data or non-integrable J .

Acknowledgements. My interest in this topic was largely triggered by stimu-
lating conversations with Claude LeBrun, Jason Lotay and Roberta Maccheroni.

Integral formulae for certain Maslov indices also appear for example in [4],
[11] and [2]. These papers however mostly focus on pairs determined by immer-
sions of Σ into a Kähler manifold M , and only consider Lagrangian boundary
data. Only the formula in [2] allows for abstract bundle pairs, but it relies on a
simplifying hypothesis which completely eliminates the (Lagrangian) boundary
contribution. Our own formula includes all these cases, but is much more gen-
eral. In summary, results concerning surfaces immersed in M Kähler and with
boundary on L Lagrangian should probably be considered classical. Beyond this
case, we are not aware of serious overlaps between this paper and the available
literature.

2 Preliminaries

Induced curvatures. Let E be a k-dimensional complex bundle over any
manifold N , possibly with boundary. We will typically denote sections of E by
σ, sections of E∗ by α and tangent vectors or vector fields on N by X .

Choose a connection ∇ on E, thus ∇ : Λ0(E) → Λ1(E). As usual, we
can extend ∇ to all tensor bundles associated to E via the Leibniz rule and
by imposing that the connections commute with contractions. We will denote
these induced connections using the same symbol ∇. In particular,

• The induced connection on E∗, equivalently on E, satisfies

(∇Xα)σ = X(α(σ))− α(∇Xσ).

• The induced connection on ΛkE := E ∧ · · · ∧ E satisfies

∇X(σ1 ∧ · · · ∧ σk) = ((∇Xσ1) ∧ · · · ∧ σk) + · · ·+ (σ1 ∧ · · · ∧ (∇Xσk)) .
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Let R ∈ Λ2(N)⊗ gl(E) denote the curvature of ∇, defined by

R(X,Y )σ := ∇X∇Y σ −∇Y ∇Xσ −∇[X,Y ]σ.

One can use the analogous formula to calculate the curvatures of the induced
connections. In particular,

• The curvature on E∗ is −R∗, where R∗ ∈ Λ2(N) ⊗ gl(E∗) is the dual of
R.

• The curvature on ΛkE is tr(R) ∈ Λ2(N)⊗ gl(ΛkE).

Using the identifications gl(ΛkE) ≃ C ≃ gl(ΛkE∗) we conclude that the curva-
ture on ΛkE∗ is − tr(R∗) = − tr(R) ∈ Λ2(N).

Any other connection on E is of the form ∇̃ = ∇+A, for some A ∈ Λ1(N)⊗
gl(E). The corresponding curvature is R̃ = R + dA + A ∧ A. On the induced
bundles one obtains

• On E∗, the connections are related by ∇̃ = ∇−A∗ where A∗ ∈ Λ1(N)⊗
gl(E∗) is the dual of A. The corresponding curvature is −R∗ − d(A∗) +
A∗ ∧ A∗.

• On ΛkE, ∇̃ = ∇+ tr(A), where tr(A) ∈ Λ1(N)⊗ gl(ΛkE) ≃ Λ1(N). The
corresponding curvature is tr(R) + d(tr(A)) because tr(A) ∧ tr(A) = 0.

• On ΛkE∗, ∇̃ = ∇− tr(A∗) = ∇− tr(A). The corresponding curvature is
− tr(R)− d(tr(A)).

Recall from Chern-Weil theory that tr(R) ∈ Λ2(N) is closed. It follows from
the above that it is independent of ∇ up to an exact form d(tr(A)). Choosing
∇ to be unitary with respect to some choice of Hermitian metric h on E we
obtain tr(R) ∈ iΛ2(N,R).

The Maslov index. Let (Σ, ∂Σ) be a compact surface with (possibly empty)
boundary. Let E be a k-dimensional complex vector bundle over Σ and F ⊂ E

a k-dimensional totally real subbundle of E|∂Σ, defined over ∂Σ.

• When ∂Σ 6= ∅ (thus a collection of circles) it is well-known that E is
trivial, though not in a unique way. Given a choice of trivialization, one
can measure the twisting (winding number) of F around ∂Σ with respect
to the trivialization of E, obtaining an integer. This is a topological
definition of the Maslov index of the pair (E,F ). One can check that it
is independent of the choice of trivialization. This index can alternatively
be characterized axiomatically in terms of its behaviour under natural
“connect sum” operations on (E,F ) and (Σ, ∂Σ): we refer to [9] Appendix
C.3 for details.

• When ∂Σ = ∅ (thus F is not defined) the Maslov index coincides with
twice the first Chern number c1(E) · Σ of E.
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The Maslov index appears in many different contexts in geometry and analy-
sis. In particular, when Σ is a Riemann surface, it appears in the generalized
Riemann-Roch theorem for surfaces with boundary, cf. [9] Appendix C.1: it
then replaces the term c1(E) · Σ (i.e. the degree of E) which appears in the
classical Riemann-Roch theorem concerning holomorphic line bundles E over
closed surfaces. In both cases, an important geometric application of this the-
orem concerns the deformation theory (moduli spaces) of Riemann surfaces
immersed in complex manifolds (M,J), where J is not necessarily integrable.
In this case one chooses E to be TM|Σ (alternatively, to prevent reparametriza-
tions, E may be the complex normal bundle over Σ). When Σ has boundary,
the theory is well-defined as long as ∂Σ is constrained to lie on a given totally
real submanifold L ⊂M : the tangent space of L then defines the subbundle F .
Bounds on the Maslov index give information on the dimension of the moduli
space.

Monotonicity. Deformation theory plays an important role in Symplectic
Geometry. In this case we are given a symplectic manifold (M,ω) and we
choose a (not necessarily integrable) compatible complex structure J . In this
setting there is an important subclass of totally real manifolds: Lagrangian sub-
manifolds, defined by the condition ω|TL ≡ 0. When ∂Σ lies on a Lagrangian
submanifold, it is interesting to compare the Maslov index with the quantity∫
Σ
ω: the Lagrangian submanifold L is monotone if these quantities are pro-

portional (with a fixed constant), for any such Σ. Monotonicity implies a very
strong control on the Maslov index, thus on the deformation theory of surfaces
with boundary on L: this has important consequences in Floer theory.

3 A Chern-Weil formula for the Maslov index

To simplify we restrict our attention to the oriented case. Specifically, let (Σ, ∂Σ)
be an oriented compact surface with boundary and (E,F ) be a bundle pair as
in Section 2, with dimC(E) = k and F orientable.

Fix ∇ on E. Choosing alternatively N := Σ or N := ∂Σ we can consider
as in Section 2 the induced connections on both ΛkE → Σ and on ΛkE → ∂Σ.
In both cases the bundle is trivial, though not uniquely: different choices are
parametrized by maps N → S1.

In the latter case, however, the subbundle F provides a canonical choice (up
to homotopy) of a trivialization, as follows. Choose a hermitian metric h on E
and an orientation of F . For any point x ∈ ∂Σ, define

σJ :=
σ1 ∧ · · · ∧ σk

|σ1 ∧ · · · ∧ σk|h
, (1)

where σ1 . . . σk is any positively-oriented (real) basis of the fiber Fx. It is clear
that this definition is independent of the choice of basis. Choosing a different
metric h̃ we obtain a section σ̃J = fσJ , for some f : ∂Σ → R

+, proving that σJ
is well-defined up to homotopy.
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The connection on ΛkE → ∂Σ is thus completely defined by the connection
1-form θ ∈ Λ1(M) defined by the identity

∇σJ = θ ⊗ σJ

Changing metric gives ∇σ̃J = θ̃⊗ σ̃, where θ̃ = θ+df . Changing the orientation
on F gives −σJ , thus the same connection 1-form.

The main formula. We combine the curvature of ΛkE on Σ with the con-
nection 1-form on ∂Σ to define the number

µ(E,F ) :=
i

π

(∫

Σ

tr(R)−

∫

∂Σ

θ

)
. (2)

This is independent of θ, i.e. of h thus of σJ , because
∫
∂Σ θ̃ =

∫
∂Σ θ. It is also

independent of the choice of ∇ because, using ∇+A, the induced curvature on
Σ changes to tr(R) + d(tr(A)) while the connection 1-form becomes θ + tr(A):
the additional terms then cancel via Stokes’ theorem. Choosing ∇ unitary with
respect to h we find µ(E,F ) ∈ R.

Notice that the pair (E,F ) induces a pair (ΛkE,ΛkF ) on (Σ, ∂Σ). It is
clear from the definition that µ(E,F ) = µ(ΛkE,ΛkF ). Furthermore µ(E,F ) =
−µ(E,F ) because the induced connection on E ≃ E∗ has the opposite sign.
Finally, µ(E,F ) changes sign if we change the orientation of Σ.

Example 3.1 Let ∆ denote the closed unit disk in C. Let (Σ, ∂Σ) := (∆, S1),
let E := C be the trivial bundle and F := TS1 be the tangent bundle to the
boundary. Choose the trivial (flat) connection and the standard metric h. Then
σJ = ∂ψ, the standard unit vector field along S1, and ∇σJ = idψ ⊗ σJ so the
connection 1-form is θ = idψ. It follows that µ(E,F ) = 2.

Remark When ∂Σ = ∅, (2) coincides with the standard Chern-Weil formula
for 2c1(E) · Σ.

Theorem 3.2 The number µ(E,F ) defined in (2) coincides with the Maslov
index of (E,F ). In particular it is integer-valued.

Proof: It is simple to check that µ(E,F ) satisfies the axioms listed in [9] Ap-
pendix C.3. Example 3.1 verifies, for example, the normalization axiom. �

4 The formula for immersed surfaces

Let (M,J) be a real 2n-dimensional manifold endowed with a (not necessar-
ily integrable) complex structure J . Let L ⊂ M be an oriented immersed
n-dimensional totally real submanifold. In this section we assume that Σ is im-
mersed in M in such a way that ∂Σ is immersed in L. We then obtain canonical
data E := TM|Σ, the pullback tangent bundle, and F := TL|∂Σ, the totally real
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subbundle defined by the tangent bundle of L. Notice that ΛnE coincides with
the anti-canonical bundle of M , i.e. the dual of KM .

We are interested in computing µL(Σ, ∂Σ) := µ(E,F ). Fix a Hermitian
metric h on M and a unitary connection ∇. In [7] it is shown that KM |L is
trivial and admits a canonical section ΩJ . The corresponding connection 1-form
is an element of iΛ1(L,R): writing it as iξJ we obtain a real-valued 1-form ξJ
on L called the Maslov 1-form. Restricted to ∂Σ, ΩJ is the dual of the section
σJ defined in (1) so the corresponding connection 1-forms differ by a sign.

Let P denote the 2-form on M defined, at any point x ∈M , by

P (X,Y ) := ω(R(X,Y )ei, ei),

where R is the curvature of ∇ and e1 . . . e2n is an orthonormal basis of TxM .
One can check that P = 2i tr(R), so general theory ensures that dξJ = 1

2P|TL.
It follows that, in this context, we can re-write the Maslov index in terms of

the geometry of (M,L):

µL(Σ, ∂Σ) =
1

2π

∫

Σ

P −
1

π

∫

∂Σ

ξJ . (3)

Corollary 4.1 If Σ1 and Σ2 belong to the same homology class in H2(M,L)
then µL(Σ1, ∂Σ1) = µL(Σ2, ∂Σ2).

Proof: This is a standard fact which can be proved using the topological defini-
tion of µL. Alternatively, let T be a 3-dimensional submanifold in M such that
∂T = Σ1 −Σ2 −Σ, with Σ ⊆ L and ∂Σ = ∂Σ1 − ∂Σ2. Then

1
2

∫
Σ P =

∫
Σ dξJ so

the result follows from Equation (3) and Stokes’ theorem. �

The Maslov indices of such surfaces can thus be collected into a single relative
cohomology class µL ∈ H2(M,L), known as the Maslov class of L.

When M is Kähler one can check that P (X,Y ) = 2ρ(X,Y ), where the
latter is the standard Ricci 2-form ρ(X,Y ) := Ric(JX, Y ). Furthermore, for
any totally real submanifold we prove in [7] the fundamental relationships

ξJ = ω(HJ , ·)|TL, dξJ = ρ|TL, (4)

where HJ is the negative gradient of the J-volume functional defined by inte-
grating ΩJ over L. If L is Lagrangian the J-volume coincides with the standard
Riemannian volume and HJ coincides with the standard mean curvature vector
field H of L.

Corollary 4.2 Assume (M,J, ω) is Kähler with Ricci 2-form ρ. The Maslov
index of (Σ, ∂Σ) ⊂ (M,L) has the following integral representation:

• For L totally real with J-mean curvature HJ ,

µL(Σ, ∂Σ) =
1

π

(∫

Σ

ρ−

∫

∂Σ

ω(HJ , ·)

)
.
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• For L Lagrangian with mean curvature H,

µL(Σ, ∂Σ) =
1

π

(∫

Σ

ρ−

∫

∂Σ

ω(H, ·)

)
.

The Lagrangian case already appears, in implicit form, in [3]. Notice that in
this case all terms in the Chern-Weil formula (2) for the Maslov index become
classical geometric quantities.

In order to better understand the quantity HJ , let us recall the standard
definition: a submanifold L is minimal if it is a critical point of the standard
Riemannian volume, i.e. H = 0. Analogously, we say that a totally real sub-
manifold L is J-minimal if it is a critical point of the J-volume functional, i.e.
HJ = 0; equivalently, ξJ = 0 or ΩJ is parallel.

Equation (4) shows that any minimal Lagrangian must automatically sat-
isfy the additional condition ρ|TL ≡ 0. Coupled with the Lagrangian condition
ω|TL ≡ 0, the resulting system typically does not admit solutions unless M
is Kähler-Einstein: in this case the two conditions coincide. The notion of
J-minimal submanifolds provides an interesting extension of the minimal La-
grangian condition to the more general setting of Kähler manifolds: they are
again defined variationally and Equation (4) again shows that they satify the
condition ρ|TL ≡ 0, but by definition they are only totally real, not necessarily
Lagrangian. In [8] we show that J-minimal submanifolds also have several an-
alytic properties in common with minimal Lagrangians, and provide examples.

Remark When M is not Kähler, torsion terms appear in gradient of the J-
volume functional and in Equation (4). We refer to [7] for details.

5 Applications

We now list a few applications of the above formulae.

Comparison with the Gauss-Bonnet theorem. Recall the standard Gauss-
Bonnet theorem: given a smooth domain U in an orientable surface M with
metric g, ∫

U

K volg +

∫

∂U

k ds = 2π χ(U),

where K is the Gaussian curvature of M and k is the geodesic curvature of
the boundary which, using an arclength parametrization γ(s) of ∂U and normal
vector field n(s), is defined by the identity ∇γ̇ = k ds⊗ n(s).

For dimensional reasons such M is automatically Kähler and ∂U is trivially
Lagrangian. Let us choose (Σ, ∂Σ) = (U, ∂U). Then σJ = γ̇ and n = Jγ̇

so θ = ik ds. This shows that, up to a factor π, (2) coincides with the left-
hand side of the Gauss-Bonnet formula. We conclude that µL(Σ, ∂Σ) = 2χ(U),
generalizing Example 3.1.
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Vanishing conditions. Natural assumptions on (M,L) ensure the vanishing
of one or both terms in the formula for µL:

• Assume P ≡ 0. This happens for example when M is Kähler Ricci-flat,
e.g. whenM is Cn or, more generally, Calabi-Yau. Then µL depends only
on the boundary contribution.

• Assume L is such that ΩJ is parallel: this is similar to the “orthogonality”
condition appearing in [2], but in our context it is geometrically motivated
by the notion of J-minimal submanifolds. In this case the boundary con-
tribution vanishes and the Maslov index is completely determined by P .

As an application of the first vanishing statement we generalize a result of
[4] from Lagrangian to totally real boundary data.

Corollary 5.1 AssumeM is Kähler Ricci-flat. Then
∫
∂Σ ω(HJ , ·) is a multiple

of π, for any totally real L and any (Σ, ∂Σ) ⊂ (M,L).

For example, whenM = Cn we can produce a 1-parameter family of totally real
submanifolds tL simply by rescaling. One can check that HJ (t) =

1
t
HJ , so the

boundary contribution for tΣ is constant. On the other hand Maslov indices
are integral, thus also independent of t: this is consistent with Corollary 5.1.

The following result uses the second vanishing condition.

Corollary 5.2 LetM be Kähler. Assume the Ricci 2-form ρ has a semi-definite
sign (e.g., ρ ≤ 0). Then, for any minimal Lagrangian L, µL(Σ, ∂Σ) has that
same sign for any complex Σ (e.g., µL ≤ 0).

More generally this holds for any J-minimal submanifold.

The same statement holds also when J is non-integrable, as long as one replaces
ρ with P and L satisfies ∇ΩJ ≡ 0.

There are also interesting situations where both terms vanish, leading to
Maslov-zero submanifolds. For example, (4) shows that ξJ is closed when M is
Kähler Ricci-flat. We thus obtain the following result.

Corollary 5.3 Assume M is Kähler Ricci-flat and that L is either (i) minimal
Lagrangian, or (ii) totally real and J-minimal, or (iii) totally real with first
Betti number b1(L) = 0. Then L is Maslov-zero.

Situation (i) includes the case of special Lagrangian submanifolds in Calabi-
Yau manifolds. We thus obtain a new proof of the well-known fact that special
Lagrangians are Maslov-zero: the standard proof relies on the topological defi-
nition of the Maslov index in terms of the twisting of ΛnTL with respect to the
parallel section of KM determined by the Calabi-Yau condition.
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Monotonicity of minimal Lagrangian submanifolds. As mentioned in
Section 2, in the symplectic context it is interesting to compare the Maslov index
with

∫
Σ
ω, the symplectic area. This is best understood from the cohomological

point of view introduced at the beginning of Section 5. Indeed, for Lagrangian
boundary data it is simple to check that the symplectic areas of two surfaces
Σ1, Σ2 coincide if they belong to the same relative homology class. Symplectic
area can thus also be viewed as a relative cohomology class αL, and our problem
can be phrased in terms of comparing µL to αL in H2(M,L).

Consider the long exact sequence

· · · → H1(L)
δ
→ H2(M,L)

j
→ H2(M) → . . . (5)

The fact that the Maslov index is twice the first Chern number when Σ has
empty boundary shows that the image of µL in H2(M) is 2c1(M). The image
of αL in H2(M) is [ω].

AssumeM is Kähler-Einstein, i.e. ρ = c ω for some c ∈ R. Then 2πc1(M) =
c[ω] so j(πµL − c αL) = 0 ∈ H2(M). Exactness implies that there must exist
some β ∈ H1(L) such that δ(β) = πµL− c αL. We can find β using our integral
formula, as follows.

Corollary 4.2 shows that

π µL(Σ, ∂Σ)− c

∫

Σ

ω = −

∫

∂Σ

ω(H, ·).

Equation (4) and the Kähler-Einstein hypothesis imply that, for L Lagrangian,
ω(H, ·) is a closed 1-form on L so it defines a cohomology class in H1(L). We
thus obtain the main result of [3].

Corollary 5.4 AssumeM is Kähler-Einstein with ρ = c ω and L is Lagrangian.
Then

πµL − c αL = −[ω(H, ·)].

In particular, any minimal Lagrangian L is monotone.

One should compare this with Corollary 5.2 which produces a definite sign for
the Maslov index only for complex curves, but with less stringent hypotheses.

Monotonicity of J-minimal submanifolds. As discussed in Section 4, min-
imal Lagrangians make sense mostly in the context of Kähler-Einstein manifolds.
In [8] it is shown that, in the more general context of Kähler manifolds with
(positive or negative) definite Ricci curvature, J-minimal submanifolds provide
an interesting substitute.

In this context ρ defines a second symplectic form on M and ±ρ(·, J, ·) is a
Riemannian metric. We will say that a submanifold is ρ-Lagrangian if ρ|TL ≡ 0.
Any such L is totally real. All standard results in Symplectic Geometry apply to
ρ and to ρ-Lagrangians, e.g. the energy of holomorphic curves with boundary on
ρ-Lagrangians is topologically determined by the homology class, thus bounded.
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Given any surface Σ with boundary on a ρ-Lagrangian L, the analogue of
the symplectic area is the quantity

αL(Σ, ∂Σ) :=

∫

Σ

ρ. (6)

As usual this defines a class αL ∈ H2(M,L). We will say that L is ρ-monotone
if µL is proportional to αL.

Our main reason for interest in this notion is the fact that any J-minimal
submanifold is ρ-Lagrangian: this is immediate from the definitions and from
Equation (4). In the long exact sequence (5), αL has image 2πc1(M) ∈ H2(M)
so j(πµL−αL) = 0. We then obtain the precise description of a class β ∈ H1(L),
as above. This leads to the following result which further reinforces the analogies
between J-minimal submanifolds and minimal Lagrangians.

Corollary 5.5 Assume M is Kähler with (positive or negative) definite Ricci
curvature. Then any J-minimal submanifold is ρ-monotone.

Monotonicity of solitons. Recall that an immersed Lagrangian submanifold
ι : L → Cn is a self-similar soliton if, for some c ∈ R and all x ∈ L, H(x) =
c ι(x)⊥. In this case, under mean curvature flow and up to reparametrization,
ι evolves simply by rescaling: ι(t) = ρ(t) · ι. Thus H(t, x) = 1

ρ(t)H(x) and each

ι(t) is a soliton, with c(t) = 1
ρ2(t) .

Using the Lagrangian hypothesis the soliton equation can be re-written as
an equation of 1-forms on L:

ι∗ω(H, ·) = c ι∗ω(ι, ·) = c ι∗g(Jι, ·).

Setting λ := 1
2 (xdy − ydx) and ι = (x, y) we find that the soliton equation is

equivalent to ι∗ω(H, ·) = 2c ι∗λ. Now notice that ω = dλ. Corollary 4.2 then
leads to the following fact, cf. [5].

Corollary 5.6 Let L be a Lagrangian soliton in Cn. Then µL = − 2c
π
αL, so L

is monotone.

Notice that µL is integral and αL rescales by ρ2(t): this is consistent with the
rescaling of c(t).
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