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We perform Direct Numerical Simulations of three dimensional Rayleigh-Taylor turbulence with
a non-uniform singular initial density/temperature background. In such conditions, the mixing
layer evolves under the driving of a varying effective Atwood number; the long time growth is still
self-similar, but not anymore proportional to t2 and depends on the singularity exponent c of the
initial profile ∆T ∝ zc. We show that the universality is recovered when looking at the efficiency,
defined as the ratio of the variation rates of the kinetic energy over the heat flux. A closure model is
proposed that is able to reproduce analytically the time evolution of the mean temperature profiles,
in excellent agreement with the numerical results. Finally, we reinterpret our findings on the light
of spontaneous stochasticity where the growth of the mixing layer is mapped in to the propagation
of a wave of turbulent fluctuations on a rough background.

Introduction. Turbulent mixing is a mechanism of
utmost importance in many natural and industrial pro-
cesses, often induced by the Rayleigh-Taylor (RT) in-
stability which takes place when a fluid is accelerated
against a less dense one [1–5]. RT turbulence occurs in
disciplines as diverse as in astrophysics [6–8], atmospheric
science [9] or confined nuclear fusion [10, 11] (see [4, 5]
for recent reviews).

One important application of RT instability is the case
of convective flow, in which density differences reflect
temperature fluctuations of a single fluid and the accel-
eration is provided by gravity. In the simplest configu-
ration, RT turbulence considers a planar interface which
separates a layer of cooler (heavier, of density ρH) fluid
over a layer of hotter (lighter, of density ρL) fluid un-
der a constant body force such as gravity. The driv-
ing force is constant in time and proportional to gA,
where g is the acceleration due to the body force and
A = (ρH − ρL)/(ρH + ρL) = βθ0/2 is the Atwood num-
ber, expressed in term of the thermal expansion coeffi-
cient β and the temperature jump θ0 between the two
layers. However, in some relevant circumstances one has
to cope with time varying acceleration (as in inertial con-
finement fusion or in pulsating stars [12–14]) or with a
varying Atwood number, that emerges when the mixing
proceeds over a non-uniform background as in thermally
stratified atmosphere [15–17].

In this Letter we address a question with both fun-
damental and applied importance: what happens when
the initial unstable background has a non-trivial singular
profile. In particular we investigate analytically and by
using direct numerical simulations in three dimensions
the generic case when the initial unstable vertical tem-
perature distribution is given by a power law:

T0(z) = −(θ0/2) sgn(z)

(
|z|
L

)c
, (1)

where L is characteristic length scale (−L ≤ z ≤ L).

The exponent of the singularity belongs to the interval
−1 < c < 1, where the upper limit corresponds to a
smooth profile and the lower limit ensures that the po-
tential energy, −βgzT0(z), does not diverge near the in-
terface among the two miscible fluids at z = 0. The limit
c = 0 recovers the standard RT configuration.

We develop a closure model based on the Prandtl Mix-
ing Length approach, which is able to predict with good
accuracy the evolution of the RT turbulence at all scales
and for all values of the singularity exponent c. Beside
the importance of testing the robustness with respect to
the initial configuration, the above setup allows us to in-
vestigate the idea that the Mixing Layer (ML) growth
can be mapped to a traveling wave in appropriate renor-
malized variables. This wave describes the self-similar
evolution of the probability distribution function (PDF)
of turbulent fluctuations from small to large scales in
a rough background given by the initial singular profile
[18, 19]. Such a description would then naturally ex-
plain the universality of the ML evolution and its spon-
taneously stochastic behavior in the inertial range [20].
We introduce a shell model for the RT evolution to illus-
trate and quantify the ML statistical properties.
Results for Navier–Stokes Equations. We con-
sider the Navier-Stokes equation for the incompressible
velocity field u(r, t) with Boussinesq buoyancy term and
the coupled equation for the temperature field T (r, t):

∂tu + u ·∇u = −∇p+ ν∇2u− βgT, (2)

∂tT + u ·∇T = κ∇2T, (3)

where g = (0, 0,−g) is the gravity acceleration, ν and κ
are the kinematic viscosity and diffusivity respectively.
The initial condition for the velocity at position r =
(x, y, z) is u(r, 0) = 0, while for the temperature field
T (r, 0) = T0(z) we consider a generic power-law distri-
bution given by (1). The only inviscid dimensional pa-
rameter that relates small spatial and temporal scales
is ξ = βgθ0/L

c
[
`1−c/t2

]
. Thus, for the box of size
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FIG. 1. (Color online). Snapshots of the vertical section of
the temperature field T for three simulations of RT turbulence
with power law initial condition (1) with c = −0.25 (left),
c = 0 (center) and c = 0.25 (right) at time t = 4t∗. High
(low) temperature is represented by yellow (blue).

L, the corresponding integral temporal scale is given by
t∗ = ξ−1/2L(1−c)/2 =

√
L/(βgθ0). The distribution (1)

is unstable and the dimensional argument provides the
inviscid growth rate λ ' ξ1/2k(1−c)/2 for the modes with
wavenumber k, where the dimensionless proportionality
coefficient can be determined by solving the linearized
problem [21]. This dispersion relation predicts explosive
instability at small scales for all c < 1.

The nonlinear development of the RT instability pro-
duces a mixing zone of width h(t). Its evolution can be
determined on dimensional grounds [22–24] from (1) and
(2) in the form

u(t)2/h(t) ' βgθ0(h(t)/L)c, (4)

where u(t) is a large-scale velocity. Assuming that u '
dh/dt, one ends with

h(t) ' L
(
t

t∗

) 2
1−c

, u(t) ' U
(
t

t∗

) 1+c
1−c

, (5)

where U = L/t∗ and t∗ was defined above. Notice that
the first expression can be reinterpreted as a standard
RT diffusion

h(t) = αcAc(t)gt2 (6)

where Ac(t) = (βθ0)
1/(1−c) (

gt2/L
)c/(1−c)

is the time de-
pendent Atwood number and the pre-factor αc represents
the generalization of the standard RT α coefficient [25].
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FIG. 2. Temporal evolution of the mixing layer h(t). From left
to right: c = −0.25 (green triangles), c = 0 (red squares) and
c = 0.25 (blue circles). The three lines represent the power
law predicted by the formula (5) with γ = 2/(1−c). Inset: Ef-
ficiency of kinetic energy production Σ = −(dE/dt)/(dP/dt)
as a function of time for the three cases c = −0.25 (green
triangles), c = 0 (red squares) and c = 0.25 (blue circles).

In order to test the above predictions, we performed di-
rect numerical simulations (DNS) of the system of equa-
tions (2–3) in a periodic domain of size with Ly = Lx and
Lz = 4Lx by means of a fully parallel pseudo-spectral
code at resolution 512× 512× 2048 for initial conditions
(1) with different c. For all runs we have βg = 1/2, θ0 = 1
and Pr = ν/κ = 1. RT instability is seeded by adding to
the initial density field a white noise of amplitude 10−3θ0
and statistical quantities are averaged over 10 indepen-
dent runs. Figure 1 shows examples of the vertical section
of the temperature field for three different initial condi-
tions taken at the same computational time. We estimate
the width h(t) of the ML on the basis of the mean tem-
perature profile T (z, t) =

∫
T (x, y, z, t)dxdy as the region

on which |T (z, t)−T (z, 0)| > δθ0 with δ = 5× 10−3 [26].
In Fig. 2 we show that the evolution of h(t) is in good
agreement with the power law predicted by scaling (6) for
the three different values of c. A small deviation is ob-
served for the largest c (which corresponds to the faster
growth) probably because of the short range of tempo-
ral scaling. This results confirms that the balance (4)
gives the correct evolution of the mixing layer, even over
non-uniform backgrounds.

Equation (4) represents the conversion of available po-
tential energy, P (t) = −βg

∫
zT (z, t)dz into turbulent

kinetic energy E(t) = (1/2)〈u(r, t)2〉 where with 〈•〉 we
intend the integral over the whole volume. Part of poten-
tial energy is dissipated by viscosity, as the energy bal-
ance from (2-3) reads −dPdt = βg〈wT 〉 = dE

dt + εν , where
εν = ν〈(∇u)2〉. It is therefore interesting to measure
the efficiency of the production of turbulent fluctuations,
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defined as [27, 28]

Σ = −dE/dt
dP/dt

(7)

and to check how this is affected by the initial distribu-
tion. The inset of Fig. 2 shows the time evolution of Σ,
(for clarity shifted by the time t0 needed for the onset of
the self-similar growth) for the three different cases. The
indication is that the efficiency of conversion of potential
energy into kinetic energy is independent on the initial
density profile.

To have control on local quantities, we studied the evo-
lution equation for the mean temperature profile:

∂tT + ∂zwT = κ∂2zzT . (8)

Using a Prandtl Mixing Layer first-order closure with
homogeneous eddy diffusivity K(t), the heat transfer is
related to the local temperature gradient by [29]:

wT = −K(t)
(
∂zT − cT/z

)
. (9)

In the above expression, the correction term cT/z ensures
that wT vanishes outside the mixing zone, where T is
given by Eq. (1). Neglecting the viscous term, equation
(14) can be recast into

∂tT = K(t) ∂z
(
∂zT − cT/z

)
. (10)

The effective diffusivity is expected to depend on time as
uh, leading to K(t) = bcLU(t/t∗)

(3+c)/(1−c) with a free
dimensionless parameter bc. In this case a self-similar
solution of (16) is obtained in the form (see Supplemental
Material [30])

T (z, t) = −θ0
(
|z|
L

)c
fc(η), η =

z

L

(t/t∗)
− 2

1−c√
(1− c)bc

, (11)

where the function

fc(η) =
2 sgn(η)

Γ
(
1−c
2

) ∫ |η|
0

x−ce−x
2

dx (12)

is such that fc → ±1 as η → ±∞. For c = 0 (stan-
dard RT), the solution reduces to the error function
f0(η) = erf(η) which is known to be a good fit for stan-
dard RT evolution [29]. In Fig. 3 we show that the ho-
mogeneous Prandtl approach works well also for c 6= 0 by
plotting the rescaled temperature profiles, for the three
different c’s considered, at three times as function of the
rescaled coordinate η, as given by (18), superposed with
the solution (26).
Results for Shell Models. The described phenom-
ena can be also observed with high accuracy in a shell
model for the RT evolution introduced in [20]. This
system defines the dynamics at discrete vertical scales
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FIG. 3. Rescaled temperature profiles T/(θ0Λc(t)
c) averaged

over ten independent runs vs the vertical coordinate η (18), for
c = 0 (squares), c = 0.25 (circles) and c = −0.25 (triangles)
at three different times (in red the earliest, in blue the latest).

Λc(t) =
√

(1− c)bc(t/t∗)2/(1−c) is the time scaling factor of
η in (18). The fitting parameters are: b0 = 6× 10−5, b0.25 =
1.2 × 10−6 and b−0.25 = 7 × 10−4. The solid lines represent
the function −|η|cfc(η), with fc(η) given by equation (26).

(“shells”) zn = 2−nL with n = 1, 2, . . ., where the associ-
ated variables ωn, Rn and Tn describe vorticity, horizon-
tal and vertical temperature fluctuations, respectively.
We modified the equations described in [20] by using the
complex nonlinearity of the Sabra model [31, 32] (see
Supplemental Material [30]). The shell model retains all
most important scaling properties, symmetries and in-
variants of the original Boussinesq equations (2–3). At
t = 0, the analogue of initial conditions (1) must be cho-
sen with vanishing vorticity and horizontal temperature
variations ωn(0) = Rn(0) = 0, while for the vertical tem-
perature variables we choose

Tn(0) = iθ0

(zn
L

)c
(13)

for all n. This initial condition leads to the same ex-
plosive dispersion relation λn = ξ1/2k

(1−c)/2
n as the full

model (1–3) (see Supplemental Material [30]). Phe-
nomenological theory of the RT instability for the shell
model is essentially identical to the one of the full
3D system [23], with turbulent fluctuations propagating
from small to large scales. It is convenient to charac-
terize the size of the ML with the expression h(t) =∑
|Tn(t)/Tn(0)− 1|zn, which estimates the largest scale

zn at which the temperature profile Tn(t) deviates from
its initial value Tn(0). This definition is in spirit of the
commonly used integral formulas for the ML width [7].

By performing a large number of simulations with
small dissipative coefficients ν = κ = 10−10 and tiny ran-
dom initial perturbations at small scales, we accurately
verify the scaling law (5) for c = −0.25, 0, 0.25, 0.5, 0.7
in Fig. 4, where solid lines represent the numerical results
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FIG. 4. Log-log growth of h(t) in the shell model for different
exponents c. The parameters L, βg and θ0 were set to unity.
The statistics was obtained from 103 evolutions, where a small
random perturbation was added to the variables Rn at shells
n ≥ 16. Inset: pre-factor αc vs c, fitted with the straight
dashed line.

FIG. 5. PDFs (darker color for larger probability) for the
ratios of temperature variables |Tn/Tn+1| as functions of time:
n = 4 (upper), n = 7 (middle) and n = 10 (lower) panels in
the case c = 0.25.

(averaged over realizations) and the green lines show the
theoretical prediction. Here we use the small time shift
ti accounting for the small initialization time, which im-
proves the comparison.

The results in Fig. 4 provide with high accuracy the
dimensionless pre-factor αc for the power-law growth of
the ML, see Eqs. (5-6). Dependence of this pre-factor
on the singularity exponent c can be fitted well with the

formula αc ≈ αLα−2/(1−c)t as shown by the inset in Fig. 4.
The quantities αL and αt have a simple physical meaning:
they define the dimensional length and time scales, L̃ =

αLL and t̃ = αtt∗, which reduce the ML width expression

to the universal form, h(t)/L̃ =
(
t/t̃∗

)2/(1−c)
. Thus, the

ML reaches the size L̃ at the time t̃ independently of the
singularity exponent c; this fact can be seen in Fig. 4
as an (approximately) common intersection point of the
green lines. In the limit c → 1 (constant temperature
gradient with no singularity), the graph h(t) approaches
the vertical line at time t̃, which means that unstable
modes at all scales get excited simultaneously.

It is argued [18, 19] that spontaneous stochastic tur-
bulent fluctuations develop in the inverse cascade from
small to large scales. In the RT turbulence, existence of
such a cascade must reflect in the stochastic growth of
the mixing layer independently of the intensity of the
initial perturbation similarly to what happens in the
turbulent Richardson dispersion describing the evolution
of pairs of Lagrangian tracers [33]. Such phenomenon
can be conveniently studied with the renormalized (log-
arithmic) space-time coordinates: −n = log2 zn and
τ = log2(t − ti). To highlight the stochastic aspect, we
choose to measure the probability distribution function
of the ratios among temperature fluctuations at adjacent
shells, |Tn/Tn+1|, which are the equivalent of velocity
multipliers used in cascade description of fully developed
turbulence [34, 35]. Figure 5 presents the time-dependent
PDFs obtained numerically in the case c = 0.25 starting
from many initial conditions different by a very small per-
turbation. These results support the idea that the ML
growth can be mapped to a stochastic wave in appro-
priate renormalized variables (−n, τ). The wave speed
is constant and given by the exponent 2/(1 − c) of ML
width from Eq. (5). Such a wave represents a front of the
turbulent fluctuations, which propagates into a determin-
istic left state (delta function PDF) corresponding to the
rough initial background (30), and leaves behind the sta-
tionary turbulent state on the right. This description
naturally explains the universality of the ML evolution
and its spontaneously stochastic behavior in the inertial
range [20, 36].

Conclusions. We have studied numerically and ana-
lytically Rayleigh-Taylor turbulence with a non-uniform
singular initial background. We have shown that inde-
pendently of the singularity exponent, the asymptotic
self-similar growth of the ML is universal, if properly
renormalized, i.e. by looking at the mixing efficiency
and at the mean rescaled Temperature profile. We show
that a closure model based on the Prandtl mixing layer
approach is able to reproduce analytically the time evo-
lution of the mean temperature profiles. By using a shell
model we have provided numerical data supporting the
above findings also at much larger resolution both in time
and scales. Finally, we have shown that RT evolution can
be reinterpreted in terms of the phenomenon known as
spontaneous stochasticity where the growth of the mix-
ing layer is mapped into the propagation of a wave of
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turbulent fluctuations on a rough background.
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SUPPLEMENTAL MATERIAL

Derivation of the mean profile solution, T (z, t)

The equation for the mean temperature profile

∂tT + ∂zwT = κ∂2zzT , (14)

with the following closure for the turbulent heat flux

wT = −K(t)
(
∂zT − cT/z

)
, (15)

becomes

∂tT = K(t) ∂z
(
∂zT − cT/z

)
. (16)

Let us write (16) as

∂tT = K(t) ∂z

[
|z|c∂z

(
T

|z|c

)]
. (17)

Substituting for T the ansatz

T (z, t) = −θ0
(
|z|
L

)c
fc(η) (18)

and dropping the common factor −θ0(|z|/L)c yields

∂tfc =
K(t)

|z|c
∂z (|z|c∂zfc) , (19)

where fc = fc(η) and η is given by

η(z, t) =
1√

(1− c)bc
z

L

(
t

t∗

)− 2
1−c

. (20)

We can write Eq. (19) in the form

dfc
dη
∂tη = K(t)

(
c

z

dfc
dη

+
d2fc
dη2

∂zη

)
∂zη. (21)

Using (20) and the definition of

K(t) = bc
L2

t∗

(
t

t∗

)(3+c)/(1−c)

(22)
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in Eq. (21) leads, after a long but elementary derivation,
to:

d2fc
dη2

+

(
c

η
+ 2η

)
dfc
dη

= 0. (23)

Denoting gc = dfc/dη we can recast the above expression
in to:

dgc
dη

+

(
c

η
+ 2η

)
gc = 0. (24)

The general solution of Eq. (24) has the form

gc(η) = C|η|−ce−η
2

(25)

with an arbitrary pre-factor C. Finally, the solution for
fc(η) =

∫
gc(η)dη takes the form

fc(η) =
2 sgn(η)

Γ
(
1−c
2

) ∫ |η|
0

x−ce−x
2

dx (26)

where the factor C = 2/Γ
(
1−c
2

)
is determined from the

condition fc → ±1 as η → ±∞.

Shell Model for RT evolution

We introduce the RT shell model equations in the form

ω̇n = −ωn+2ω
∗
n+1/4 + ωn+1ω

∗
n−1/2

+2ωn−1ωn−2 + iβgRn/zn − νωn/z2n,
(27)

Ṙn = ω∗nRn+1 − ωn−1Rn−1 + ωnT
∗
n − κRn/z2n, (28)

Ṫn = ω∗nTn+1 − ωn−1Tn−1 − ωnR∗n − κTn/z2n. (29)

This system defines the dynamics at discrete vertical
scales (“shells”) zn = 2−nL with n = 1, 2, . . ., where the

associated variables ωn, Rn and Tn describe vorticity,
horizontal and vertical temperature fluctuations, respec-
tively. The integral scale is usually chosen as L = 1.

Equations (27–29) are analogous to those proposed
in [20], except for the fact that here we used the more
popular Sabra model nonlinearity [31, 32] for the vor-
ticity Eq. (27), where ωn = un/zn and un are the ve-
locity shell variables for the Sabra model. Notice that
usually in shell model literature the equations are writ-
ten using kn = 1/zn to denotes scales in Fourier space.
Equation (27) without the buoyancy term has energy
E =

∑
|un|2, and the helicity H =

∑
(−1)n|unωn| as

inviscid invariants in agreement with 3D Navier-Stokes
equations. Equations (28) and (29) possess the inviscid
invariant S =

∑
|Rn|2 + |Tn|2, which can be interpreted

as the entropy.
One can show that the initial condition

Tn(0) = iθ0

(zn
L

)c
(30)

with vanishing ωn(0) = Rn(0) = 0 leads to the expo-
nentially growing modes [20]. Let us consider small per-
turbations, ∆ωn and ∆Rn, and neglect the dissipative
terms. Then, Eqs. (27) and (28) linearized near the ini-
tial state read

∆ω̇n =
iβg

zn
∆Rn, ∆Ṙn = −iθ0

(zn
L

)c
∆ωn. (31)

Solution of these equations provide one unstable mode for
each “wavenumber” kn = 1/zn with the corresponding
positive Lyapunov exponent

λn = ξ1/2k(1−c)/2n , ξ = βgθ0/L
c, (32)

in the direct analogy with the RT instability of the full
3D system.
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