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ABSTRACT  
 
Background 
Obesity is an established risk factor for several common chronic diseases such as breast and 
colorectal cancer, metabolic and cardiovascular diseases, however, the biological basis for these 
relationships is not fully understood. To explore the association of obesity with these conditions, we 
investigated peripheral blood leukocyte (PBL) DNA methylation markers for adiposity and their 
contribution to risk of incident breast and colorectal cancer and myocardial infarction.  
 
Methods 
DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1,941 
individuals from four population-based European cohorts were analysed in relation to body mass 
index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a 
sub-set of these individuals, data on genome-wide gene expression level, biomarkers of glucose 
and lipid metabolism were also available. Validation of methylation markers associated with all 
adiposity measures was performed in 358 individuals. Finally, we investigated the association of 
obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within 
relevant subsets of the discovery population.  
 
Results 
We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of 
these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures 
(P=9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 
(P=6.00×10-7), higher triglyceride levels (P=5.37×10-9) and higher triglycerides-to-HDL cholesterol 
ratio (P=1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) 
were significantly associated with colorectal cancer (inversely, p<1.6x10-3) and one intergenic locus 
on chromosome 1 was inversely associated with myocardial infarction (p<1.25x10-3), independently 
of obesity and established risk factors.  
 
Conclusion 
Our results suggest that epigenetic changes, in particular altered DNA methylation patterns, may be 
an intermediate biomarker at the intersection of obesity and obesity-related diseases, and could 
offer clues as to underlying biological mechanisms. 
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BACKGROUND 
 
Obesity is a growing global public health concern with an estimated 1.9 billion adults classified as 
overweight or obese worldwide1. Obesity is a risk factor for a variety of chronic diseases including 
type 2 diabetes, cardiovascular disease (CVD) and a number of malignancies such as 
postmenopausal breast, colorectal, liver, kidney and endometrial cancer2, 3. Obesity-associated 
metabolic abnormalities such as hyperinsulinemia, hyperglycaemia and dyslipidaemia have also 
been associated with CVD and a number of malignancies4. However, the contribution of obesity and 
its physiological consequences to the development of these diseases remains poorly understood.   
 
The aetiology of obesity is multifactorial, with both genetic and environmental determinants. 
Numerous genetic variants linked to obesity have been discovered by large meta-analyses of 
genome-wide association studies5-7; however, taken together, these variants explain only a modest 
fraction of the phenotypic variation, and most of them do not appear to directly modulate 
phenotypes potentially driving individual risk profiles for obesity-related diseases8. It has been 
hypothesized that adiposity influences DNA methylation and the identification of genetic loci that are 
epigenetically modified in obesity could help further understanding on the development of obesity 
and its pathophysiologic sequelae. Recently, several epigenome-wide association studies have 
been published that have identified several hundred CpG sites that are statistically significantly 
associated with body mass index (BMI)9 and with metabolic disturbances and subsequent risk of 
type 2 diabetes 10, 11. To our knowledge, no studies have investigated the association of adiposity-
related CpG loci and subsequent risk of other obesity-related diseases such as myocardial 
infarction, breast and colorectal cancer.     
 
In this analysis, we obtained genome-wide DNA methylation levels in peripheral blood leukocytes 
(PBLs) from over 1,900 individuals from four prospective cohorts in Italy, the Netherlands, Norway 
and Sweden. Using a meta-analytical framework, we tested the association of DNA methylation 
levels at each CpG locus with four measures of adiposity and investigated their association with 
transcriptomic profiles and subsequent development of myocardial infarction, breast and colorectal 
cancer.  
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METHODS 

Features of the study population and the overall analytical strategy are summarised in Figure 1. 

 
Discovery set 
The study included participants from four large population-based cohorts: the Italian and Dutch 
components of the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy, 
N=47,74912 and EPIC-Netherlands, N=33,06613), the Norwegian Women and Cancer Study 
(NOWAC, N=53,363)14, and the Västerbotten Intervention Program (VIP) part of the Northern 
Sweden Health and Disease Study (NSHDS, N= 101,790)15. 
 
A total of 2,560 genome-wide DNA methylation profiles from PBLs were available as part of: 

(i) Three separate prospective case-control studies nested within EPIC-Italy on breast cancer 
(N = 332), colorectal cancer (N = 338), and myocardial infarction (N = 552);  

(ii) Two separate prospective nested case-control from EPIC-Italy and NSHDS on breast cancer 
and B-cell malignancies (EPIC-Italy and NSHDS components of the EnviroGenoMarkers 
project, N = 241 and 400, respectively). 

(iii) A longitudinal study in healthy women nested within EPIC-Netherlands (N = 148 pairs of 
baseline and follow-up samples, of which N = 66 at five years and N = 82 at ten years from 
baseline). 

(iv) A prospective case-control study nested within NOWAC on breast cancer (N = 384). 

NOWAC study was approved by the Regional Committee for Medical and Health Research Ethics 
and the Norwegian Data Inspectorate. The EnviroGenomarkers project and its associated studies 
(EPIC-Italy and NHSDS) and experimental protocols were approved by the Regional Ethical Review 
Board of the Umeå Division of Medical Research, for NHSDS, and the Florence Health Unit Local 
Ethical Committee, for EPIC Italy, and by local review board for EPIC-NL. Other studies involving 
EPIC-Italy samples we approved by the HuGeF Ethics, Committee. All participants gave written 
informed consent. 
 
For the EPIC participants who contributed to more than one case-control study, multiple DNA 
methylation profiles were available. We only retained the single profile that exhibited the best 
technical quality (based on control probes). Participants from prospective nested case-control 
studies who developed the relevant condition less than one year after blood draw (to guard against 
reverse causation), or who developed any kind of haematological malignancy at any time after 
enrolment, were excluded, as were those with no anthropometric data. Characteristics of the 
resulting 1,941 participants (588 men and 1,353 women) are reported in Supplementary Table 1. 
Cancer cases were ascertained by linkage to national cancer registries, and myocardial infarction 
cases were confirmed by a cardiologist based on clinical records. Across all studies, completeness 
of follow-up was close to 100%, and cancer cases were histologically confirmed. Healthy controls 
were matched to cases by gender, time since blood sampling, and year of birth in order to control 
for effects of blood storage time and ageing. 
 
Replication set 
In order to validate the adiposity-methylation associations identified in the discovery set, we defined 
a replication sample (N = 384) from EPIC-Italy (independent of those individuals tested in the 
discovery sample). Samples exclusion criterion included: (i) prevalent dyslipidaemia or diabetes 
(self-reported); (ii) diagnosis of any non-haematological malignancy less than five years after blood 
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draw; (iii) diagnosis of any haematological malignancy at any time after enrolment. Adiposity was 
assessed using a combination of BMI and waist circumference. To maximise contrast in obesity 
metrics and explore possible departure from a linear dose-response curve linking obesity and 
methylation levels, at high levels of obesity, we oversampled obese participants and randomly 
selected from the obese group 288 (75%) participants. The remaining 96 (25%) participants were 
sampled from the reference, normal-weight group. Samples that did not pass quality control 
procedures, as well as participants with incomplete anthropometric information, were excluded from 
further analyses, leaving a total of 358 participants (127 men and 231 women) whose 
characteristics are reported in Supplementary Table 2.  
 
 
Adiposity Parameters 
Four adiposity measures were considered: body mass index (BMI; kg/m2), waist circumference 
(cm), waist to hip ratio (WHR), and waist to height ratio (WHtR). Anthropometric measurements 
concurrent with blood sampling were obtained by a trained nurse at enrolment for all EPIC and 
NSHDS participants and were self-reported for NOWAC. Waist circumference and related measures 
were only available for EPIC participants. 
 
Biochemical and Biological Parameters 
Fasting blood levels of circulating total and HDL cholesterol, triglycerides, glucose, and insulin were 
available in a subset of non-diabetic EPIC-Italy participants (independent of the samples used in the 
replication set) who declared not to be taking lipid-lowering medications (N = 412), and for whom 
DNA methylation profiles were also available. Differential blood counts were available for a subset 
of EPIC-Netherlands participants at baseline (N = 56). 

Laboratory analyses and data pre-processing 
DNA Methylation Analyses 
Genome-wide DNA methylation profiles were obtained using the Illumina Infinium® 
HumanMethylation450 (HM450) BeadChip assaying 470,870 autosomal CpG sites across the 
genome. Genomic DNA extracted from PBLs was bisulphite-converted using the Zymo Research 
EZ-96 DNA Methylation-Gold™ Kit, and hybridised to HM450 BeadChips according to the 
manufacturer’s protocol. Microarrays were subsequently scanned using the Illumina HiScanSQ 
system, and raw intensity data were exported from Illumina GenomeStudio (version 2011.1). Control 
probes included in the microarray were used to assess bisulphite conversion efficiency and to 
exclude lower-quality samples from further analyses (probes with detection p-values greater than 
0.05 were excluded). Data pre-processing was performed using in-house software written for the R 
statistical computing environment. In particular, for each sample and each probe, measurements 
were set to missing if obtained by averaging intensities over less than three beads, or if averaged 
intensities were below detection thresholds estimated from negative control probes. Background 
subtraction and dye bias correction (for probes using the Infinium II design) were also performed. 
DNA methylation levels at each locus were assumed to be proportional to the ratio of intensities 
arising from methylated cytosine residues over total intensities. Details of the DNA-methylation pre-
processing procedures are given in the Appendix. DNA methylation levels in the replication sample 
were assessed using bisulphite pyrosequencing. Primers were designed using QIAGEN PyroMark 
Assay Design (version 2.0). Preliminary PCR reactions were performed using the following cycling 
protocol: 95°C for 10 minutes, followed by 45 cycles of denaturation at 95°C for 30 seconds, 
annealing at 58°C for one minute, and extension at 72°C for one minute; a final extension was 
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performed at 72°C for 10 minutes. All samples were analysed two or three times (following 
bisulphite conversion) to assess and account for technical variability. 
 
Gene Expression Analyses 
Blood samples from the EnviroGenoMarkers and NOWAC studies additionally underwent genome-
wide gene expression profiling using the Agilent Whole Human Genome 4×44K Microarray 16, and 
the Illumina HumanWG-6 and HumanHT-12 BeadChip (NOWAC), respectively, as previously 
reported 17, 18. Samples that failed quality control procedures were excluded from further analyses, 
leaving a total of 672 genome-wide gene expression profiles (N = 353 in EnviroGenoMarkers, and N 
= 319 in NOWAC) with associated DNA methylation data. For both studies, pre-processing steps 
included within- and between-array normalisation, followed by removal of un-annotated and non-
specific probes, leaving a total of 14,698 transcripts for EnviroGenoMarkers, and 14,980 transcripts 
for NOWAC. 

Statistical analyses 

In the discovery set, separate analyses were conducted for each study and each adiposity measure. 
DNA methylation levels at each assayed CpG locus were modelled as the dependent variable in a 
generalised linear model accommodating beta-distributed responses 19, and for paired samples from 
EPIC-Netherlands, in a linear mixed model. All models were adjusted for microarray and position on 
the microarray, sex (if applicable), age at blood draw, and case-control status (if applicable). For 
each adiposity measure, estimated effect sizes (on the logit scale) and associated standard errors 
were obtained. Results across studies were combined in a meta-analytic framework using fixed 
effects models with inverse-variance weighting. For each CpG locus the model estimated, effect 
sizes, standard errors, and corresponding P-values as well as the I2 heterogeneity statistic 20. 
Associations were declared statistically significant based on their meta-analytic P-value with a 5% 
Bonferroni-corrected significance threshold α = 0.05/470,870 ≈ 1.06×10-7. Sensitivity analyses 
included stratification by sex, adopting a 5% significance threshold after Bonferroni correction for 
the number of informative CpG loci identified in the meta-analysis for each adiposity measure. DNA 
methylation measurements in the replication sample consisted of 2 to 3 technical replicates per 
participant and all were analysed together. In order to capture the possible technical variation within 
each participant, we used a linear mixed model with a participant random effect and adjusted for the 
same technical covariates as described above. CpG loci identified by the meta-analysis were only 
retained if they were not reported in the literature as cross-hybridising probes21.  
 
Informative CpG loci from the meta-analysis were further characterised by relating DNA methylation 
levels to transcriptional activity of the closest gene in EnviroGenoMarkers and NOWAC, using a 
log2-linear model adjusted for technical confounders, cohort and sex (EnviroGenoMarkers data 
only), age, case-control status, and BMI. As previously reported, linear models and linear mixed 
models (including a random intercept dependent on the main technical confounders) were used for 
the NOWAC and EnviroGenoMarkers data, respectively16, 22. Associations were declared statistically 
significant at a nominal 5% significance threshold. 
  
Fasting levels of circulating total and HDL cholesterol, triglycerides, glucose, and insulin, as well as 
two further indicators of cardiometabolic risk (total-to-HDL cholesterol ratio and triglycerides-to-HDL 
cholesterol ratio)23, and two indicators of β-cell function and insulin resistance (HOMA-%Β and 
HOMA-IR24), were measured in the EPICOR study (N=412, see Figure 1). These were analysed in 
relation to DNA methylation levels at informative CpG loci using log-linear models adjusted for sex, 
age, case-control status (separately for cancers and myocardial infarction), BMI and WHR. 
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We also investigated the potential for bias induced by differential blood cell counts adjusting for 
measured counts that were available in 56 EPIC-Netherlands study participants. These analyses 
were performed for our informative CpG loci using linear models adjusted for age, and were 
corrected for multiple comparisons using a 5% Bonferroni corrected significance level based on the 
total number of informative CpG loci identified in the meta-analysis. In addition, we used the ‘double 
bootstrap’ approach by Houseman, Accomando et al 25 and DNA methylation profiles in purified 
leukocytes made available by Reinus, Acevedo et al 26 to infer associations between adiposity 
measures and blood differentials estimated from DNA methylation data. Adiposity-related CpG loci 
were then analysed with respect to incident post-menopausal breast cancer (from EPIC-Italy, 
EnviroGenoMarkers, and NOWAC studies N=283 cases/282 controls, see Figure 1), colorectal 
cancer (from EPIC-Italy CRC study N=171 cases/132 controls, see Figure 1), and myocardial 
infarction (from EPICOR study N=131 cases/195 controls, see Figure 1) in a logistic regression 
model for case-control status adjusted for age, sex (except post-menopausal breast cancer), BMI 
and WHR, as well as disease-specific confounders (Supplementary Table 3). 
 

Data and Code availability 

Most of the microarray data is already publicly available (accession numbers available upon request 
to the corresponding author). The remaining data could be accessed upon request to the originating 
cohorts. Access will be conditional to adherence to local ethical and security policy. R-codes used 
for the analyses presented in the paper are available upon request.  
 
RESULTS 

Epigenome-wide association analysis of adiposity 
The meta-analysis of studies in the discovery set identified a list of 40 unique informative CpG loci 
associated with one or more adiposity measure (p<1.06×10-7, Table 1). In particular, after correction 
for multiple testing, 26 CpG loci were statistically significantly associated with BMI (Table 1-A, P-
values ranging between 9.89×10-8 and 2.76×10-18), of which 8 are directly associated to BMI and 18 
were characterised by low-to-moderate heterogeneity across studies (I2 < 50%). Analyses for waist 
circumference and derived measures identified fewer associations: 12 for waist circumference 
(including 6 direct associations Table 1-B),  9 for WHR (including only one direct association Table 
1-c), and 12 for WHtR (including three direct associations, Table 1-D). All 12 CpG loci associated 
with WHtR exhibited low-to-moderate heterogeneity across studies (I2 < 50%). Methylation levels at 
a single CpG locus (cg06500161, ABCG1) were significantly (and positively) associated with all four 
adiposity measures (P-values ranging between 3.07×10-11 and 2.76×10-18). Associations with DNA 
methylation levels at cg06500161 (ABCG1) were confirmed in the replication experiment (P-values 
5.61×10-10, 8.17×10-11, 7.68×10-9, and 4.71×10-11 for BMI, waist circumference, WHR, and WHtR, 
respectively). DNA methylation measurements obtained using bisulphite pyrosequencing, were 
additionally used to examine the shape of the dose-response curve of DNA methylation levels with 
each of the four adiposity measures; this showed linear direct relationships (Supplementary Figure 
1). Additional stratification by sex did not yield any substantial differences in the results 
(Supplementary Table 4). However, associations appeared stronger in women than in men. Among 
men, 15 of the CpG loci associated with BMI did not reach statistical significance; however, seven 
(nominally statistically significant) showed effect size estimates similar to those obtained in the main 
analysis. This might at least partially be attributed to the smaller number of men included in our 
study (N=588 men, vs N=1,353 women). 



9 
 

 
Using measured blood differentials available in 56 study participants from EPIC-Netherlands, 
sensitivity analyses showed evidence of potential confounding induced by leukocyte high turnover 
rates and inter-individual tissue heterogeneity 25, 27 for only one of our 40 informative CpG loci, 
cg27117792 (intergenic). We additionally estimated blood cell composition using the ‘double 
bootstrap’ approach by Houseman, Accomando et al 25 in EPIC-Italy and NOWAC. We did not 
identify any associations between adiposity measures and blood differentials estimated from DNA 
methylation data (all p-values > 0.05, see Supplementary Table 5). Furthermore, using results from 
the genome-wide meta-analyses from the GIANT consortium 5-7 we did not identify any SNP, with 
minor allele frequencies above 1% in the European population 28, and located within 500 kb 
windows centred at each informative CpG locus, associated with BMI or WHR (lowest reported p-
values 6.36×10-5 and 5.42×10-6 for BMI and WHR, respectively). We believe these data argue 
against potential genetic confounding. In addition, using genotype data available for 552 EPIC-Italy 
participants from the EPICOR study, we investigated associations between DNA methylation levels 
and 38 assayed SNPs that were also reported in the most recent GIANT meta-analysis, separately 
and combined in a (partial) genetic risk score. As illustrated in Supplementary Figure 2, we did not 
identify any significant associations, which also supports the lack of (non-local) genetic confounding. 

Associations with transcriptional activity 

Among the 40 informative CpG loci, six exhibited DNA methylation levels that were consistently 
associated with transcriptional activity in PBLs for the nearest gene in both EnviroGenoMarkers and 
NOWAC data (Table 2). With the exception of DNA methylation levels at cg00574958, which were 
inversely associated with transcription levels of CPT1A in EnviroGenoMarkers, but positively in 
NOWAC, all such associations showed consistent directions in both studies. In particular, DNA 
methylation levels at cg11024682 were inversely associated with transcriptional activity of SREBF1, 
and DNA methylation levels at both pairs of informative CpG loci found in close proximity 
(cg27243685 and cg06500161 on ABCG1, and cg16246545 and cg14476101 on PHGDH) were 
consistently inversely associated with transcriptional activity of the corresponding genes. In addition, 
transcription levels of ABCG1 were independently inversely associated with BMI (P = 7.38×10-7) in 
the NOWAC data; an association in the same direction was also found in the EnviroGenoMarkers 
data (P = 1.18×10-2). 

Associations with biomarkers of lipid and glucose metabolism 

Statistically significant associations between methylation levels at the 40 informative CpG loci and 
biomarkers of lipid and glucose metabolism are reported in Table 3. Associations were investigated 
without and with adjustment for BMI and WHR. While effect size estimates remained stable after 
this additional adjustment, some associations lost statistical significance. Adjusting for the effect of 
BMI and WHR, fasting blood levels of HDL cholesterol were associated with DNA methylation levels 
at cg0650016 (ABCG1) (the other CpG locus on ABCG1, cg27243685 was found associated in the 
model not adjusted for BMI and WHR), and cg09831562 (SOX2OT), though we did not identify any 
association with total cholesterol levels. Triglyceride levels were associated with DNA methylation 
levels at five informative CpG loci, cg00574958 (CPT1A), both CpG loci in ABCG1 (cg06500161, 
cg27243685), cg17901584 (DHCR24), and cg11024682 (SREBF1). A significant association was 
found between total-to-HDL cholesterol ratio and DNA methylation levels at cg06500161 (ABCG1), 
and between triglycerides-to-HDL cholesterol ratio and five informative CpG loci: cg00574958 
(CPT1A), cg27243685 and cg06500161 (both on ABCG1), cg17901584 (DHCR24), and 
cg11024682 (SREBF1, only for the model not adjusted for BMI and WHR). Finally, DNA methylation 
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levels at cg06500161 (ABCG1) were associated with fasting blood glucose levels; no significant 
associations were found with insulin or HOMA index. 
 
Associations of adiposity-related CpG loci with breast cancer, colorectal cancer and 
myocardial infarction 
Among the 40 informative CpG loci, we identified one that was also associated with colorectal 
cancer (cg21307484 in IL2RB, Table 4-B – Model 2). To investigate the potential for an independent 
effect of these markers, we ran similar models adjusted for BMI and WHR (Model 1). While the 
strength of the association with cg21307484 was slightly weakened, one additional association with 
colorectal cancer emerged involving methylation levels at cg11661512 in FGF18 (P=1.6 x10-3). We 
also identified one CpG locus associated with myocardial infarction (cg12593793, Table 4C, Model 
2). This locus was found to be inversely associated with smoking (P =2.93×10-6 for current-to-never 
smoker comparison), even after adjustment for BMI and WHR (Model 1). 
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DISCUSSION 
 
We conducted a series of genome-wide association studies of DNA methylation levels for four 
adiposity measures in over 1,900 individuals from large European population-based cohorts. Forty 
CpG loci were associated with at least one adiposity measure using a fixed effects meta-analysis. 
This model assumes that the obesity-methylation associations are similar across studies, which was 
supported by the modest heterogeneity estimates we obtained. We related DNA methylation levels 
to transcriptional activity in PBLs of the nearest gene and identified and replicated associations 
between higher DNA methylation levels at five CpG loci and down-regulation of ABCG1, PHGDH, 
and SREBF1 gene expression. In addition, we found transcription levels of ABCG1 to be inversely 
associated with BMI. Further, of the 40 adiposity-associated CpG loci, two were statistically 
significantly associated with subsequent colorectal cancer risk while one was related to myocardial 
infarction. 
Of the 40 obesity-related CpG sites we report, 21 were also found to be associated with BMI at 
genome-wide significance level in a recent meta-analysis including more than 10,000 individuals10. 
Using a Bonferroni correction for 40 tests, we found that 26 of our obesity-related CpG sites, of 
which 18 were related to BMI in our data, replicated in the BMI meta-analysis. The 26 replicated 
CpG sites included both cg21307484, and cg12593793, which we found to be associated with 
colorectal cancer and myocardial infarction, respectively. Reciprocally, of the 187 BMI-related CpG 
that meta-analysis reported, 41 replicated in our data, and 2 were found to be associated with 
breast cancer, 2 with colorectal cancer, and 5 (including cg12593793) with myocardial infarction.   
 
Of the forty obesity-related CpG loci, only one (cg06500161, ABCG1) showed associations with all 
four adiposity measures29. DNA methylation levels at this locus were also associated with fasting 
triglyceride levels, HDL cholesterol, total-to-HDL cholesterol ratio, and triglycerides-to-HDL 
cholesterol ratio. These results are consistent with recent findings on the role of ABCG1 in cellular 
cholesterol efflux and reverse cholesterol transport30 through removal of excess cholesterol and 
promotion of the maturation of nascent HDL particles to larger, cholesterol-rich lipoproteins31. 
ABCG1 is highly expressed in cholesterol-loaded macrophages, where it guards against lipid 
overloading32, and targeted disruption of Abcg1 in mice results in substantial lipid accumulation in 
macrophages and multiple tissues33. ABCG1 also plays a role in lipoprotein lipase regulation as 
demonstrated in knockdown experiments from cultured human macrophages34, and may thus result 
in less efficient uptake of circulating triglycerides. Our results are in agreement with the “conjoint 
trait” hypothesis of a combined low HDL cholesterol/high triglycerides phenotype that is regulated 
pleiotropically35. We also found an association between DNA methylation levels at one CpG locus 
on CPT1A and fasting triglyceride levels, consistent with recent reports in the literature36-38 and with 
previous results in animal models39. DNA methylation levels at one CpG locus on DHCR24 were 
associated with HDL cholesterol and triglycerides-to-HDL cholesterol ratio. Expression of this gene 
is known to be under epigenetic control 40, and its products are thought to mediate the anti-
inflammatory effect of HDL cholesterol in endothelial cells41, 42; they also appear to regulate cellular 
response to oncogenic and oxidative stress43. 
 
Among the 40 informative CpG loci, two loci in IL2RB and FGF18 and one CpG locus in an 
intergenic region of chromosome 1 were associated with colorectal cancer and myocardial infarction 
development, respectively, after controlling for anthropometric parameters and established risk 
factors. None of the informative CpG loci were associated with post-menopausal breast cancer 
following Bonferroni correction, though we note that the number of post-menopausal breast cancer 
cases included in the study was relatively small. 
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Differential DNA methylation levels in the IL2RB and FGF18 genes were associated with risk of 
colorectal cancer, which suggests that changes in the activity of these genes may be contributing to 
development of this malignancy. The IL2RB gene encodes the interleukin(IL)-2 receptor-β which 
binds IL-2, a cytokine which plays a major role in T-cell differentiation and proliferation. Over-
expression of lymphocyte IL2RB has been linked to risk of colorectal cancer in small clinical case-
control studies and was shown to predict risk when combined with 6 additional genes44, 45 Given that 
obesity is accompanied by alterations in T-cell populations, inflammation and immune 
dysregulation46, our results provide a potential link between obesity, T-cell proliferative pathways 
and colorectal cancer development that warrants further study. The FGF18 gene, which encodes 
the fibroblast growth factor 18, has also been previously linked to colorectal tumorigenesis47. FGF is 
a downstream target of the Wnt-signalling and β-catenin pathways which are central to cell growth 
and proliferation, and frequently mutated in colorectal cancer48.  Alterations in the Wnt/β-catenin 
pathway have been associated with obesity-related disorders such as insulin resistance and type 2 
diabetes49, 50 and FGF18 interacts with PI3K/mTOR and growth factor signalling pathways. Our 
findings may provide new evidence that obesity is associated with specific changes in the Wnt/β-
catenin signalling pathways, that could, in-turn, drive colorectal cancer development. Methylation 
levels at cg12593793 were found to be inversely associated with risk of myocardial infarction, 
independent of obesity and established risk factors, including smoking status. We may speculate 
that both smoking and adiposity influence myocardial infarction risk through a mechanism that alters 
methylation status at this locus.  
  
In support of the biological basis of these relationships, some of the obesity-related CpG loci we 
report have been identified in previous studies, not only of adiposity measures, but also of lipid and 
glycaemic traits. In particular, cg06500161 (ABCG1) was found to be linked to incident type 2 
diabetes in a recent study by Chambers, Loh et al 11; CpG loci on CPT1A and PHGDH  both with 
adiposity measures 11 and the metabolic syndrome51; and HIF3A, CPT1A and ABCG1 with BMI and 
waist circumference52. Nevertheless, we note that the recently identified associations between BMI 
and DNA methylation at three CpG loci on HIF3A 9 did not reach genome-wide statistical 
significance in our meta-analysis. Inconsistencies between the prior data and the current analysis 
may partially reflect different modelling strategies: we opted for a more conventional 
parameterization using DNA methylation levels as dependent variable, with adjustment for technical 
(microarray and position on the microarray) and other confounders. 
 
We identified several CpG loci that are associated with adiposity, metabolic traits, and which appear 
to be associated with gene expression. Among these, two CpG loci in IL2RB and FGF18, and one 
intergenic CpG locus on chromosome 1 were associated with subsequent risk of colorectal cancer 
and myocardial infarction, respectively. These associations survived adjustment for adiposity 
measures and known risk factors, suggesting a potential role for DNA methylation as intermediate 
biomarker in the complex interplay between adiposity, metabolic health, and risk of obesity-related 
diseases. However, because of the overlap between the methylation-obesity discovery and 
methylation-disease analyses, we cannot fully discard potential residual confounding in our BMI-
adjusted analyses. In addition, as previously reported in a larger family-based study9, and because 
our data do not arise from a structured population, our sample size renders any attempts to assess 
causality, for example using instrumental variable approaches, statistically underpowered and our 
analyses of the genetic data available in a fraction of our study population precludes the use of 
established BMI-related (combinations of) genetic variants as potential instruments in an attempt to 
infer causality. 
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Despite these limitations, we believe that our observational study data provide evidence for potential 
mechanisms involving DNA methylation alterations that may partly explain the association of obesity 
with obesity-related chronic diseases. 

In conclusion, we have identified a number of CpG sites that are associated with adiposity and 
metabolic traits and which appear to have functional effects on gene expression. Among these, one 
was consistently associated to all four adiposity measures: cg06500161, ABCG1. In addition, two 
CpG sites in IL2RB and FGF18 and one intergenic CpG locus on chromosome 1 were associated, 
independently of obesity and known risk factors, with subsequent risk of CRC and MI, respectively. 
This suggests a potential pleiotropic role for these epigenetic markers, and substantiates the 
involvement of DNA methylation in the complex interplay between adiposity, metabolic health, and 
risk of obesity-related diseases. 
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Figure 
Figure 1: Schematic representation of the study population and statistical analyses performed. 
 

Tables 
Table 1: Associations between DNA methylation levels and BMI (A), waist circumference (B), WHR 
(C), and WHtR (D) identified in the discovery set. The table reports the total number of samples N 
included in the meta-analysis, the beta regression model coefficient β measuring the percentage 
change (on the logit scale) in DNA methylation per unit increase in each obesity measure, and the 
associated standard error (SE), the p-value for H0: β = 0, and the I2 heterogeneity statistic. 

Table 2: Associations of DNA methylation levels at informative CpG loci with cis transcriptional 
activity in: (A) EnviroGenoMarkers data (N = 353); (B) NOWAC data (N = 319). Associations between 
transcription levels of the identified transcripts and BMI are also presented. The tables report the log2-
linear regression model coefficient β measuring the gene expression change associated with a one 
percentage point increase  in DNA methylation, the associated standard error (SE), and the p-value 
for H0: β = 0. 

Table 3: Associations of DNA methylation levels at (N=40) informative CpG loci with fasting blood 
levels of total and HDL cholesterol, triglycerides, glucose (all in mmol/L), and insulin (µIU/mL) after 
adjustment for sex, age, case-control status (separately for cancers and myocardial infarction). The 
table reports the beta regression model coefficient β measuring the percentage change in DNA 
methylation (on the logit scale) per one unit increase in blood concentrations of each biomarker, the 
associated standard error (SE), and the p-value for H0: β = 0, with and without adjustment for BMI and 
WHR. 

Table 4: Associations between informative CpG sites and post-menopausal breast cancer (A), 
colorectal cancer (B), and myocardial infarction (C) , for probes reaching nominal 0.05 significance 
level with adjustment for age, established risk factors for each disease, and BMI and WHR (Model 1). 
The table reports the beta regression model coefficient β measuring the DNA methylation difference 
(on the logit scale) between cases and controls, the associated standard error (SE), and the P -value 
for H0: β = 0. Associations found significant at a Bonferroni-corrected significance level assuming 30 
(the number of principal components needed to explain more than 95% of the variance) independent 
tests across the 40 actual tests are bolded in the table. Results for the model not adjusted for BMI and 
WHR (Model 2) are also reported.  
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Table 1: Associations between DNA methylation levels and BMI (A), waist circumference (B), WHR 
(C), and WHtR (D) identified in the discovery set. The table reports the total number of samples N 
included in the meta-analysis, the beta regression model coefficient β measuring the percentage 
change (on the logit scale) in DNA methylation per unit increase in each obesity measure, and the 
associated standard error (SE), the p-value for H0: β = 0, and the I2 heterogeneity statistic. 

 Chr Location Gene N β SE(β) P-value I2 

A- BMI (kg/m2) 

cg23172671 1 203,482,523  2072 9.46×10-3 1.76×10-3 7.80×10-8 19.67% 

cg16258657 3 29,338,542 RBMS3 2078 -8.31×10-3 1.54×10-3 6.59×10-8 0.00% 

cg15059608 3 62,305,003 C3orf14 2080 8.67×10-3 1.58×10-3 3.94×10-8 30.98% 

cg14492061 3 63,637,129 SNTN 2071 -9.42×10-3 1.66×10-3 1.36×10-8 57.11% 

cg18098839 3 167,742,700 GOLIM4 2085 -6.53×10-3 1.16×10-3 1.72×10-8 0.00% 

cg09831562 3 181,327,125 SOX2OT 2053 1.33×10-2 2.13×10-3 3.94×10-10 0.00% 

cg06164260 3 187,454,439 BCL6 2085 -4.03×10-3 7.09×10-4 1.27×10-8 14.59% 

cg11661512 5 170,864,692 FGF18 2083 -4.75×10-3 8.12×10-4 5.03×10-9 60.48% 

cg01538605 6 169,285,957  2085 -5.85×10-3 9.84×10-4 2.79×10-9 0.00% 

cg06087826 6 170,582,184  2083 -5.78×10-3 1.05×10-3 3.78×10-8 11.59% 

cg13286614 7 96,655,501 DLX5 2084 7.28×10-3 1.28×10-3 1.20×10-8 54.63% 

cg03619256 7 105,515,219 ATXN7L1 2085 -5.49×10-3 8.24×10-4 2.79×10-11 0.00% 

cg16797901 7 111,513,558 DOCK4 2061 -9.32×10-3 1.73×10-3 6.90×10-8 29.37% 

cg19249811 10 29,747,315 SVIL 1982 -3.23×10-2 3.77×10-3 1.00×10-17 94.82% 

cg17061862 11 9,590,431  2084 -7.23×10-3 1.18×10-3 9.16×10-10 0.00% 

cg00574958 11 68,607,622 CPT1A 2083 -7.62×10-3 1.41×10-3 6.15×10-8 0.00% 

cg27117792 12 102,330,180  2083 -9.90×10-3 1.81×10-3 4.29×10-8 53.99% 

cg19750657 13 38,935,967 UFM1 2083 8.25×10-3 1.23×10-3 2.15×10-11 0.00% 

cg02119938 15 78,505,051 ACSBG1 2071 -1.33×10-2 2.48×10-3 9.07×10-8 54.49% 

cg01115923 16 57,793,728 KIFC3 2085 -6.07×10-3 1.00×10-3 1.42×10-9 20.33% 

cg11024682 17 17,730,094 SREBF1 2085 5.36×10-3 7.64×10-4 2.29×10-12 21.98% 

cg24174557 17 57,903,544 TMEM49 2077 -8.36×10-3 1.49×10-3 2.14×10-8 0.00% 

cg04927537 17 76,976,091 LGALS3BP 2085 6.71×10-3 1.26×10-3 9.89×10-8 54.38% 

cg26950531 19 38,704,515 DPF1 2071 -1.44×10-2 2.06×10-3 3.40×10-12 0.00% 

cg27243685 21 43,642,366 ABCG1 2085 6.88×10-3 1.18×10-3 5.04×10-9 48.25% 

cg06500161 21 43,656,587 ABCG1 2085 6.88×10-3 7.89×10-4 2.76×10-18 53.62% 

B- Waist circumference (cm) 

cg09831562 3 181,327,125 SOX2OT 1501 6.19×10-3 1.02×10-3 1.13×10-9 0.00% 

cg01538605 6 169,285,957  1531 -2.47×10-3 4.63×10-4 1.04×10-7 0.00% 

cg03619256 7 105,515,219 ATXN7L1 1531 -2.24×10-3 3.91×10-4 9.54×10-9 0.00% 

cg11376147 11 57,261,198 SLC43A1 1530 -2.20×10-3 3.90×10-4 1.53×10-8 0.00% 

cg19750657 13 38,935,967 UFM1 1530 3.38×10-3 5.92×10-4 1.16×10-8 59.96% 

cg07037944 15 64,290,807 DAPK2 1524 -2.73×10-3 4.63×10-4 3.65×10-9 10.86% 

cg04583842 16 88,103,117 BANP 1515 3.16×10-3 5.84×10-4 5.90×10-8 0.00% 

cg11024682 17 17,730,094 SREBF1 1531 1.99×10-3 3.59×10-4 3.01×10-8 0.00% 

cg24174557 17 57,903,544 TMEM49 1523 -3.94×10-3 7.13×10-4 3.26×10-8 0.00% 

cg26950531 19 38,704,515 DPF1 1520 -5.60×10-3 1.00×10-3 2.44×10-8 50.19% 

cg06500161 21 43,656,587 ABCG1 1531 3.17×10-3 3.68×10-4 8.36×10-18 49.58% 

cg21307484 22 37,546,220 IL2RB 1531 2.35×10-3 4.19×10-4 2.07×10-8 0.00% 

C- WHR 

cg17901584 1 55,353,706 DHCR24 1531 -5.79×10-1 1.07×10-1 5.53×10-8 0.00% 



cg16246545 1 120,255,941 PHGDH 1531 -4.39×10-1 7.49×10-2 4.44×10-9 0.00% 

cg14476101 1 120,255,992 PHGDH 1527 -6.83×10-1 1.02×10-1 2.38×10-11 0.00% 

cg19472611 3 48,885,488 PRKAR2A 1513 -6.84×10-1 1.27×10-1 6.70×10-8 12.56% 

cg25799109 3 57,102,900 ARHGEF3 
SPATA12 

1519 -6.08×10-1 1.11×10-1 4.14×10-8 79.04% 

cg20898587 7 51,969,244  1530 -3.08×10-1 5.64×10-2 4.60×10-8 63.03% 

cg06730756 8 142,198,993 DENND3 1478 -1.41 2.62×10-1 8.25×10-8 84.90% 

cg11376147 11 57,261,198 SLC43A1 1530 -3.32×10-1 5.91×10-2 1.87×10-8 41.25% 

cg06500161 21 43,656,587 ABCG1 1531 3.65×10-1 5.49×10-2 3.07×10-11 62.98% 

D- WHtR 

cg12593793 1 156,074,135  1530 -4.37×10-1 8.21×10-2 1.01×10-7 0.00% 

cg09831562 3 181,327,125 SOX2OT 1501 9.34×10-1 1.61×10-1 6.69×10-9 0.00% 

cg06164260 3 187,454,439 BCL6 1531 -2.75×10-1 5.03×10-2 4.59×10-8 0.00% 

cg03619256 7 105,515,219 ATXN7L1 1531 -3.79×10-1 6.16×10-2 7.55×10-10 28.48% 

cg11376147 11 57,261,198 SLC43A1 1530 -3.53×10-1 6.16×10-2 9.43×10-9 0.00% 

cg07037944 15 64,290,807 DAPK2 1524 -4.09×10-1 7.35×10-2 2.58×10-8 4.90% 

cg11024682 17 17,730,094 SREBF1 1531 3.10×10-1 5.68×10-2 4.77×10-8 11.53% 

cg24174557 17 57,903,544 TMEM49 1523 -6.29×10-1 1.12×10-1 2.29×10-8 37.14% 

cg05091997 17 60,897,721  1513 -9.63×10-1 1.75×10-1 3.97×10-8 0.00% 

cg26950531 19 38,704,515 DPF1 1520 -1.04 1.59×10-1 7.51×10-11 17.36% 

cg26470501 19 45,252,955 BCL3 1531 -3.21×10-1 5.49×10-2 5.10×10-9 0.00% 

cg06500161 21 43,656,587 ABCG1 1531 5.07×10-1 5.83×10-2 3.32×10-18 19.08% 

 
 



Table 2: Associations of DNA methylation levels at informative CpG loci with cis transcriptional 
activity in: (A) EnviroGenoMarkers data (N = 353); (B) NOWAC data (N = 319). Associations between 
transcription levels of the identified transcripts and BMI are also presented. The tables report the log2-
linear regression model coefficient β measuring the gene expression change associated with a one 
percentage point increase  in DNA methylation, the associated standard error (SE), and the p-value 
for H0: β = 0. 

A 

   Association with DNA methylation Association with BMI 

mRNA Gene CpG locus β SE(β) P-value β SE(β) P -value 

NM_001031847 CPT1A cg00574958 -3.72 1.46 1.15×10-2 2.75×10-2 7.53×10-3 3.00×10-4 

NM_016617 UFM1 cg19750657 2.68 1.13 1.89×10-2 8.70×10-3 1.16×10-2 4.52×10-1 

NM_001005291 SREBF1 cg11024682 -1.90 0.82 2.10×10-2 -9.25×10-3 7.45×10-3 2.15×10-1 

NM_004915 ABCG1 cg27243685 -3.55 1.12 1.73×10-3 -2.02×10-2 7.96×10-3 1.18×10-2 

  cg06500161 -2.81 0.94 2.93×10-3    

NM_003627 SLC43A1 cg11376147 -3.61 1.65 2.89×10-2 7.04×10-3 9.53×10-3 4.61×10-1 

NM_006623 PHGDH cg16246545 -2.60 0.77 9.92×10-4 -3.03×10-3 8.76×10-3 7.29×10-1 

  cg14476101 -2.03 0.60 8.49×10-4    

NM_001128615 ARHGEF3 cg25799109 1.05 0.51 4.22×10-2 2.48×10-3 8.47×10-3 7.70×10-1 

 
B     

   Association with DNA methylation Association with BMI 

mRNA Gene CpG locus β SE(β) P -value β SE(β) P -value 

NM_020685 C3orf14 cg15059608 2.29 0.53 1.74×10-5 -2.31×10-3 5.23×10-3 6.59×10-1 

NM_001876 CPT1A cg00574958 3.39 1.27 7.90×10-3 3.12×10-3 7.70×10-3 6.85×10-1 

NM_001031847 CPT1A cg00574958 2.37 0.93 1.15×10-2 2.26×10-4 5.65×10-3 9.68×10-1 

NM_001005291 SREBF1 cg11024682 -2.99 1.41 3.47×10-2 -3.63×10-2 1.10×10-2 1.08×10-3 

NM_004915 ABCG1 cg27243685 -6.21 1.54 6.79×10-5 -5.25×10-2 1.04×10-2 7.38×10-7 

  cg06500161 -5.37 1.27 2.89×10-5    

NM_014326 DAPK2 cg07037944 -3.06 1.14 7.68×10-3 -3.27×10-2 9.03×10-3 3.40×10-4 

NM_006623 PHGDH cg16246545 -3.74 0.84 1.06×10-5 -1.59×10-2 9.21×10-3 8.45×10-2 

  cg14476101 -2.80 0.61 6.18×10-6    

 
 



Table 3: Associations of DNA methylation levels at (N=40) informative CpG loci with fasting blood 
levels of total and HDL cholesterol, triglycerides, glucose (all in mmol/L), and insulin (µIU/mL) after 
adjustment for sex, age, case-control status (separately for cancers and myocardial infarction). The 
table reports the beta regression model coefficient β measuring the percentage change in DNA 
methylation (on the logit scale) per one unit increase in blood concentrations of each biomarker, the 
associated standard error (SE), and the p-value for H0: β = 0, with and without adjustment for BMI and 
WHR. 

    Without Adjustment for BMI-WHR  With Adjustment for BMI-WHR 
CpG locus Gene Biomarker  β SE(β) P -value  β SE(β) P -value 

cg00574958 CPT1A Triglycerides  -0.11 0.03 8.18×10-5  -0.11 0.03 3.59×10-4 

  Triglycerides/HDL 
cholesterol 

 -0.09 0.02 7.65E×10-6  -0.09 0.02 3.92×10-5 

cg27243685 ABCG1 Triglycerides  0.09 0.02 4.52×10-5  0.07 0.02 1.09×10-3 

HDL cholesterol  -0.14 0.04 1.05×10-3  -0.11 0.04 1.08×10-2 

Triglycerides/HDL 
cholesterol 

 0.07 0.02 1.21×10-5  0.06 0.02 4.40×10-4 

Glucose  0.20 0.06 1.09×10-3  0.16 0.06 8.31×10-3 

cg06500161 ABCG1 HDL cholesterol  -0.15 0.03 6.00×10-8  -0.12 0.03 8.87×10-6 

  Triglycerides  0.08 0.01 1.93×10-9  0.07 0.01 3.61×10-6 

Total/HDL cholesterol  0.12 0.03 4.37×10-6  0.09 0.03 1.45×10-3 

Triglycerides/HDL 
cholesterol 

 0.07 0.01 1.59×10-11  0.06 0.01 8.45×10-8 

cg17901584 DHCR24 Triglycerides  -0.11 0.03 8.18×10-5  -0.11 0.03 3.59×10-4 

  Triglycerides/HDL 
cholesterol 

 -0.11 0.02 1.09×10-6  -0.11 0.02 5.21×10-6 

cg11024682 SREBF1 Triglycerides  0.05 0.01 2.74×10-4  0.04 0.01 8.22×10-3 

  Triglycerides/HDL 
cholesterol 

 0.03 0.01 8.51×10-4  0.03 0.01 2.11×10-2 

cg09831562 SOX2OT HDL cholesterol  -0.35 0.08 1.41×10-5  -0.32 0.08 1.01×10-4 

 
 



Table 4: Associations between informative CpG sites and post-menopausal breast cancer (A), 
colorectal cancer (B), and myocardial infarction (C) , for probes reaching nominal 0.05 significance 
level with adjustment for age, established risk factors for each disease, and BMI and WHR (Model 1). 
The table reports the beta regression model coefficient β measuring the DNA methylation difference 
(on the logit scale) between cases and controls, the associated standard error (SE), and the P -value 
for H0: β = 0. Associations found significant at a Bonferroni-corrected significance level assuming 30 
(the number of principal components needed to explain more than 95% of the variance) independent 
tests across the 40 actual tests are bolded in the table. Results for the model not adjusted for BMI and 
WHR (Model 2) are also reported.  

A           

Breast cancer  Model 11  Model 22 

 N β SE(β) P-value  Β SE(β) P-value 

cg01115923 182 -0.05 0.02 8.03×10-3  -0.05 0.02 5.96×10-3 

cg03619256 182 -0.04 0.02 1.86×10-2  -0.05 0.02 1.12×10-2 

cg26470501 182 -0.04 0.02 2.13×10-2  -0.04 0.02 1.15×10-2 

cg13286614 182 -0.07 0.03 2.17×10-2  -0.07 0.03 2.12×10-2 

cg25799109 182 -0.08 0.04 2.99×10-2  -0.08 0.04 2.79×10-2 

cg21307484 182 -0.04 0.02 3.45×10-2  - - - 

1 Analyses are adjusted for age, BMI, WHR, alcohol, contraceptive use, HRT, smoking status, physical activity 
2Analyses are adjusted for age, alcohol, contraceptive use, HRT, smoking status, physical activity 

B         
  

Colorectal cancer Model 13  Model 24 

 N β SE(β) P-value  β SE(β) P-value 

cg21307484 276 -0.08 0.02 4.76×10-4  -0.07 0.02 1.29×10-3 

cg11661512 275 -0.07 0.02 1.61×10-3  -0.07 0.02 2.14×10-3 
cg26470501 276 -0.05 0.02 9.14×10-3  -0.05 0.02 5.83×10-3 

cg26950531 276 -0.13 0.05 9.22×10-3  -0.15 0.05 4.24×10-3 
cg14476101 275 -0.10 0.04 1.88×10-2  -0.11 0.04 1.21×10-2 
cg16258657 276 -0.08 0.04 2.50×10-2  -0.09 0.04 1.61×10-2 
cg06164260 276 -0.04 0.02 2.63×10-2  -0.04 0.02 1.64×10-2 
cg19249811 273 0.20 0.09 3.56×10-2  - - - 
cg17901584 276 -0.08 0.04 3.63×10-2  -0.09 0.04 1.85×10-2 
3 Analyses are adjusted for sex, age, BMI, WHR, alcohol, processed meat, fibre, smoking status, physical activity 
 4 Analyses are adjusted for sex, age, alcohol, processed meat, fibre, smoking status, physical activity  

C           

Myocardial 
infarction 

Model 15  Model 26 

 N β SE(β) P-value  β SE(β) P-value 
cg12593793 401 -0.07 0.02 1.25×10-3  -0.08 0.02 4.63×10-4 

cg13286614 402 -0.08 0.03 4.50×10-3  -0.08 0.03 8.95×10-3 
cg17901584 402 -0.09 0.04 1.61×10-2  -0.09 0.04 1.37×10-2 
cg26470501 402 -0.04 0.02 2.24×10-2  -0.04 0.02 1.16×10-2 
cg27117792 402 -0.09 0.04 3.45×10-2  -0.10 0.04 1.92×10-2 
cg06164260 402 -0.04 0.02 4.63×10-2  -0.04 0.02 2.98×10-2 

5 Analyses are adjusted for sex, age, BMI, WHR, smoking, physical activity, TC/HDL ratio, Tg/HDL ratio (by fasting 
status) 
6 Analyses are adjusted for sex, age, smoking, physical activity, TC/HDL ratio, Tg/HDL ratio (by fasting status) 

 

 


	Article File
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4

