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SHARP INTEGRAL BOUNDS FOR WIGNER DISTRIBUTIONS

ELENA CORDERO AND FABIO NICOLA

Abstract. The cross-Wigner distribution W (f, g) of two functions or temper-
ate distributions f, g is a fundamental tool in quantum mechanics and in signal
analysis. Usually, in applications in time-frequency analysis f and g belong to
some modulation space and it is important to know which modulation spaces
W (f, g) belongs to. Although several particular sufficient conditions have been
appeared in this connection, the general problem remains open. In the present
paper we solve completely this issue by providing the full range of modulation
spaces in which the continuity of the cross-Wigner distribution W (f, g) holds, as
a function of f, g. The case of weighted modulation spaces is also considered. The
consequences of our results are manifold: new bounds for the short-time Fourier
transform and the ambiguity function, boundedness results for pseudodifferential
(in particular, localization) operators and properties of the Cohen class.

1. Introduction

The (cross-)Wigner distribution was first introduced in physics to account for
quantum corrections to classical statistical mechanics in 1932 by Wigner [50] and
in 1948 it was proposed in signal analysis by Ville [49]. This is why the Wigner
distribution is also called Wigner-Ville distribution. Nowadays it can be considered
one of the most important time-frequency representations, second only to the spec-
trogram, and it is one of the most commonly used quasiprobability distribution in
quantum mechanics [21, 28].

Given two functions f1, f2 ∈ L2(Rd), the cross-Wigner distribution W (f1, f1) is
defined to be

(1) W (f1, f2)(x, ξ) =

∫

f1(x+
t

2
)f2(x− t

2
)e−2πiξt dt.

The quadratic expression Wf = W (f, f) is called the Wigner distribution of f .
An important issue related to such a distribution is the continuity of the map

(f1, f2) 7→ W (f1, f2) in the relevant Banach spaces. The basic result in this con-
nection is the easily verified equality

‖W (f1, f2)‖L2(R2d) = ‖f1‖L2(Rd)‖f2‖L2(Rd).
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Beside L2, the time-frequency concentration of signals is often measured by the so-
called modulation space norm Mp,q

m , 1 ≤ p, q ≤ ∞, for a suitable weight function
m (cf. [22, 23, 28] and Section 2 below). In short, these spaces are defined as
follows. For a fixed non-zero g ∈ S(Rd), the short-time Fourier transform (STFT)
of f ∈ S ′(Rd) with respect to the window g is given by

(2) Vgf(x, ξ) =

∫

Rd

f(t) g(t− x) e−2πiξt dt .

Then the space Mp,q
m (Rd) is defined by

Mp,q
m (Rd) = {f ∈ S ′(Rd) : Vgf ∈ Lp,q

m (R2d)}
endowed with the obvious norm. Here Lp,q

m (R2d) are mixed-norm weighted Lebesgue
spaces in R

2d; see Section 2 below for precise definitions.
Both the STFT Vgf and the cross-Wigner distribution W (f, g) are defined on

many pairs of Banach spaces. For example, they both map L2(Rd)× L2(Rd) into
L2(R2d) and S(Rd)×S(Rd) into S(R2d) and can be extended to a map from S ′(Rd)×
S ′(Rd) into S ′(R2d).

In this paper we will mainly work with the polynomial weights

(3) vs(z) = 〈z〉s = (1 + |z|2) s
2 , z ∈ R

2d, s ∈ R.

For w = (z, ζ) ∈ R
4d, we write (1⊗ vs)(w) = vs(ζ). Now, the problem addressed in

this paper is to provide the full range of exponents p1, p2, q1, q2, p, q ∈ [1,∞] such
that

‖W (f1, f2)‖Mp,q
1⊗vs

. ‖f1‖Mp1,q1
vs

‖f2‖Mp2,q2
vs

.

These estimates were proved in [48, Theorem 4.2] (cf. also [47, Theorem 4.1] for
modulation spaces without weights) under the conditions

p ≤ pi, qi ≤ q, i = 1, 2

and

(4)
1

p1
+

1

p2
=

1

q1
+

1

q2
=

1

p
+

1

q
.

However, it is not clear whether these conditions are necessary as well.
Our main result shows that the sufficient conditions can be widened and such

extension is sharp.

Theorem 1.1. Assume pi, qi, p, q ∈ [1,∞], s ∈ R, such that

(5) pi, qi ≤ q, i = 1, 2

and that

(6)
1

p1
+

1

p2
≥ 1

p
+

1

q
,

1

q1
+

1

q2
≥ 1

p
+

1

q
.
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Then, if f1 ∈ Mp1,q1
v|s|

(Rd) and f2 ∈ Mp2,q2
vs (Rd) we have W (f1, f2) ∈ Mp,q

1⊗vs(R
2d),

and

(7) ‖W (f1, f2)‖Mp,q
1⊗vs

. ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

.

Viceversa, assume that there exists a constant C > 0 such that

(8) ‖W (f1, f2)‖Mp,q ≤ C‖f1‖Mp1,q1‖f2‖Mp2,q2 , ∀f1, f2 ∈ S(R2d).

Then (5) and (6) must hold.

The remarkable fact of this result, in our opinion, is that the conditions (5) and
(6) turn out to be necessary too.

The consequences of this are manifold. First, in the framework of signal analysis
and time-frequency representations, we obtain new estimates for the short-time
Fourier transform Vf1f2 and the ambiguity function A(f1, f2) (see Section 2 for
definitions). In particular, we recapture the sharp Lieb’s bounds in [36, Theorem
1]

‖A(f1, f2)‖Lq . ‖f1‖L2‖f2‖L2 ,

valid for q ≥ 2; we also refer to [14, 15] for related estimates for the short-time
Fourier transform and [11] for the strictly related Born-Jordan distribution.

Secondly, we easily provide new boundedness results for pseudodifferential op-
erators (in particular, localization operators) with symbols in modulation spaces.
Let us mention that the study of pseudodifferential operators in the context of
modulation spaces has been pursued by many authors. The earliest works are
due to Sjöstrand [42] and Tachizawa [45]. In the former work pseudodifferen-
tial operators with symbols in the modulation space M∞,1 (also called Sjöstrand’s
class) where investigated. Later, sufficient and some necessary boundedness con-
ditions where investigate by Gröchenig and Heil [29, 30] and Labate [34, 35].
Since the year 2003 until today the contributions on this topic are so multi-
plied that there is hard to mention them all. Let us just recall some of them
[2, 4, 18, 19, 31, 33, 38, 39, 43, 44, 47, 48].

Every continuous operator from S(Rd) to S ′(Rd) can be represented as a pseudo-
differential operator in the Weyl form Lσ and the connection with the cross-Wigner
distribution is provided by

(9) 〈Lσf, g〉 = 〈σ,W (g, f)〉, f, g ∈ S(Rd).

By using this formula we can translate the boundedness results for the cross-Wigner
distribution in Theorem 1.1 to boundedness results for Weyl operators.

Pseudodifferential operators of great interest in signal analysis are the so-called
localization operators Aϕ1,ϕ2

a (see Section 5), which can be represented as Weyl
operators as follows (cf. [6, 13, 46])

(10) Aϕ1,ϕ2
a = La∗W (ϕ2,ϕ1)
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so that the Weyl symbol of the localization operator Aϕ1,ϕ2
a is given by

(11) σ = a ∗W (ϕ2, ϕ1) .

Using this representation of localization operators as Weyl operators and using The-
orem 1.1 we are able to obtain new boundedness results for localization operators,
see Theorem 5.2 in Section 5 below.

Finally, another application of Theorem 1.1 is the investigation of the time-
frequency properties of the Cohen class, introduced by Cohen in [8]. This class
consists of elements of the type

(12) M(f, f) = W (f, f) ∗ σ
where σ ∈ S ′(R2d) is called the Cohen kernel. When σ = δ, thenM(f, f) = W (f, f)
and we come back to the Wigner distribution. For other choices of kernels we
recapture the Born-Jordan distribution [10, 11, 12] or the τ -Wigner distributions
Wτ (f, f) [7, Proposition 5.6]. In this framework we have the following result.

Theorem 1.2. Assume s ≥ 0, p1, q1, p, q ∈ [1,∞] such that

(13) 2min{ 1

p1
,
1

q1
} ≥ 1

p
+

1

q
.

Consider a Cohen kernel σ ∈ M1,∞(R2d). If f ∈ Mp1,q1
vs (Rd), then the Cohen

distribution M(f, f) is in Mp,q
1⊗vs(R

2d), with

(14) ‖M(f, f)‖Mp,q
1⊗vs

(R2d) . ‖σ‖M1,∞(R2d)‖f‖2Mp1,q1
vs (Rd)

.

In particular, the τ -kernels and the Born-Jordan kernels enjoy such a property,
cf. Section 6.

For the sake of clarity our results have been presented only for the polynomial
weights vs, but we remark that more general weights can also be considered, see
the following Remark 3.2, (i).

Further developments of this research could involve the study of boundedness for
bilinear/multilinear pseudodifferential operators and localization operators. This
requires an extension of Theorem 1.1 to more general Wigner/Rihaczek distributi-
ons and STFT, see e.g., [3, 16, 27] and the recent contribution [37]. We leave this
study to a subsequent paper.

In short, the paper is organized as follows. Section 2 is devoted to some pre-
liminary results from time-frequency analysis and in particular to the computation
of the STFT of a generalized Gaussian and its modulation norm. In Section 3 we
prove Theorem 1.1. In Section 4 we show the continuity properties of pseudodiffe-
rential (and in particular localization) operators on modulation spaces. In Section
5 we present a time-frequency analysis of the Cohen class.
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Notation. We define t2 = t · t, for t ∈ R
d, and xy = x ·y is the scalar product on

R
d. The Schwartz class is denoted by S(Rd), the space of tempered distributions

by S ′(Rd). We use the brackets 〈f, g〉 to denote the extension to S ′(Rd) × S(Rd)

of the inner product 〈f, g〉 =
∫

f(t)g(t)dt on L2(Rd). The Fourier transform is

normalized to be f̂(ξ) = Ff(ξ) =
∫

f(t)e−2πitξdt, the involution g∗ is g∗(t) = g(−t).
The operators of translation and modulation are defined by Txf(t) = f(t− x) and
Mξf(t) = e2πitξf(t), x, ξ ∈ R

d.

2. Preliminaries

2.1. Modulation spaces. The modulation and Wiener amalgam space norms are
a measure of the joint time-frequency distribution of f ∈ S ′. For their basic
properties we refer to the original literature [22, 23, 24] and the textbooks [21, 28].

For the description of the decay properties of a function/distribution, weight
functions on the time-frequency plane are employed. We denote by v a continu-
ous, positive, even, submultiplicative weight function (in short, a submultiplica-
tive weight), i.e., v(0) = 1, v(z) = v(−z), and v(z1 + z2) ≤ v(z1)v(z2), for all
z, z1, z2 ∈ R

2d. A positive, even weight function m on R
2d is called v-moderate if

m(z1 + z2) ≤ Cv(z1)m(z2) for all z1, z2 ∈ R
2d. Observe that vs is a v|s|-moderate

weight, for every s ∈ R. Given a non-zero window g ∈ S(Rd), a v-moderate weight
function m on R

2d, 1 ≤ p, q ≤ ∞, the modulation space Mp,q
m (Rd) consists of all

tempered distributions f ∈ S ′(Rd) such that the STFT Vgf (defined in (2)) is in
Lp,q
m (R2d) (weighted mixed-norm spaces), with norm

‖f‖Mp,q
m

= ‖Vgf‖Lp,q
m

=

(

∫

Rd

(
∫

Rd

|Vgf(x, ξ)|pm(x, ξ)p dx

)q/p

dξ

)1/q

.

(Obvious modifications occur when p = ∞ or q = ∞). If p = q, we write Mp
m

instead of Mp,p
m , and if m(z) ≡ 1 on R

2d, then we write Mp,q and Mp for Mp,q
m

and Mp,p
m . Then Mp,q

m (Rd) is a Banach space whose definition is independent of the
choice of the window g, in the sense that different nonzero window functions yield
equivalent norms. The modulation space M∞,1 is also called Sjöstrand’s class [42].

We now recall the definition of the Wiener amalgam spaces that are image of the
modulation spaces under the Fourier transform. For any even weigh functions u, w
on R

d, the Wiener amalgam spaces W (FLp
u, L

q
w)(R

d) are given by the distributions
f ∈ S ′(Rd) such that

‖f‖W (FLp
u,L

q
w)(Rd) :=

(

∫

Rd

(
∫

Rd

|Vgf(x, ξ)|pup(ξ) dξ

)q/p

wq(x)dx

)1/q

< ∞

(with natural changes for p = ∞ or q = ∞). Using Parseval identity we can
write the so-called fundamental identity of time-frequency analysis Vgf(x, ξ) =
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e−2πixξVĝf̂(ξ,−x), hence |Vgf(x, ξ)| = |Vĝf̂(ξ,−x)| so that (recall u(x) = u(−x))

(15) ‖f‖Mp,q
u⊗w

= ‖f̂‖W (FLp
u,L

q
w).

This proves that these Wiener amalgam spaces are the image under Fourier trans-
form of modulation spaces:

(16) F(Mp,q
u⊗w) = W (FLp

u, L
q
w).

In the sequel we will need the inclusion relations for modulation spaces. Assume
m1, m2 ∈ Mv(R

2d), then

(17)
S(Rd) ⊆ Mp1,q1

m1
(Rd) ⊆ Mp2,q2

m2
(Rd) ⊆ S ′(Rd),

if p1 ≤ p2, q1 ≤ q2, m2 . m1.

Moreover, we will often apply convolution relations for modulation spaces [13,
Proposition 2.1] for the vs weight functions as follows.

Proposition 2.1. Let ν(ξ) > 0 be an arbitrary weight function on R
d, s ∈ R, and

1 ≤ p, q, u, v, t ≤ ∞. If

1

p
+

1

q
− 1 =

1

u
, and

1

t
+

1

t′
=

1

v
,

then

(18) Mp,t
1⊗ν(R

d) ∗M q,t′

1⊗v|s|ν−1(R
d) →֒ Mu,v

vs (Rd)

with norm inequality ‖f ∗ h‖Mu,v
vs

. ‖f‖Mp,t
1⊗ν

‖h‖
Mq,t′

1⊗v|s|ν−1
.

2.2. Time-frequency tools. To prove our main result, we will need to compute
the STFT of the cross-Wigner distribution, proved in [28, Lemma 14.5.1]:

Lemma 2.1. Fix a nonzero g ∈ S(Rd) and let Φ = W (g, g) ∈ S(R2d). Then the
STFT of W (f1, f2) with respect to the window Φ is given by

(19) VΦ(W (f1, f2))(z, ζ) = e−2πiz2ζ2Vgf2(z1 +
ζ2
2
, z2 −

ζ1
2
)Vgf1(z1 −

ζ2
2
, z2 +

ζ1
2
) .

Lemma 2.2. Consider the Gaussian function ϕ(x) = e−πx2
and its rescaled ver-

sion ϕλ(x) = e−πλx2
, λ > 0. Then the cross-Wigner distribution is the following

Gaussian function

(20) W (ϕ, ϕλ)(x, ξ) =
2d

(1 + λ)
d
2

e−aλπx
2

e−bλπξ
2

e2πicλxξ

with

(21) aλ =
4λ

1 + λ
bλ =

4

1 + λ
cλ =

2(1− λ)

1 + λ
.
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Proof. The proof is obtained by an easy computation. In particular, we will make

the change of variables t = 2s√
1+λ

− 2 1−λ√
1+λ

x, so that dt = 2d

(1+λ)d/2
ds. In details,

W (ϕ, ϕλ)(x, ξ) =

∫

Rd

e−π
(

x+ t
2

)2

−πλ
(

x− t
2

)2

e−2πitξ dt

= e−π(1+λ)x2

∫

Rd

e−
π
4

[

(1+λ)t2+4(1−λ)xt
]

e−2πitξ dt

= e−π(1+λ)x2

∫

Rd

e
−π

4

[√
1+λt+2

(1−λ)√
1+λ

x
]2

eπ
(1−λ)2

1+λ
x2

e−2πitξ dt

= e−π
[

(1+λ)− (1−λ)2

1+λ

]

x2

∫

Rd

e
−π

4

[√
1+λt+2 1−λ√

1+λ
x
]2

e−2πitξ dt

= e−π 4λ
1+λ

x2

∫

Rd

e−πs2e
−2πi
(

2s√
1+λ

− 2(1−λ)
1+λ

x
)

ξ 2d

(1 + λ)d/2
ds

=
2d

(1 + λ)d/2
e−π 4λ

1+λ
x2

e4πi
1−λ
1+λ

xξ

∫

Rd

e−πs2e
−2πis

(

2ξ√
1+λ

)

ds

=
2d

(1 + λ)d/2
e−π 4λ

1+λ
x2

e−π 4
1+λ

ξ2e4πi
1−λ
1+λ

xξ,

as desired.

Hence the Wigner distribution above is a generalized Gaussian. Our goal will be
to compute the modulation norm of this Wigner distribution. The first step is the
calculation of the STFT of a generalized Gaussian.

Proposition 2.2. Given a, b, c > 0, consider the generalized Gaussian function

(22) f(x, ξ) = e−πax2

e−πbξ2e2πicxξ, (x, ξ) ∈ R
2d.

For Φ(x, ξ) = e−π(x2+ξ2), z = (z1, z2), ζ = (ζ1, ζ2) ∈ R
2d, we obtain

VΦf(z, ζ) =
1

[(a+ 1)(b+ 1) + c2]
d
2

e
−π

[a(b+1)+c2]z21+[(a+1)b+c2]z22+(b+1)ζ21+(a+1)ζ22−2c(z1ζ2+z2ζ1)

(a+1)(b+1)+c2

× e
− 2πi

a+1

[

z1ζ1+(cz1−(a+1)ζ2)
cζ1+(a+1)z2

(a+1)(b+1)+c2

]

.(23)
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Proof. We write

VΦf(z, ζ) =

∫

R2d

e−πax2−πbξ2+2πicxξe−2πi(ζ1x+ζ2ξ)e−π[(x−z1)2+(ξ−z2)2] dxdξ

= e−π(z21+z22)

∫

Rd

(
∫

Rd

e−π[(a+1)x2−2xz1]e−2πix(ζ1−cξ) dx

)

× e−π[(b+1)ξ2−2ξz2]e−2πiζ2ξ dξ

= e−π
(

1− 1
a+1

)

z21−πz22

∫

Rd

(
∫

Rd

e
−π
[√

a+1x− z1√
a+1

]2

e−2πix(ζ1−cξ) dx

)

× e−π[(b+1)ξ2−2ξz2]e−2πiζ2ξ dξ.

With the change of variables
√
a+ 1x− z1√

a+1
= t, dx = dt

(a+1)d/2
, we obtain

VΦf(z, ζ) =
1

(a+ 1)d/2
e−π a

a+1
z21−πz22

∫

Rd

(
∫

Rd

e−πt2e
−2πi
(

t√
a+1

+
z1
a+1

)

(ζ1−cξ)
dt

)

× e−π[(b+1)ξ2−2ξz2]e−2πiζ2ξ dξ

=
1

(a+ 1)d/2
e−π a

a+1
z21−πz22−2πi

z1ζ1
a+1

∫

Rd

e−π
(ζ1−cξ)2

a+1 e2πi
cz1
a+1

ξ

× e−π[(b+1)ξ2−2ξz2]e−2πiζ2ξ dξ

=
1

(a+ 1)d/2
e−π a

a+1
z21−πz22−2πi

z1ζ1
a+1

−π
ζ21
a+1

×
∫

Rd

e−π
[

(b+1)ξ2+ c2

a+1
ξ2−2

cζ1
a+1

ξ−2ξz2

]

e2πi
(

cz1
a+1

−ζ2

)

ξ dξ.(24)

The last integral can be computed as follows:

I :=

∫

Rd

e−π
[

(a+1)(b+1)+c2

a+1
ξ2−2

cζ1+z2(a+1)
a+1

ξ
]

e2πi
(

cz1
a+1

−ζ2

)

ξ dξ

=

∫

Rd

e−
π

a+1
{[(a+1)(b+1)+c2]ξ2−2[cζ1+z2(a+1)]ξ}e2πi

(

cz1
a+1

−ζ2

)

ξ dξ

=

∫

Rd

e
− π

a+1

[√
(a+1)(b+1)+c2ξ− cζ1+z2(a+1)√

(a+1)(b+1)+c2

]2

e
π

a+1
[cζ1+z2(a+1)]2

(a+1)(b+1)+c2 e2πi
(

cz1
a+1

−ζ2

)

ξ dξ

= e
π

a+1

[c2ζ21+(a+1)2]

(a+1)(b+1)+c2

∫

Rd

e
− π

a+1

[√
(a+1)(b+1)+c2ξ− cζ1+z2(a+1)√

(a+1)(b+1)+c2

]2

e2πi
(

cz1
a+1

−ζ2

)

ξ dξ.
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Making the change of variables t =

√
(a+1)(b+1)+c2ξ− cζ1+z2(a+1)√

(a+1)(b+1)+c2√
a+1

, so that dξ =
[

a+1
(a+1)(b+1)+c2

]d/2
dt, we can write

I =
(a+ 1)

d
2

[(a+ 1)(b+ 1) + c2]
d
2

∫

Rd

e−πt2e
2πi
(

cz1
a+1

−ζ2

)

[

√
a+1√

(a+1)(b+1)+c2
t− cζ1+(a+1)z2

(a+1)(b+1)+c2

]

dt

=
(a+ 1)

d
2

[(a+ 1)(b+ 1) + c2]
d
2

e
π

a+1

(a+1)2z22+c2ζ21+2c(a+1)z2ζ1
(a+1)(b+1)+c2 e

−2πi
(

cz1
a+1

−ζ2

)

cζ1+(a+1)z2
(a+1)(b+1)+c2

× e
−π

[

a+1
(a+1)(b+1)+c2

(

cz1
a+1

−ζ2

)2
]

.

The result then follows by substituting the value of the integral I in (24).

Corollary 2.3. Consider the generalized Gaussian f defined in (22) and the win-

dow function Φ(x, ξ) = e−π(x2+ξ2). Then, for every 1 ≤ p, q ≤ ∞, we have
(25)

‖f‖Mp,q ≍ ‖VΦf‖Lp,q ≍ [(a+ 1)(b+ 1) + c2]
d
p
+ d

q
− d

2 [(c2 + ab+ a)(c2 + ab+ b)]
d
2q

− d
2p

[b2(a+ 1) + b(c2 + a+ 1)]
d
2q [a2(b+ 1) + a(c2 + b+ 1)]

d
2q

.

The cases p = ∞ or q = ∞ can be obtained by using the rule 1/∞ = 0 in formula
(25).

Proof. By Proposition 2.2, we can write

|VΦf(z, ζ)| =
1

[(a+ 1)(b+ 1) + c2]
d
2

e
−π

[a(b+1)+c2]z21+[(a+1)b+c2]z22+(b+1)ζ21+(a+1)ζ22−2c(z1ζ2+z2ζ1)

(a+1)(b+1)+c2 .

It remains to compute the mixed Lp,q-norm of the previous function. We treat the
cases 1 ≤ p, q < ∞. The cases either p = ∞ or q = ∞ are obtained with obvious
modifications.

For simplicity, we set

α =
c2 + a(b+ 1)

(a+ 1)(b+ 1) + c2
, β =

c2 + (a+ 1)b

(a+ 1)(b+ 1) + c2
, γ =

(b+ 1)

(a+ 1)(b+ 1) + c2
,

(26)

δ =
(a+ 1)

(a+ 1)(b+ 1) + c2
, σ =

c

(a + 1)(b+ 1) + c2
.

(27)

Hence

(28)
‖VΦf‖Lp,q

[(a+ 1)(b+ 1) + c2]−
d
2p

=

(
∫

R2d

I
q
p e−πq(γζ21+δζ22 ) dζ1dζ2

)
1
q

=: A,
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where I :=
∫

R2d e
−πpαz21−πpβz22e2πpσ(z1ζ2+z2ζ1) dz1dz2. Now straightforward computa-

tions and change of variables yield

I =

∫

Rd

(
∫

Rd

e−πp(αz21−2σζ2z1) dz1

)

e−πβz22+2πpσz2ζ1 dz2

= eπp
σ2

α
ζ22 eπp

σ2

β
ζ21

∫

Rd

e
−πp(

√
αz1− σ√

α
ζ2)2 dz1

∫

Rd

e
−πp(

√
βz2− σ√

β
ζ1)2 dz2

= p−
d
2α− d

2p−
d
2β− d

2 eπp
σ2

α
ζ22 eπp

σ2

β
ζ21 .

Substituting the value of the integral I in (28), we obtain

A = p−
d
pα− d

2pβ− d
2p

(
∫

Rd

eπq
σ2

β
ζ21−πqγζ21 dζ1

∫

Rd

eπq
σ2

α
ζ22−πqδζ22 dζ2

)
1
q

= p−
d
pα− d

2pβ− d
2p

(
∫

Rd

e−πq(γ−σ2

β
)ζ21 dζ1

∫

Rd

e−πq(δ−σ2

α
)ζ22

)
1
q

= p−
d
pα− d

2pβ− d
2p q−

d
q

(

γ − σ2

β

)− d
2q
(

γ − σ2

α

)− d
2q
.

Finally, the goal is attained by substituting in A the values of the parameters
α, β, γ, δ, σ in (26) and (27) and observing that

‖f‖Mp,q ≍ ‖VΦf‖Lp,q = A[(a+ 1)(b+ 1) + c2]−
d
2 .

This concludes the proof.

We have now all the tools to compute the modulation norm of the (cross-)Wigner
distribution W (ϕ, ϕλ) in (20). Precisely, setting in formula (25) the values a = aλ,
b = bλ, c = cλ, where aλ, bλ, cλ are defined in (21), and making easy simplifications
we attain the following result.

Corollary 2.4. For λ > 0 consider the (cross-)Wigner distribution W (ϕ, ϕλ) de-
fined in (20) (cf. Lemma 2.2). Then

(29) ‖W (ϕ, ϕλ)‖Mp,q ≍ [(2λ+ 1)(λ+ 2)]
d
2q

− d
2p

λ
d
2q (1 + λ)

d
2
− d

p

.

The cases p = ∞ or q = ∞ can be obtained by using the rule 1/∞ = 0 in formula
(29).

3. Main Result

In this Section we prove Theorem 1.1. We will focus separately on the sufficient
and necessary part in the statement.
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Theorem 3.1 (Sufficient Conditions). If p1, q1, p2, q2, p, q ∈ [1,∞] are indices
which satisfy (5) and (6), s ∈ R, f1 ∈ Mp1,q1

v|s|
(Rd) and f2 ∈ Mp2,q2

vs (Rd), then

W (f1, f2) ∈ Mp,q
1⊗vs(R

2d), and the estimate (7) holds true.

Proof. We first study the case p, q < ∞. Let g ∈ S(Rd) and set Φ = W (g, g) ∈
S(R2d). If ζ = (ζ1, ζ2) ∈ R

2d, we write ζ̃ = (ζ2,−ζ1). Then, from Lemma 2.1,

(30) |VΦ(W (f1, f2))(z, ζ)| = |Vgf2(z +
ζ̃
2
)| |Vgf1(z − ζ̃

2
)| .

Consequently,

‖W (f1, f2)‖Mp,q
1⊗vs

≍
(

∫

R2d

(
∫

R2d

|Vgf2(z +
ζ̃
2
)|p |Vgf1(z − ζ̃

2
)|p dz

)
q
p

〈ζ〉sq dζ
)1/q

.

After the change of variables z 7→ z− ζ̃/2, the integral over z becomes the convolu-

tion (|Vgf2|p∗|(Vgf1)
∗|p)(ζ̃), and observing that (1⊗vs)(z, ζ) = 〈ζ〉s = vs(ζ) = vs(ζ̃),

we obtain

‖W (f1, f2)‖Mp,q
1⊗vs

≍
(
∫∫

R2d

(|Vgf2|p ∗ |(Vgf1)
∗|p)

q
p (ζ̃)vs(ζ̃)

q dζ

)1/p

= ‖ |Vgf2|p ∗ |(Vgf1)
∗|p ‖

1
p

L
q
p
vps

.

Hence

(31) ‖W (f1, f2)‖pMp,q
1⊗vs

≍ ‖ |Vgf2|p ∗ |(Vgf1)
∗|p ‖

L
q
p
vps

.

Case p ≤ q < ∞.
Step 1. Here we prove the desired result in the case p ≤ pi, qi, i = 1, 2.
Suppose first that (4) are satisfied (and hence pi, qi ≤ q, i = 1, 2). Since q/p ≥ 1,

we can apply Young’s Inequality for mixed-normed spaces (cf. [1], see also [26])
and majorize (31) as follows

‖W (f1, f2)‖pMp,q
1⊗vs

. ‖ |Vgf2|p‖Lr2,s2
vp|s|

‖ |(Vgf1)
∗|p‖Lr1,s1

vps

= ‖|Vgf1|p‖Lr1,s1
vp|s|

‖ |Vgf2|p‖Lr2,s2
vps

= ‖Vgf1‖pLpr1,ps1
v|s|

‖Vgf2‖pLpr2,ps2
vs

,

for every 1 ≤ r1, r2, s1, s2 ≤ ∞ such that

(32)
1

r1
+

1

r2
=

1

s1
+

1

s2
= 1 +

p

q
.

Choosing ri = pi/p ≥ 1, si = qi/p ≥ 1, i = 1, 2, the indices’ relation (32) becomes
(4) and we obtain

‖W (f1, f2)‖Mp,q
1⊗vs

. ‖Vgf1‖Lp1,q1
v|s|

‖Vgf2‖Lp2,q2
vs

≍ ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

.
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Now, still assume p ≤ pi, qi, i = 1, 2 but

1

p1
+

1

p2
≥ 1

p
+

1

q
,

1

q1
+

1

q2
=

1

p
+

1

q
,

(hence pi, qi ≤ q, i = 1, 2). We set u1 = tp1, and look for t ≥ 1 (hence u1 ≥ p1)
such that

1

u1

+
1

p2
=

1

p
+

1

q

that gives

0 <
1

t
=

p1
p

+
p1
q

− p1
p2

≤ 1

because p1(1/p + 1/q) − p1/p2 ≤ p1(1/p1 + 1/p2) − p1/p2 = 1 whereas the lower
bound of the previous estimate follows by 1/(tp1) = 1/p + 1/q − 1/p2 > 0 since
p ≤ p2. Hence the previous part of the proof gives

‖W (f1, f2)‖Mp,q
1⊗vs

. ‖f1‖Mu1,q1
v|s|

‖f2‖Mp2,q2
vs

. ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

.

where the last inequality follows by inclusion relations for modulations spaces
Mp1,q1

vs (Rd) ⊆ Mu1,q1
vs (Rd) for p1 ≤ u1.

The general case

1

p1
+

1

p2
≥ 1

p
+

1

q
,

1

q1
+

1

q2
≥ 1

p
+

1

q
,

can be treated analogously.
Step 2. Assume now that pi, qi ≤ q, i = 1, 2, and satisfy relation (6). If at least
one out of the indices p1, p2 is less than p, assume for instance p1 ≤ p, whereas
p ≤ q1, q2, then we proceed as follows. We choose u1 = p, u2 = q, and deduce by
the results in Step 1 (with p1 = u1 and p2 = u2) that

‖W (f1, f2)‖Mp,q
1⊗vs

. ‖f1‖Mu1,q1
v|s|

‖f2‖Mu2,q2
vs

. ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

where the last inequality follows by inclusion relations for modulation spaces, since
p1 ≤ u1 = p and p2 ≤ u2 = q.

Similarly we argue when at least one out of the indices q1, q2 is less than p and
p ≤ p1, p2 or when at least one out of the indices q1, q2 is less than p and at least
one out of the indices q1, q2 is less than p. The remaining case p ≤ pi, qi ≤ q is
treated in Step 1.
Case p < q = ∞. The argument are similar to the case p ≤ q < ∞.
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Case p = q = ∞. We use (30) and the submultiplicative property of the weight vs,

‖W (f1, f2)‖M∞
1⊗vs

= sup
z,ζ∈R2d

|Vgf2(z +
ζ̃
2
)| |Vgf1(z − ζ̃

2
)|vs(ζ)

= sup
z,ζ∈R2d

||Vgf2(z)| |(Vgf1)
∗(z − ζ̃)|vs(ζ)

= sup
z,ζ∈R2d

||Vgf2(z)| |(Vgf1)
∗(z − ζ̃)|vs(ζ̃)

≤ sup
z∈R2d

(‖Vgf1v|s|‖∞ |Vgf2(z)vs(z)|) = ‖Vgf1v|s|‖∞‖Vgf2vs‖∞

≍ ‖f‖M∞
v|s|

‖g‖M∞
vs

≤ ‖f‖Mp1,q1
v|s|

‖f‖Mp2,q2
vs

,

for every 1 ≤ pi, qi ≤ ∞, i = 1, 2. Notice that in this case conditions (5) and (8)
are trivially satisfied.
Case p > q. Using the inclusion relations for modulation spaces, we majorize

‖W (f1, f2)‖Mp,q
1⊗vs

. ‖W (f1, f2)‖Mq,q
1⊗vs

. ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

for every 1 ≤ pi, qi ≤ q, i = 1, 2. Here we have applied the case p ≤ q with p = q.
Notice that in this case condition (8) is trivially satisfied, since from p1, qi ≤ q we
infer 1/p1+1/p2 ≥ 1/q+1/q, 1/q1+1/q2 ≥ 1/q+1/q. This concludes the proof.

Remark 3.2. (i) The result of Theorem 3.1 can be extended to more general
weights. In particular, it holds for polynomial weights satisfying relation (4.10)
in [48]. Hence our result extends Toft’s result [48, Theorem 4.2] (cf. also [47,
Theorem 4.1] for modulation spaces without weights). Other examples of suitable

weights are given by sub-exponential weights of the type v(z) = eα|z|
β
for α > 0 and

0 < β < 1.
(ii) The particular case p = 1, 1 ≤ q ≤ ∞, p1 = q1 = 1, p2 = q2 = q, s ≥ 0, was

already proved in [13, Prop. 2.2].
(iii) For pi = qi = p = q = 2, i = 1, 2, we obtain the following continuity result

for the cross-Wigner distribution acting between Shubin spaces and Sobolev spaces:
For s ≥ 0, f1, f2 ∈ Qs(R

d) (cf. Shubin’s book [41]), the cross-Wigner distribution
W (f1, f2) is in Hs(R2d) with

‖W (f1, f2)‖Hs(R2d) . ‖f1‖Qs(Rd)‖f2‖Qs(Rd).

(iv) Continuity properties of the cross-Wigner distribution on modulation spaces
with different weight functions can be easily inferred using the techniques of The-
orem 3.1 and the Young type inequalities for weighted spaces shown by Johansson
et al. in [32, Theorem 2.2].

The estimate in (7) can be slightly improved if s ≥ 0. Precisely, we have the
following result.
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Theorem 3.3. If p1, q1, p2, q2, p, q ∈ [1,∞] are indices which satisfy (5) and (6),
s ≥ 0, f1 ∈ Mp1,q1

vs (Rd) and f2 ∈ Mp2,q2
vs (Rd), then W (f1, f2) ∈ Mp,q

1⊗vs(R
2d), with

‖W (f1, f2)‖Mp,q
1⊗vs

. ‖f1‖Mp1,q1‖f2‖Mp2,q2
vs

+ ‖f1‖Mp1,q1
vs

‖f2‖Mp2,q2 .

Proof. The proof is similar to that of Theorem 3.1, but in this case from the estimate
(31) we proceed by using

vs(z) . vs(z − w) + vs(w), s ≥ 0

(with sp in place of s) instead of vs(z) . v|s|(z − w)vs(w).

If in particular we consider the Wigner distribution W (f, f), then Theorem 3.3
can be rephrased as follows.

Corollary 3.4. Assume s ≥ 0, p1, q1, p, q ∈ [1,∞] such that

2min{ 1

p1
,
1

q1
} ≥ 1

p
+

1

q
.

If f ∈ Mp1,q1
vs (Rd), then the Wigner distribution W (f, f) is in Mp,q

1⊗vs(R
2d), with

(33) ‖W (f, f)‖Mp,q
1⊗vs

(R2d) . ‖f‖Mp1,q1 (Rd)‖f‖Mp1,q1
vs (Rd).

We now prove the sharpness of Theorem 3.1 (and Corollary 3.4) in the un-
weighted case s = 0.

Theorem 3.5 (Necessary Conditions). Consider p1, p2, q1, q2, p, q ∈ [1,∞]. As-
sume that there exists a constant C > 0 such that

(34) ‖W (f1, f2)‖Mp,q ≤ C‖f1‖Mp1,q1‖f2‖Mp2,q2 , ∀f1, f2 ∈ S(R2d),

then (5) and (6) must hold.

Proof. Let us first demonstrate the necessity of (6). We consider the dilated Gaus-

sians ϕλ(x) = ϕ(
√
λx), with ϕ(x) = e−πx2

.
An easy computation (see also [28, formula (4.20)] (6)) shows that

(35) W (ϕλ, ϕλ)(x, ξ) = 2
d
2λ− d

2ϕ2λ(x)ϕ2/λ(ξ).

Now (see [15, Lemma 3.2], [47, Lemma 1.8])

‖ϕλ‖Mr,s ≍ λ− d
2r (λ+ 1)−

d
2
(1− 1

q
− 1

p
)

and observe that

‖W (ϕλ, ϕλ)‖Mp,q(R2d) = 2
d
2λ− d

2‖ϕ2λ‖Mp,q(Rd)‖ϕ2/λ‖Mp,q(Rd).

The assumption (8) in this case becomes

λ− d
2 (λ+1)−

d
2
(1− 1

q
− 1

p
)(λ−1+1)−

d
2
(1− 1

q
− 1

p
) . λ

− d
2p1 (1+λ)

− d
2
(1− 1

q1
− 1

p1
)
λ
− d

2p2 (1+λ)
− d

2
(1− 1

q2
− 1

p2
)
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and letting λ → +∞ we obtain

1

p
+

1

q
≤ 1

q1
+

1

q2

whereas for λ → 0+
1

p
+

1

q
≤ 1

p1
+

1

p2
,

so that (6) must hold.
It remains to prove the sharpness of (5). We first show the conditions p2, q2 ≤ q.

We test (34) on the (cross-)Wigner distribution W (ϕ, ϕλ) defined in (20), that is

‖W (ϕ, ϕλ)‖Mp,q(R2d) . ‖ϕ‖Mp1,q1 (Rd)‖ϕλ‖Mp2,q2 (Rd).

Using Corollary 2.4 the previous estimate can be rephrased as

[(2λ+ 1)(λ+ 2)]
d
2q

− d
2p

λ
d
2q (1 + λ)

d
2
− d

p

. λ
− d

2p2 λ
− d

2
(1− 1

q2
− 1

p2
)
, ∀λ > 0.

Letting λ → +∞ we attain
q2 ≤ q

whereas for λ → 0+

p2 ≤ q.

The conditions p1, q1 ≤ q then follows by using the cross-Wigner property

W (ϕλ, ϕ)(x, ξ) = W (ϕ, ϕλ)(x, ξ),

so that

‖W (ϕλ, ϕ)‖Mp,q(R2d) = ‖W (ϕ, ϕλ)‖Mp,q(R2d) = ‖W (ϕ, ϕλ)‖Mp,q(R2d)

and applying the same argument as before.

4. Continuity results for the short-time Fourier transform and

the ambiguity distribution

This optimal bounds in Theorem 1.1 for the Wigner distribution can be trans-
lated in optimal new estimates for other time-frequency representations such that
the STFT or the ambiguity function. Precisely, given f, g ∈ L2(Rd), we recall the
definition of the (cross-)ambiguity function

(36) A(f1, f2)(x, ξ) =

∫

Rd

e−2πitξf1(t +
x

2
)f2(t−

x

2
) dt.

It is well-known that the Wigner distribution is the symplectic Fourier transform
of the ambiguity function, see e.g., [21]. In other words, cf. [28, Lemma 4.3.4],

(37) W (f1, f2)(x, ξ) = FUA(f1, f2)(x, ξ), f1, f2 ∈ L2(Rd),
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where the operator U is the rotation UF (x, ξ) = F (ξ,−x) of a function F on R
2d.

We need the following norm equivalence.

Lemma 4.1. For s ∈ R, 1 ≤ p, q ≤ ∞, the following equivalence holds

‖W (f1, f2)‖Mp,q
1⊗vs

= ‖A(f1, f2)‖W (FLp,Lq
vs)

≍ ‖Vf2f1‖W (FLp,Lq
vs)

.

Proof. Let us observe that the weight vs, s ∈ R, is symmetric in each coordinate:

vs(x, ξ) = vs(x,−ξ) = vs(−x, ξ) = vs(−x,−ξ).

Using (37), the connection between modulation and Wiener amalgam spaces (15)
and the symmetry of the weights vs we can write

‖W (f1, f2)‖Mp,q
1⊗vs

= ‖FUA(f1, f2)‖Mp,q
1⊗vs

= ‖UA(f1, f2)‖W (FLp,Lq
vs)

= ‖A(f1, f2)‖W (FLp,Lq
vs)
.

Now a simple change of variables in (36) let us write

A(f1, f2)(x, ξ) = eπixξVf2f1(x, ξ).

It was proved in [11, Proposition 3.2] that the function F (x, ξ) = eπixξ is in the
Wiener amalgam space W (FL1, L∞). This means that, by the product properties
for Wiener amalgam spaces, for every s ∈ R,

‖A(f1, f2)‖W (FLp,Lq
vs)

. ‖F‖W (FL1,L∞)‖Vf2f1‖W (FLp,Lq
vs )

and since F̄ (x, ξ) = e−πixξ ∈ W (FL1, L∞) as well, with ‖F̄‖W (FL1,L∞) = ‖F‖W (FL1,L∞),
we can analogously write

‖Vf2f1‖W (FLp,Lq
vs)

. ‖F‖W (FL1,L∞)‖A(f1, f2)‖W (FLp,Lq
vs)

.

This proves the desired result.

This observations, together with theWigner propertyW (f1, f2)(x, ξ) = W (f2, f1)
let us translate Theorem 1.1 in terms of STFT acting from modulation spaces to
Wiener amalgam spaces. Notice that the following two corollaries also hold for the
ambiguity function A(f1, f2) in place of the STFT Vf1f2.

Corollary 4.1. Consider s ∈ R and assume that p1, p2, q1, q2, p, q ∈ [1,∞] satisfy
conditions (5) and (6). Then if f1 ∈ Mp1,q1

v|s|
(Rd) and f2 ∈ Mp2,q2

vs (Rd), we have

Vf1f2 ∈ W (FLp, Lq
vs)(R

2d) with

(38) ‖Vf1f2‖W (FLp,Lq
vs )(R

2d) . ‖f1‖Mp1,q1
vs (Rd)‖f2‖Mp2,q2

vs (Rd).

Viceversa, assume that there exists a constant C > 0 such that

(39) ‖Vf1f2‖W (FLp,Lq)(R2d) ≤ C‖f1‖Mp1,q1 (Rd)‖f2‖Mp2,q2 (Rd), ∀f1, f2 ∈ S(R2d).

Then (5) and (6) must hold.
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The previous result has many special and interesting cases. Let us just give a
flavour of the main important ones. For pi = qi, i = 1, 2, we obtain the following
result.

Corollary 4.2. Assume that p1, p2, p, q ∈ [1,∞] satisfy

(40) p1, p2 ≤ q,
1

p1
+

1

p2
≥ 1

p
+

1

q
.

Then, for s ∈ R, if f1 ∈ Mp1
v|s|

(Rd) and f2 ∈ Mp2
vs (R

d) we have Vf1f2 ∈ W (FLp, Lq
vs)(R

2d)

with

(41) ‖Vf1f2‖W (FLp,Lq
vs)(R

2d) . ‖f1‖Mp1
v|s|(R

d)‖f2‖Mp2
vs (R

d).

Viceversa, assume that there exists a constant C > 0 such that

(42) ‖Vf1f2‖W (FLp,Lq)(R2d) ≤ C‖f1‖Mp1(Rd)‖f2‖Mp2 (Rd), ∀f1, f2 ∈ S(R2d).

Then (40) must hold.

Remark 4.3. The previous result holds also for the cross-Wigner distribution if
we replace ‖Vf1f2‖W (FLp,Lq

vs)(R
2d) by ‖W (f1, f2)‖Mp,q

1⊗vs
(R2d)

If we choose s = 0, p = q′ and q ≥ 2 in the previous result, we can refine
some Lieb’s integral bounds for the ambiguity function showed in [36]. Namely, we
obtain in particular the following sufficient conditions for boundedness.

Corollary 4.4. Assume q ≥ 2, p1, p2, q1, q2 ≤ q such that

1

p1
+

1

p2
≥ 1

1

q1
+

1

q2
≥ 1.

If fi ∈ Mpi,qi(Rd), i = 1, 2, then the ambiguity function satisfy A(f1, f2) ∈ Lq(R2d),
with

‖A(f1, f2)‖Lq(R2d) . ‖f1‖Mp1,q1 (Rd)‖f2‖Mp2,q2 (Rd).

Proof. Since FLq′ ⊆ Lq for q ≥ 2, the inclusion relations for Wiener amalgam
spaces give W (FLq′, Lq)(R2d) ⊆ W (Lq, Lq)(R2d) = Lq(R2d). The result then fol-
lows by Corollary 4.1.

Observe that for pi = qi = 2, i = 1, 2, Mpi,qi(Rd) = L2(Rd) and we recapture
Lieb’s bound, see [36, Theorem 1]. We also refer to [14, 15] for related estimates
for the short-time Fourier transform.
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5. Pseudodifferential operators

In this section we apply Theorem 1.1 to the study of pseudodifferential operators
on modulation spaces. The key tool is the weak definition of a Weyl operator Lσ by
means of a duality pairing between the symbol σ and the cross-Wigner distribution
W (g, f) as shown in (9).

The sharpest result concerning boundedness of pseudodifferential operators on
(un-weighted) modulation spaces was proved by one of us with Tabacco andWahlberg
in [17, Theorem 1.1]. Such result covers previous sufficient boundedness conditions
proved by Toft in [47, Theorem 4.3] and necessary boundedness conditions exhib-
ited in our previous work [15, Proposition 5.3]. Our result in this framework ex-
tends [17, Theorem 1.1] to weighted modulation spaces, thus widening the sufficient
boundedness conditions presented by Toft in [48, Theorem 4.3]. Using Theorem
1.1 the proof of the following result is decidedly simple.

Theorem 5.1. Assume s ≥ 0, pi, qi, p, q ∈ [1,∞], i = 1, 2, are such that

(43) min{ 1

p1
+

1

p′2
,
1

q1
+

1

q′2
} ≥ 1

p′
+

1

q′
.

and

(44) q ≤ min{p′1, q′1, p2, q2}.
Then the pseudodifferential operator T , from S(Rd) to S ′(Rd), having symbol σ ∈
Mp,q

1⊗vs(R
2d), extends uniquely to a bounded operator from Mp1,q1

vs (Rd) to Mp2,q2
vs (Rd),

with the estimate

(45) ‖Tf‖Mp2,q2
vs

. ‖σ‖Mp,q
1⊗vs

‖f‖Mp1,q1
vs

.

Vice-versa, if (45) holds for s = 0 and for every f ∈ S(Rd), σ ∈ S ′(R2d), then
(43) and (44) must be satisfied.

Proof. Assume σ ∈ Mp,q
1⊗vs(R

2d), f ∈ Mp1,q1
vs (Rd) such that (43) and (44) are satis-

fied. For g ∈ M
p′2,q

′
2

v−s (Rd) Theorem 1.1 says that the cross-Wigner distribution is in

Mp′,q′

1⊗v−s
(R2d), provided that p1, q1, p

′
2, q

′
2 ≤ q′ and

min{1/p1 + 1/p′2, 1/q1 + 1/q′1} ≥ 1/p′ + 1/q′,

that are conditions (44) and (43), respectively. Thereby there exists a constant
C > 0 such that

|〈σ,W (g, f)〉| ≤ ‖a‖Mp,q
1⊗vs

(R2d)‖W (g, f)‖
Mp′,q′

1⊗v−s
(R2d)

≤ C‖f‖Mp1,q1
vs (Rd)‖g‖

M
p′
2
,q′
2

v−s
(Rd)

.

Since |〈Lσf, g〉| = |〈σ,W (g, f)〉|, this concludes the proof of the sufficient condi-
tions. The necessary conditions are proved in [17, Theorem 1.1].
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We now present sharp boundedness results for localization operators.
Let us mention that, since their introduction by Daubechies [20] as a mathemati-

cal tool to localize a signal in the time-frequency plane, they have been investigated
by many authors in the field of signal analysis, see [6, 13, 25, 40, 47, 51, 46] and
references therein. Localization operators with Gaussian windows are well-known
in quantum mechanics, under the name of anti-Wick operators [5, 41].

A localization operator Aϕ1,ϕ2
a with symbol a and windows ϕ1, ϕ2 is defined as

(46) Aϕ1,ϕ2
a f(t) =

∫

R2d

a(x, ξ)Vϕ1f(x, ξ)MξTxϕ2(t) dxdξ .

In signal analysis the meaning is as follows: first, analyse the signal f by taking the
STFT Vϕ1f , then localize f by multiplying with the symbol a (if in particular a =
χΩ, for some compact set Ω ⊆ R

2d, it is considered only the part of f that lives on
the set Ω in the time-frequency plane), then reconstruct the signal by superposition

of time-frequency shifts with respect to the window ϕ2. If ϕ1(t) = ϕ2(t) = e−πt2 ,
then Aa = Aϕ1,ϕ2

a is the classical Anti-Wick operator and the mapping a → Aϕ1,ϕ2
a

is interpreted as a quantization rule [5, 41, 51].
Rewriting a localization operator Aϕ1,ϕ2

a as a Weyl operator, cf. (10), we can
investigate boundedness properties for localization operators as boundedness con-
ditions for Weyl operators having symbols a ∗W (ϕ2, ϕ1), see (11). Again it comes
into play Theorem 1.1.

Theorem 5.2. Assume s ≥ 0, the indices pi, qi, p, q ∈ [1,∞], i = 1, 2, fulfil the
relations (43) and (44). Consider r ∈ [1, 2]. If a ∈ Mp,q

1/v−s
(R2d) and ϕ1, ϕ2 ∈

M r
v2s(R

d), then the localization operator Aϕ1,ϕ2
a is continuous from Mp1,q1

vs (Rd) to
Mp2,q2

vs (Rd) with

‖Aϕ1,ϕ2
a ‖op . ‖a‖Mp,q

1/v−s
‖ϕ1‖Mr

2s
‖ϕ2‖Mr

v2s
.

Proof. Using Theorem 1.1 for ϕ1, ϕ2 ∈ M r
v2s(R

d) we obtain that W (ϕ2, ϕ1) ∈
M1,∞

1⊗v2s , for every r ∈ [1, 2]. Now the convolution relations in Proposition 2.1, in

the form Mp,q
1⊗v−s

∗M1,∞
1⊗v2s ⊆ Mp,q

1⊗vs , yield that the Weyl symbol σ = a ∗W (ϕ2, ϕ1)
belongs to Mp,q

1⊗vs . The result now follows from Theorem 5.1.

Remark 5.3. (i) The previous result extends Theorem 3.2 in [13] and Theorem
4.11 in [48] for this particular choice of weights. We observe that further exten-
sions of Theorem 5.2 can be considered by using more general polynomial weights
satisfying condition (4.17) in [48].
(ii) Using the same techniques as in the proof Theorem 5.2 one can study conditions
on symbols and window functions such that the operator Aϕ1,ϕ2

a is in the Schatten
class Sp, cf., e.g. [13, Theorem 3.4].
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6. Further applications: The Cohen Class

The Cohen class (12) was introduced by Cohen in [8] essentially to circumvent
the problem of the lack of positivity of the Wigner distribution. Many different
kinds of kernels were proposed, in particular we recall for τ ∈ [0, 1] \ {1/2} the
τ -kernels

στ (x, ξ) =
2d

|2τ − 1|d e
2πi 2

2τ−1
xξ,

which provide the τ -Wigner distributions Wτ (f, f) [7, Proposition 5.6]:

Wτ (f, f) = W (f, f) ∗ στ .

We recall that such distributions can be used in the definition of the τ -pseudodifferential
operators, see e.g., [7, 47]. Another important kernel is the Cohen kernel Θσ, which
yields the Born-Jordan distribution [10, 11, 12], given by [12, Prop. 3.4]

Θσ(ζ1, ζ2) =

{

−2Ci(4π|ζ1ζ2|), (ζ1, ζ2) ∈ R
2, d = 1

F(χ{|s|≥2}|s|d−2)(ζ1, ζ2), (ζ1ζ2) ∈ R
2d, d ≥ 2,

where Ci(t) is the cosine integral function. It was shown in [12, Sec. 4] that στ ,
τ ∈ [0, 1] \ {1/2}, and Θσ belong to the modulation space M1,∞(R2d). Inspired
by this result, Theorem 1.2 shows continuity properties for elements of the Cohen
class having kernels in the modulation space M1,∞(R2d). Let us prove Theorem
1.2. The main ingredient will be Theorem 1.1.

Proof of Theorem 1.2. If f ∈ Mp1,q1
vs (Rd), with p1, q1 satisfying (13), Theorem 1.1

gives that the Wigner distribution is in the corresponding Mp,q
1⊗vs(R

2d). Then the
result follows by the inclusion relation Mp,q

1⊗vs ∗ M1,∞ ⊆ Mp,q
1⊗vs , s ≥ 0 (see Prop.

2.1).

Observe that the indices’ assumptions of Theorem 1.2 coincide with those of
Corollary 3.4. Hence the continuity properties on modulation spaces of these Cohen
kernels coincide with those of the Wigner distribution. In other words, the time-
frequency properties of these Cohen distributions resemble those of the Wigner
distribution.
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[31] K. Gröchenig and T. Strohmer. Pseudodifferential operators on locally compact abelian
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