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Abstract. Time is pervasive of the human way of approaching reality, so that it 
has been widely studied in many research areas, including Artificial Intelligence 
(AI) and relational Temporal Databases (TDB). Indeed, while thousands of 
TDB papers have been devoted to the treatment of determinate time, only few 
approaches have faced temporal indeterminacy (i.e., “don’t know exactly 
when” indeterminacy). In this paper, we propose a new AI-based methodology 
to approach temporal indeterminacy in relational DBs.  We show that typical AI 
techniques, such as studying the semantics of the representation formalism, and 
adopting symbolic manipulation techniques based on such a semantics, are very 
important in the treatment of indeterminate time in relational databases. 

Keywords: Temporal data, data representation and semantics, query semantics, 
symbolic manipulation 

1 Introduction 
Time is pervasive of our way of dealing with reality. As a consequence, time has been 
widely studied in many areas, including AI and DBs. In particular, the scientific DB 
community agrees that time has a special status with respect to the other data, so that 
its treatment within a relational database context requires dedicated techniques [1, 2]. 
A plethora of dedicated approaches has been developed in the area of temporal 
relational databases (TDB in the following; see, e.g., [3, 4]).  Different data models, 
and algebraic operations to query them, have been introduced in the literature. 
However, to the best of our knowledge, no TDB approach has explicitly identified the 
fact that, while adding time to a relational DB, one adds implicit knowledge (i.e., the 
semantics of time) in it. This is particularly true in case temporal indeterminacy is 
considered (i.e., “don’t know exactly when” indeterminacy [5]), since no TDB 
approach makes all the alternative cases explicit. In this paper we argue that, since a 
high degree of implicit information is present in temporally indeterminate DB data, a 
temporal indeterminate DB is indeed close to a (simplified) knowledge base, so that 
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AI techniques are important to properly cope with it. In this paper, we propose an AI-
based methodology to deal with temporal indeterminacy:  

(i) We formally define and extend the snapshot semantics [2] to cope also with 
temporal indeterminacy,  

(ii) We propose a 1NF representation model for “interval-based” temporal 
indeterminacy  

(iii) We analyse the semantics of the representation model, showing that (at least) 
two alternatives are possible 

(iv) We define the relational algebraic operators (which perform symbolic 
manipulation on the model) to query the representational model, for both 
the alternative semantics, showing that only with one of them it is 
possible to devise a relational algebra which is both closed with respect to 
the model and correct with respect to the semantics. 

Result (iv) enforces the core message of our approach: in TDBs, the representational 
model contains implicit (temporal) information. Thus, AI techniques could\should be 
used to analyse its semantics, and devise algebraic operators that perform symbolic 
manipulation on the representational model, consistently with the devised semantics.  

2 Background 

Most TDB approaches focus on individual occurrences of facts, whose time of 
occurrence (valid time [2]) is exactly known. However, in many real-world cases, the 
exact time of occurrence of facts is not known, and can only be approximated, so that 
temporal indeterminacy (i.e., in the TDB context, “don’t know exactly when” 
indeterminacy [5]) has to be faced. Temporal indeterminacy is so important that 
“support for temporal indeterminacy” was already one of the eight explicit goals of 
the data types in TSQL2 consensus approach [2]. Despite its importance, and 
differently from the area of AI, in the area of TDBs only few approaches coping with 
temporal indeterminacy have been devised (see the surveys in [5, 6]). 
Dyreson and Snodgrass [7] cope with valid-time indeterminacy by associating a 
period of indeterminacy with a tuple. A period of indeterminacy is a period between 
two indeterminate instants, each one consisting of a range of granules and of a 
probability distribution over it. However, in [7], no relational algebra is proposed to 
query temporally indeterminate data. Dekhtyar et al. [8] introduce temporal 
probabilistic tuples to cope with a quite specific form of temporal indeterminacy, 
concerning instantaneous events only, and provide algebraic relational operators. 
Anselma et al. [9, 10] identify different forms of temporal indeterminacy, and propose 
a family of achievable representational models and algebrae. However, such an 
approach is semantic-oriented, abstract and not in 1NF (thus not suitable for a direct 
implementation). A 1NF approach for a form of temporal indeterminacy has been 
proposed in [11], but no semantics for the model has been presented. 



3 Snapshot semantics for temporal relational databases 

A premise is very important, when starting a discussion about the semantics of 
temporal DBs. Indeed, seen from an AI perspective, a “traditional” non-temporal 
database is just an elicitation of all and only the facts that are true in the modeled 
mini-world. In such a sense, the semantics of a non-temporal DB is “trivial”, since 
the DB does not contain any implicit data\information. Since the data is explicit, no 
“AI-style” reasoning mechanism is required, and query operators are used just to 
extract the relevant data from a DB. However, such an “easy” scenario changes when 
time is introduced into DBs, to associate each fact with the time when it holds 
(usually called valid time [2]). Roughly speaking, in such a case, eliciting explicitly 
all true facts would correspond to elicit, for each possible unit of in time, all the facts 
that hold at that unit.  Despite the extreme variety of TDB approaches in the 
literature, almost the totality of them is based, explicitly or (in many cases) implicitly, 
on this idea, commonly termed “snapshot semantics”: a TDB is a set of “standard” 
(non-temporal) DBs, each one considering a snapshot of time, and eliciting all facts 
(tuples) that hold at that time (see, e.g., the “consensus” BCDM semantics, which is 
the semantics for TSQL2 and for many other TDB approaches [2]). Of course, for 
space and time efficiency reasons, no approach in the literature directly implements 
TDBs making all such data explicit: representational models are used to encode facts 
in a more compact and efficient form. Notably, this is a dramatic departure from 
“traditional” DB concepts: a temporal DB is no more an elicitation of all facts that 
hold in the modelled mini-world, but a compact implicit representation of them. 
Therefore, in this paper, we propose that the following “AI-style” methodological 
requirements must be taken into account. First,  

(M1) a semantics for making explicit the intended meaning of the representational 
models must be devised.  

In such a context, the algebraic query operators cannot simply select and extract data 
(since some data are implicit). Making all data explicit before\while answering 
queries is certainly not a good option (for the sake of space and time efficiency). Thus 

(M2) algebraic operators must operate on the (implicit) representation 
(M3) algebraic operators must provide an output expressed in the given 

representation (i.e., the representation formalism must be closed with respect to the 
algebraic operators) 

(M4) algebraic operators must be correct with respect to the semantics of the 
representation 
In the rest of this section, we provide a new “functional” way to describe the snapshot 
semantics for determinate time TDBs, that we later extend to indeterminate time in 
Section 3, as a starting point to realize the above AI-style methodology.  

2.1 Data Semantics of Determinate Time DBs: a “Functional” Perspective 

We first introduce the notion of tuple, relation, and database. We then move to the 
definition of time, and define the notion of (semantics of) a temporal database. 
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Definition 1. (non-temporal) Database, Relation, Tuple. A (non-temporal) 
relational database DB is a set of relations over the relational schema   s = (R1:si , ..., 
Rk:sj) where si, ..., sjÎS are the sorts of R1, ..., Rk, respectively. A relation R(x1, ..., xk):s 
of sort sÎS is a sequence of attributes x1, ..., xk each with values in a proper domain 
D1,…Dk. An instance r(R:s) of a relation R(x1, ..., xk) of sort sÎS  is a set {a1, …, an} 
tuples, where each tuple ai is a set <v1,…,vk> of values in  D1´…´Dk. ■ 

Notation. In the following, we denote by DBs the domain of all possible database 
instances over a schema s. ■ 

In AI, the ontology of time has attracted a lot of attention, and many different 
possibilities have been investigated. Some approaches, for instance, consider both 
points and intervals as basic time units (see, e.g., [12]), while in other approaches  
time points exist only as interval boundaries (see, e.g., [13]). Another important 
distinction regards time density: time can be represented as discrete, dense or 
continuous. Finally, time can be linear or branching. The review in [14] discusses in 
detail such aspects and compares the approaches coping with time in ontologies.  

On the other hand, most TDB approaches, including TSQL2 [2], and the BCDM 
“consensus” semantics [2], simply assume that time is linear, discrete and bounded, 
and term chronon the basic time unit.  

Definition 2. Temporal domain DT. We assume a limited precision for time, and 
call chronon the basic time unit. The domain of chronons is finite, and totally ordered. 
The domain of valid times DT is given as a set DT={c1,…,ck} of chronons. ■ 

In the snapshot semantics [2], a TDB is a set of conventional (non-temporal) 
databases, one for each chronon of time. We formalize such a semantics through the 
introduction of a function, relating chronons with (non-temporal) databases. 

Definition 3. Temporal database (semantic notion). Given a relational schema   
s = (R1:si , ..., Rk:sj) a temporal database DBT is a function fs,DT: DT → DBs ■ 

Analogously, a temporal relation rT is a function from DT to the set of tuples of rT 
that hold at each chronon in DT. 

Definition 4. Time slice. Given a temporal database DBT and a temporal relation 
rTÎ in DBT, and given a chronon cÎDT, we define the time slice of DBT (denoted by 
DBT(c)) and of rT (denoted by rT(c)) the result of the application of the functions DBT 
and rT to the chronon c.  ■ 

Example. 1.  Let us consider a simple database DBT1 modeling patient 
symptoms. DBT1 contains a unique relation SYM of schema 
<Patient,Symptom,Value> and contains two facts: 

(f1) John had high fever from 10 to 12 
(f2) Mary had moderate fever from 11 to 13 

(in the example, we assume that chronons are at the granularity of hours, and hour 1 
represents the first hour of 1/1/2018). The TDB (semantic notion) modeling such a 
state of affairs is the following (for clarity and simplicity, we omit the chronons in DT 
for which no tuple holds, and we omit the name of the relation(s)). 



 10 → {<John, fever, high>} 
 11 → {<John, fever, high>,<Mary, fever, moderate>} 
 12 → {<John, fever, high>,<Mary, fever, moderate>} 
 13 → {<Mary, fever, moderate>}  
In this example DBT1(10) = SYMT(10) = {<John, fever, high>} ■ 

Notably, Definition 3 above is a purely “semantic” definition. Other definitions of the 
snapshot semantics for TDBs, such as the one in the “consensus” BCDM [2] model, 
are more “operational” and are closer to actual representations1.  

2.2  Query semantics 

In TDBs, the semantic of queries is commonly expressed by specifying in terms of 
relational algebraic operators. Codd designated as complete any query language that 
was as expressive as his set of five relational algebraic operators: relational union (È), 
relational difference (–), selection (σP), projection (πX), and Cartesian product (´). 
Though different approaches have generalized such operators to cope also with TDBs, 
there is a common agreement that such operators should be a consistent extension of 
standard Codd’s operators, and that they should be reducible to them in case time is 
removed (see, e.g., [2, 15]). In other words, temporal algebraic operators should 
behave exactly as Codd’s non-temporal ones, at each point (chronon) of time.  Given 
our definitions above, such a requirement can be formally stated as below. 

 
Definition 5. Relational algebraic operators on determinate time databases 

(“semantic” notion). Denoting by OpC a Codd’s operator, and by OpT its 
corresponding temporal operator, OpT must be defined in such a way that the 
following holds:  "cÎDT  (OpT(rT,sT) (c)  = OpC(rT(c),sT(c))) ■ 

 
 (In Definition 5 above, we assume that rT and sT are temporal relations in a 

temporal database DBT, and that Op is a binary operator. rT(c) represents the time 
slice of rT at the chronon c. The definition of unary operators is analogous). 

Of course, the “purely semantic” definition above is highly inefficient, as 
snapshot(s) of the underlying relation(s) at each single chronon are computed. Thus, 
more “operational” definitions of algebraic operators have been proposed in the 
literature. Notably, however, the “commonly agreed” BCDM definition of the 
semantics of algebraic operators is consistent with Definition 5 above. 

2.3  Implementations of (determinate time) temporal databases 

Different realizations of determinate time TDBs have been proposed in the literature. 
All of them (except few “pioneering” approaches) respect the above data and query 
semantics, and provide an efficient implementation for it. The large majority of such 
approaches enforce at least two key requirements to achieve efficiency: (i) 1NF is 

                                                        
1 Indeed, the most common way of presenting the semantics of a temporal database is the one in BCDM, in 

which each tuple is paired with all the chronons when it holds. In BCDM, temporal databases directly 
associate times with tuples, so that the semantics of Example 1 above would be modeled as follows: 
{<John, fever, high, {10,11,12}>, <Mary, fever, moderate, {11,12,13}>. 
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used to represent data, (ii) temporal algebraic operators directly manipulate the 
representation. 
In Section 3 we extend the semantic framework introduced so far to provide the 
general semantics of temporal indeterminacy in TDBs. Then, in Section 4, we move 
to a representational model, considering the requirements (i) and (ii) above, and 
following the methodological requirements (M1-M4) identified in Section 2. 

3 Snapshot semantics of temporal indeterminacy in TDB 

In TDBs, the notion of temporal indeterminacy is usually paraphrased as “don’t know 
exactly when” indeterminacy (consider, e.g., the Encyclopedia survey in [5]): facts 
hold at times that are not exactly known.  An example is reported in the following: 

Example 2.  As a running example, let us consider a simple database DBIT1 
modeling patient symptoms. The database contains a unique relation SYMIT of 
schema <Patient,Symptom,Value> and models two facts: 

(f1) John had high fever at 10 and 11, and possibly at 12, or 13, or both. 
(f2) Mary had moderate fever at 12 and 13, and possibly at 11. 

(In the example, we assume that chronons are at the granularity of hours, and hour 1 
represents the first hour of 1/1/2018). 

3.1  Data Semantics of Indeterminate Time DBs 

Of course, we can still retain the definition of the temporal domain DT provided in 
Section 2. However, the definition of an indeterminate temporal database is different: 
informally speaking, an indeterminate TDB is simply a set of alternative determinate-
time TDBs, each one encoding one of the different possibilities. Technically 
speaking, such a definition requires the introduction of a set of functions. 

Definition 6. Indeterminate temporal database (semantic notion). Given a 
relational schema   s = (R1:si , ..., Rk:sj), an indeterminate temporal database DBT is a 
set S(DBIT)={f1, …, fk} of functions fi

s,DT: DT → DBs ■ 
Analogously, a temporally indeterminate relation rIT is a set S(rIT) of functions 

from DT to the set of tuples of rT that hold at each chronon in DT. 
As an example, eight functions are necessary to cover all the alternative 

possibilities (henceforth called scenarios) for Example 2. 

Example. 2 (cont).   
The indeterminate temporal database DBIT (semantic notion) modeling Example 2 
consists of a unique relation SYMIT and is shown in the following (for the sake of 
brevity, we denote with “J” the tuple <John, fever, high> and with “M” the tuple 
<Mary, fever, moderate>). 



      f1        f2         f3        f4  
10 → {J} 10 → {J} 10 → {J} 10 → {J}  
11 → {J} 11 → {J} 11 → {J} 11 → {J}  
12 → {M} 12 → {J,M} 12 → {M} 12 → {J,M}  
13 → {M} 13 → {M} 13 → {J,M} 13 → {J,M}  

      f5        f6         f7        f8  
10 → {J} 10 → {J} 10 → {J} 10 → {J}  
11 → {J,M} 11 → {J,M} 11 → {J,M} 11 → {J,M}  
12 → {M} 12 → {J,M} 12 → {M} 12 → {J,M}  
13 → {M} 13 → {M} 13 → {J,M} 13 → {J,M} ■ 

For the technical treatment that follows, it is useful to introduce the notion of scenario 
slice, which “selects” a specific scenario. 

Definition. Scenario slice. Given an indeterminate temporal database DBIT = 
{f1,…,fk} and a temporal relation rITÎ DBIT, and given any f Î{f1,…,fk},  we define the 
scenario slice f of DBIT(denoted by DBfIT) and of  rIT  (denoted by rfIT) the determinate 
temporal database and the determinate temporal relation obtained by considering only 
the alternative f for DBIT ■ 

Example 3. For example, considering Example 2 above, and the scenario f1, 
DBf1IT=SYMf1IT= {10→{J}, 11→{J}, 12→{M}, 13→{M}}. ■ 

3.2  Query semantics 

Of course, for the algebraic query operators, we can still retain all the general 
requirements discussed so far for determinate time. However, we have to generalize 
the above approach, to consider the fact that a set of alternative (determinate) 
temporal databases (scenarios) are involved. Therefore, given two temporally 
indeterminate relations rIT and sIT, binary temporal algebraic operators must consider, 
at each chronon, all the possible combinations of the scenarios frÎS(rIT) of  rIT and 
fsÎS(sIT) of sIT. 

Definition 8. Relational algebraic operators on indeterminate temporal 
databases (“semantic” notion). Denoting by OpC a Codd’s operator, and by OpIT its 
corresponding temporal operator for indeterminate time OpIT must be defined in such 
a way that the following holds  
"cÎDT (OpT(rT,sT) (c)  = È

 fr Î S(rIT) Ù fs Î S(sIT)
 OpC(fr(c), fs(c)))   ■ 

 (In Definition 5, rIT and sIT are temporal relations in a temporally indeterminate 
database DBIT, and Op is a binary operator. fr(c) represents the time slice at the 
chronon c of the scenario fr of rIT. The definition of unary operators is simpler). 

We regard Definition 8 as one of the major results of this paper: until now, no 
approach in the TDB community has been able to clarify the semantics of temporal 
algebraic operators on indeterminate time in terms of their Codd’s counterparts. But, 
obviously, this is just data and query semantics: a direct implementation of the data 
model and algebraic operators defined so far would be highly inefficient, as regard 
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both space and time. As a consequence, “compact” representational models and 
operators on them should be identified. We address this issue in the next section. 

4 Possible “compact” approaches to temporal indeterminacy 

The most frequently adopted representational model to cope with (valid) time in a 
compact and 1NF way is the interval-based representation (consider, e.g., the TSQL2 
“consensus” representational model [2]). A time interval (compactly modelled by a 
starting and an ending time) is associated with each temporal tuple, to denote that the 
(fact represented by the) tuple holds in each chronon in the interval. In the 
indeterminate time context, such an interval-based representation has also been used, 
e.g., in [7, 11, 16–18]. As in such approaches, we associate four temporal attributes 
(say T1, T2, T3, and T4) with each temporal tuple, to compactly represent the 
intervals when it certainly and possibly holds. 

Definition 8. Temporally indeterminate Database, Relation, Tuple 
(representational model). A temporally indeterminate relational database DBIT is a 
set of (temporally indeterminate) relations over the relational schema   s = (R1:si , ..., 
Rk:sj) where si, ..., sjÎS are the sorts of R1, ..., Rk, respectively. A relation R(x1, ..., 
xk|T1,T2,T3,T4):s of sort sÎS is a sequence of non-temporal attributes x1, ..., xk each 
with values in a proper domain D1,…Dk, and temporal attributes T1, T2, T3, T4 with 
domain DT.  An instance r(R:s) of a relation R(x1, ..., xk|T1,T2,T3,T4):s is a set {t1, …, 
tn} tuples, where each tuple ti is a set <v1,…,vk|t1,t2,t3,t4> of values in  
D1´…´Dk´DT´DT´DT´DT.  ■ 

Example 4. In the temporally indeterminate context, the relation SYM (called 
SYMIT) may be represented with the schema <Patient,Symptom,Value| T1,T2,T3,T4> . 
Tuples of SYS are shown in Examples 5 and 7 below ■ 

Intuitively and roughly speaking, the semantics of such a compact 1NF “interval-
based” representation of temporal indeterminacy is the following: 
(sem1)  the fact represented by the tuple <v1,…,vk|t1,t2,t3,t4>  occurs possibly in the 

(chronons in the) time intervals [t1,t2) and [t3, t4), and certainly in the time 
interval [t2,t3). 

We now show that an “informal” semantics like (sem1) above is not enough: it must 
be fully formalized as a starting point for devising a “proper” representational model 
and algebra, following the methodological requirements M1-M4 above. 

4.1  “Single occurrence” semantics  

A first way of interpreting the “ambiguous” semantics (sem1) above is formally 
described in Definition 9 below. For the sake of space constraints, in Definition 9 we 
adopt a compact notation to represent scenarios: given a temporally indeterminate 
tuple with non-temporal part v, we denote by v([c1,c2]) the scenario {c1→{v}, 
c1+1→{v}, …, c2→{v}}. 



Definition 9. Representation semantics (sem1’). The semantics of an indeterminate 
time tuple <v|t1,t2,t3,t4>  in the representational model in Definition 8 is the set of 
scenarios 
{v([t2,t3-1]), v([t2,t3]),v([t2,t3+1]),v([t2,t3+2]), …, v([t2,t4-1]), 
  v([t2-1,t3-1]), v([t2-1,t3]),v([t2-1,t3+1]),v([t2-1,t3+2]), …, v([t2-1,t4-1]), 
  v([t2-2,t3-1]), v([t2-2,t3]),v([t2-2,t3+1]),v([t2-2,t3+2]), …, v([t2-2,t4-1]),  …, 
  v([t1,t3-1]), v([t1,t3]),v([t1,t3+1]),v([t1,t3+2]), …, v([t1,t4-1])} ■ 

  In Definition 9, we formalize that the fact v occurred in a convex (i.e., with no gap) 
time interval, which includes all the chronons in [t2,t3), and may extend forward until 
chronon t4 (excluded) and backward until chronon t1. This is, probably, the most 
intuitive notion of temporal indeterminacy in TDBs: each tuple represents a single 
occurrence of a fact, and temporal indeterminacy concerns the starting and ending 
chronons of it. In such a context, it looks natural to impose t1£t2<t3£t4, thus granting 
that there is at least one chronon in which the fact certainly occurs (see, e.g., [7]). 

Example 5. Given the temporally indeterminate relation SYMIT, with the semantics 
(sem1’) above, the fact  

(f2) Mary had moderate fever at 12 and 13, and possibly at 11 
can be represented by the tuple <Mary,fever,moderate|11,12,14,14>. 
The semantics of such a tuple consists of two possible scenarios: 
 11 → {M}   
12 → {M} 12 → {M}   
13 → {M} 13 → {M} ■ 

Notably, if we assume the semantics (sem1’), the fact (f1) 
(f1) John had high fever at 10 and 11, and possibly at 12, or 13, or both 

cannot be represented in the representational model: as a matter of fact, the tuple   
<John,fever,high|10,10,12,14> 

would be interpreted as the compact representation of the semantics below: 
10 → {J} 10 → {J} 10 → {J}   
11 → {J} 11 → {J} 11 → {J}   
 12 → {J} 12 → {J}   
 13 → {J} 
while the scenario <10 → {J}, 11 → {J}, 13 → {J}> would not be part of the 
semantics of the representation. Indeed, if we assume (sem1’), each tuple represents a 
single occurrence of a fact, while the latter scenario above represents two separate 
occurrences, one at [10,12), and one at [13,14). 

Of course, the specification of the semantics is fundamental also for the definition of 
the algebraic operators. In particular, we must grant that such operators (i) are correct 
wrt the semantics, and (ii) are closed wrt the representational model. 
Notably, if we assume the semantics (sem1’) for the representational model in 
Definition 8, there is no way to satisfy both requirements (i) and (ii)2. A trivial 
counterexample is discussed in the following, considering algebraic difference. 

                                                        
2 Notably, it is possible to show that it is not possible to define correct algebraic operators closed with 

respect to the representational model also in case one admits the possibility that facts in the TDBs do not 
necessarily occur, i.e., imposing t1£t2£t3£t4 in the representational model. We cannot show such a 
generalization here, for the sake of space constraints. 
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Example 6. Consider the difference between two relations r1IT and r2IT having the 
same schema (A1,…,Ak|T1,T2,T3,T4). Let r1IT={<a1,…,ak|1,3,5,7>} and 
r2IT={<a1,…,ak|3,3,8,8>} (i.e., the two tuples are value-equivalent, and the tuple in 
r2IT is determinate, starts at 3 and ends at 7). In such a case the result of the difference 
r1IT-IT r2IT should be a fact a1,…,ak which may not occur, or occurs in {2}, or in 
{1,2}. A tuple with such a semantics cannot be represented in the given 
representation. Thus, this example suffices to show that (the semantically correct) 
difference is not closed with respect with the given formalism (with the semantics 
(sem1’) above). ■ 

4.2  “Independent chronons” semantics  

A different way of interpreting the “rough” semantics (sem1) above is provided in 
Definition 10 where, for the sake of space constraints, we adopt the following 
compact notation to represent scenarios: given a temporally indeterminate tuple with 
non-temporal part v, we denote by v({c1,c2, …, ck}) the scenario {c1→{v}, c2→{v}, 
…, ck→{v}}; furthermore, we denote by  PS(A) the power set of a set A.   

Definition 10. Representation semantics (sem1’). The semantics of an 
indeterminate time tuple <v|t1,t2,t3,t4>  in the representational model in Definition 8 is 
the set of scenarios v({t2,t2+1,t2+2, …, t3-1}ÈT \ TÎPS({c \ cÎ([t1,t2) È [t3,t4))}) ■ 

In such a semantics, there is no notion of single occurrence at all. v certainly holds in 
each chronon in [t2,t3) (if any), and may hold in each one of the chronons c in [t1,t2) 
and in [t3,t4), independently of each other. In such a context, it is natural to impose 
t1£t2£t3£t4, so that the fact may also not be certain in a chronon, in case t2=t3. 

Example.7 Given the temporally indeterminate relation SYMIT, with the semantics 
(sem1’) above, the fact (f1) 
(f1) John had high fever at 10 and 11, and possibly at 12, or 13, or both is represented 
in the representational model by the tuple   

<John,fever,high|10,10,11,13> 
which has the semantics discussed above (in short, the fact may hold at {10,11}, or at 
{10,11,12}, or at {10,11,13}, or at {10,11,12,13}). ■ 

With such a semantics for the representational model, it is possible to define correct 
and closed algebraic operators as follows: 

Definition 11. Algebraic operators for indeterminate time (independent chronons 
semantics). Let r and s denote relations of the same sort and <v|t1,t2,t3,t4> a tuple with 
non-temporal part v and temporal part t1,t2,t3,t4. 
r ÈIT s   = { < v| t1,t2,t3,t4> | < v| t1,t2,t3,t4 > Î r Ú < v| t1,t2,t3,t4 > Î s} 
r ´IT s   = { < vr ·vs| t1,t2,t3,t4 > | $ t’1,t’2,t’3,t’4 $ t"1,t"2,t"3,t"4 ( < vr| t’1,t’2,t’3,t’4 > Î r Ù < vs| 
t"1,t"2,t"3,t"4  > Î s Ù t1=max(t’1, t"1) Ù t4=min(t’4, t"4) Ù t1£ t4 Ù  

let ts=max(t’2, t"2) Ù te=min(t’3, t"3)  
if ts£ te then t2= ts  Ù t3= te  else t2=t3=t where t is any value in [t1,t4)} 

πITX(r)  = { < v| t1,t2,t3,t4 > | $vr,t1,t2,t3,t4 (< vr| t1,t2,t3,t4 > Î r Ù v = πX(vr) }  
σITP(r)  = { < v|t > | < v|t > Î r Ù P(v) } 
r -IT s   = { < v| t1,t2,t3,t4> | ($v, t1,t2,t3,t4 (< v| t1,t2,t3,t4 > Î r Ù  



  ¬$ t’1,t’2,t’3,t’4 ( < v| t’1,t’2,t’3,t’4 > Î s ))) Ú 
 ($ t’1,t’2,t’3,t’4 $ t"1,t"2,t"3,t"4 (<v| t’1,t’2,t’3,t’4> Î r  Ù <v| t"1,t"2,t"3,t"4>Îs  
Ù t1,t2,t3,t4 = difference([t’1,t’4), [t’2,t’3), [t"1,t"4),[t"2,t"3))}  

where difference can be defined by the following function (where s is a function that 
returns the starting point of an interval and e returns the ending point, and the 
function Nor  is used to reformat the output in case t2>t3, i.e.,  
Nor(<t1,t2,t3,t4>)=<t1,t2,t3,t4> if  t1£t2£t3£t4,  
Nor(<t1,t2,t3,t4>)=<t1,t,t,t4> where t1£t£t4 if t2>t3) 

difference(p1,n1,p2,n2) 
(1) if (p1 ⊆ n2) then return Æ 
(2) else if (p1 Ç n2 = Æ) then return {Nor(<s(p1),s(n1-p2),e(n1-p2),s(p1)>)} 
(3) else if (p1 ⊃ n2) then return {Nor(<s(p1),s(n1-p2),e(n1-p2),s(n2)>), 

Nor(<e(n2),s(n1-p2),e(n1-p2),e(p1)>)}  
(4) else return {Nor(<s(p1-n2),s(n1-p2),e(n1-p2),e(p1-n2)>)} ■ 

The difference function accepts as parameters two time intervals for the minuend (p1 
and n1) and two time intervals for the subtrahend (p2 and n2). p1 and p2 are the 
possible intervals, i.e., they contain the chronons that are in at least one scenario, and 
n1 and n2 are the necessary –certain– intervals, i.e., they contain the chronons that are 
in every scenario (thus n1⊆p1 and n2⊆p2). The function operates along the following 
idea (for space constraints, we will not go into the details): if a chronon is both in the 
minuend and in the subtrahend, and in the subtrahend such a chronon is (i) necessary 
(i.e., it belongs to n2), it will not be in the result, (ii) only possible (i.e., it belongs to 
p2 but not to n2), it will be possible in the result. From (i) and the fact that n1⊆p1, 
descends line (1) of the difference function, from (ii) descends line (2), from (i) and 
(ii) and the fact that n2⊈p1 descends line (3), from (i) and (ii) and the fact that n2⊆p1 
descends line (4) and, in particular, since n2⊆p1 the minuend “breaks” into two (pairs 
of) intervals. 

Property. The algebraic operators in Definition 11 are correct (with respect to the 
semantics defined so far) and are closed with respect to the representational model. 

5 Conclusions and future work 

In this paper, we propose an innovative approach in which a semantic-based AI-style 
methodology is proposed to cope with temporal indeterminacy in TDBs. Specifically: 

(1) We propose a new semantic definition for indeterminate time in TDBs, in 
which the semantics of algebraic operators can be expressed in terms of their 
Codd’s counterparts (thus formally providing a “snapshot semantics” for 
indeterminate time TDBs). 

(2) We propose a new AI-style methodology to the treatment of TDBs, using it 
to develop a semantically-grounded 1NF approach (data model plus algebra) 
to cope with “interval-based” temporal indeterminacy. 

Indeed, in this paper we have shown that, when introducing the temporal dimension, 
TDBs have to cope with implicit information, which has to be symbolically 
manipulated by algebraic operators to answer queries. As a consequence, we propose 
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an innovative AI-based methodology to cope with time in relational DBs. We are 
confident that our methodology can be fruitfully applied to other types of temporal 
information in TDBs (e.g., implicit representation of periodically repeated data [19, 
20]), and possibly of other forms of indeterminacy, thus leading to a new AI stream 
of research to cope with indeterminate\implicit data in relational DBs. 
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