
HOMOGENEOUS SYMPLECTIC HALF-FLAT 6-MANIFOLDS

FABIO PODESTÀ AND ALBERTO RAFFERO

Abstract. We consider 6-manifolds endowed with a symplectic half-flat SU(3)-structure
and acted on by a transitive Lie group G of automorphisms. We review a classical result
of Wolf and Gray allowing one to show the non-existence of compact non-flat examples.
In the noncompact setting, we classify such manifolds under the assumption that G is
semisimple. Moreover, in each case we describe all invariant symplectic half-flat SU(3)-
structures up to isomorphism, showing that the Ricci tensor is always Hermitian with
respect to the induced almost complex structure. This property of the Ricci tensor is
characterized in the general case.

1. Introduction

This is the first of two papers aimed at studying symplectic half-flat 6-manifolds acted
on by a Lie group G of automorphisms. Here, we focus on the homogeneous case, i.e., on
transitive G-actions, while in [31] we investigate the properties of the whole automorphism
group as well as the existence of cohomogeneity one examples.

An SU(3)-structure on a six-dimensional manifold M is given by an almost Hermitian

structure (g, J) and a complex volume form Ψ = ψ + iψ̂ of constant length. By [24], the
whole data depend only on the fundamental 2-form ω := g(J ·, ·) and on the real 3-form ψ,
provided that they fulfill suitable conditions.

The obstruction for the holonomy group of g to reduce to SU(3) is represented by the

intrinsic torsion, which is encoded in the exterior derivatives of ω, ψ, and ψ̂ [7]. When all
such forms are closed, the intrinsic torsion vanishes identically and the SU(3)-structure is
said to be torsion-free.

In this paper, we focus on 6-manifolds endowed with an SU(3)-structure (ω, ψ) such that
dω = 0 and dψ = 0, known as symplectic half-flat in literature (SHF for short). These
structures are half-flat in the sense of [7], and their underlying almost Hermitian structure
(g, J) is almost Kähler.

Being half-flat, SHF structures can be used to construct local metrics with holonomy
contained in G2 by solving the so-called Hitchin flow equations [24]. Moreover, it is known
that every oriented hypersurface M of a G2-manifold is endowed with a half-flat SU(3)-
structure, which is SHF when M is minimal with J-invariant second fundamental form [28].
Starting with a SHF 6-manifold (M,ω, ψ), it is also possible to obtain examples of closed G2-
structures on the Riemannian productM×S1, and on the mapping torus of a diffeomorphism
of M preserving ω and ψ (see e.g. [27]).
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In theoretical physics, compact SHF 6-manifolds arise as solutions of type IIA super-
symmetry equations [18], and they are of interest in the study of SYZ mirror symmetry
[26].

SHF 6-manifolds were first considered in [10], and then in [11, 12]. In [12], equivalent
characterizations of SHF structures in terms of the Chern connection ∇ were given, showing
that Hol(∇) ⊆ SU(3). Moreover, as ψ defines a calibration on M in the sense of [21], the
authors introduced and studied special Lagrangian submanifolds in this setting.

Since the first Chern class of a SHF 6-manifold (M,ω, ψ) is zero, it is clear that (M,ω)
is an example of those manifolds called symplectic Calabi-Yau in [15].

In [3], the Ricci tensor of an SU(3)-structure was described in full generality. Using this
result, it was proved that SHF structures cannot induce an Einstein metric unless they are
torsion-free. It is then interesting to investigate the existence of SHF structures whose Ricci
tensor has special features. By the results in [5], the Ricci tensor being J-Hermitian seems
to be a meaningful condition. In Proposition 3.1, we characterize this property in terms of
the intrinsic torsion.

Recently, A. Fino and the second author showed that SHF structures fulfilling some extra
conditions can be used to obtain explicit solutions of the Laplacian G2-flow on the product
manifold M × S1 [17]. In particular, the class of SHF structures satisfying the required
hypothesis includes those having J-Hermitian Ricci tensor.

Most of the known examples of SHF 6-manifolds consist of six-dimensional simply con-
nected Lie groups endowed with a left-invariant SHF structure. The classification of nilpo-
tent Lie groups admitting such structures was given in [8], while the classification in the
solvable case was obtained in [14]. Previously, some examples on unimodular solvable Lie
groups appeared in [11, 19, 33]. Moreover, in [33] a family of non-homogeneous SHF struc-
tures on the 6-torus was constructed. The existence of a SHF structure on the twistor space
of an oriented self-dual Einstein 4-manifold with negative scalar curvature, e.g. RH4, is also
known [35].

In the present paper, we look for new examples in the homogeneous setting. We first show
that compact homogeneous SHF 6-manifolds with invariant SHF structure are exhausted
by flat tori (Corollary 4.3). This result is based on the description of compact homogeneous
symplectic manifolds [36] and on a classical theorem of Wolf and Gray concerning compact
almost Kähler manifolds acted on transitively by a semisimple automorphism group [34]. We
then focus on the noncompact case G/K with G semisimple. We provide a full classification
in Theorem 5.1, showing that only the twistor spaces of RH4 and CH2 occur. Furthermore,
we prove that the former admits a unique invariant SHF structure up to homothety, while
the latter is endowed precisely with a one-parameter family of invariant SHF structures
which are pairwise non-homothetic and non-isomorphic. It is interesting to notice that all
SHF structures in this family share the same almost complex structure, which coincides
with the non-integrable almost complex structure of the twistor space [13], and the same
Chern connection, which agrees with the canonical connection of the homogeneous space.
Moreover, the almost Kähler structure attaining the maximum value of the (constant) scalar
curvature is homothetic to the unique almost Kähler structure inside the natural family of
almost Hermitian structures on the twistor space [29].
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For all SHF 6-manifolds considered in Theorem 5.1, a representation theory argument
allows one to conclude that the Ricci tensor is J-Hermitian.

Notation. Throughout the paper, we shall denote Lie groups by capital letters, e.g. G,
and the corresponding Lie algebras by gothic letters, e.g. g.

2. Preliminaries

2.1. Stable 3-forms in six dimensions. A k-form on an n-dimensional vector space V
is said to be stable if its orbit under the natural action of GL(V ) is open in Λk(V ∗). Among
all possible situations that may occur (see e.g. [23, 32] for the study of open orbits when
n = 6, 7, and [24] for a review of all possibilities), in this paper we will be concerned with
stable 3-forms in six dimensions.

Assume that V is real six-dimensional, and fix an orientation by choosing a volume form
Ω ∈ Λ6(V ∗). Then, every 3-form ρ ∈ Λ3(V ∗) gives rise to an endomorphism Sρ : V → V
via the identity

(2.1) ιvρ ∧ ρ ∧ η = η(Sρ(v)) Ω,

for all η ∈ Λ1(V ∗), where ιvρ denotes the contraction of ρ by the vector v ∈ V. By [23],
S2
ρ = P (ρ)IdV for some irreducible polynomial P (ρ) of degree 4, and ρ is stable if and only

if P (ρ) 6= 0. The space Λ3(V ∗) contains two open orbits of stable forms defined by the
conditions P > 0 and P < 0. The GL+(V )-stabilizer of a 3-form ρ belonging to the latter
is isomorphic to SL(3,C). In this case, ρ induces a complex structure

(2.2) Jρ : V → V, Jρ :=
1√
−P (ρ)

Sρ,

and a complex (3, 0)-form ρ+ iρ̂, where ρ̂ := Jρρ = ρ(Jρ·, Jρ·, Jρ·) = −ρ(Jρ·, ·, ·). Moreover,
the 3-form ρ̂ is stable, too, and Jρ̂ = Jρ.

Remark 2.1. Note that Sρ, P (ρ) and Jρ depend both on ρ and on the volume form Ω. In
particular, after a scaling (ρ,Ω) 7→ (cρ, λΩ), c, λ ∈ Rr {0}, they transform as follows

c2

λ
Sρ,

c4

λ2
P (ρ),

|λ|
λ
Jρ.

Thus, the sign of P (ρ) does not depend on the choice of the orientation.

2.2. Symplectic half-flat 6-manifolds. Let M be a connected six-dimensional manifold.
An SU(3)-structure on M is an SU(3)-reduction of the structure group of its frame bundle.
By [24], this is characterized by the existence of a non-degenerate 2-form ω ∈ Ω2(M) and
a stable 3-form ψ ∈ Ω3(M) with P (ψx) < 0 for all x ∈ M, fulfilling the following three
properties. First, the compatibility condition

(2.3) ω ∧ ψ = 0,

which guarantees that ω is of type (1, 1) with respect to the almost complex structure

J ∈ End(TM) induced by ψ and by the volume form ω3

6 . Second, the normalization
condition

(2.4) ψ ∧ ψ̂ =
2

3
ω3,
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where ψ̂ := Jψ. Finally, the positive definiteness of the symmetric bilinear form

g := ω(·, J ·).

Note that the pair (g, J) is an almost Hermitian structure with fundamental form ω, and

that ψ + iψ̂ is a complex volume form on M.
Given an SU(3)-structure (ω, ψ) on M, we denote by ∗ : Ωk(M)→ Ω6−k(M) the Hodge

operator defined by the Riemannian metric g and the volume form ω3

6 , and we indicate by

| · | the induced pointwise norm on Ωk(M). When k = 3, 4, the irreducible decompositions
of the SU(3)-modules Λk

(
R6∗) give rise to the splittings

(2.5) Ω3(M) = C∞(M)ψ ⊕ C∞(M) ψ̂ ⊕
r

Ω2,1
0 (M)

z
⊕ Ω1(M) ∧ ω,

(2.6) Ω4(M) = C∞(M)ω2 ⊕
[
Ω1,1

0 (M)
]
∧ ω ⊕ Ω1(M) ∧ ψ,

where [
Ω1,1

0 (M)
]

:=
{
κ ∈ Ω2(M) | κ ∧ ω2 = 0, Jκ = κ

}
is the space of primitive 2-forms of type (1, 1), and

r
Ω2,1

0 (M)
z

:=
{
ϕ ∈ Ω3(M) | ϕ ∧ ω = 0, ϕ ∧ ψ = ϕ ∧ ψ̂ = 0

}
is the space of primitive 3-forms of type (2, 1) + (1, 2) (see e.g. [3, 7]).

By [7], the intrinsic torsion of (ω, ψ) is determined by dω, dψ, and dψ̂. In particular,
it vanishes identically if and only if all such forms are zero. When this happens, the
Riemannian metric g is Ricci-flat, Hol(g) is a subgroup of SU(3), and the SU(3)-structure
is said to be torsion-free.

A six-dimensional manifold M endowed with an SU(3)-structure (ω, ψ) is called symplec-
tic half-flat (SHF for short) if both ω and ψ are closed. By [7, Thm. 1.1], in this case the
intrinsic torsion can be identified with a unique 2-form σ ∈ [Ω1,1

0 (M)] such that

(2.7) dψ̂ = σ ∧ ω

(cf. (2.6)). We shall refer to σ as the intrinsic torsion form of the SHF structure (ω, ψ). It
is clear that σ vanishes identically if and only if the SU(3)-structure is torsion-free. When
the intrinsic torsion is not zero, the almost complex structure J is non-integrable, and the
underlying almost Hermitian structure (g, J) is (strictly) almost Kähler.

Since σ is a primitive 2-form of type (1, 1), it satisfies the identity ∗σ = −σ∧ω. Using this
together with (2.7), it is possible to show that σ is coclosed, and that its exterior derivative
has the following expression with respect to the decomposition (2.5) of Ω3(M)

(2.8) dσ =
|σ|2

4
ψ + ν,

for a unique ν ∈ JΩ2,1
0 (M)K (see e.g. [17, Lemma 5.1] for explicit computations).
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3. Symplectic half-flat SU(3)-structures with J-Hermitian Ricci tensor

In this section, we discuss the curvature properties of a SHF 6-manifold (M,ω, ψ). We
begin reviewing some known facts from [3].

By [3, Thm. 3.4], the scalar curvature of the metric g induced by (ω, ψ) is given by

(3.1) Scal(g) = −1

2
|σ|2 .

Therefore, it is zero if and only if the SU(3)-structure is torsion-free.
The Ricci tensor of g belongs to the space S2(M) of symmetric 2-covariant tensor fields

on M. The SU(3)-irreducible decomposition of S2(R6∗) induces the splitting

S2(M) = C∞(M) g ⊕ S2
+(M)⊕ S2

−(M),

where

S2
+(M) :=

{
h ∈ S2(M) | Jh = h and trgh = 0

}
, S2

−(M) :=
{
h ∈ S2(M) | Jh = −h

}
.

Consequently, we can write

Ric(g) =
1

6
Scal(g)g + Ric0(g),

and the traceless part Ric0(g) of the Ricci tensor belongs to S2
+(M) ⊕ S2

−(M). It follows
from [3, Thm. 3.6] that for a SHF structure

(3.2) Ric0(g) = π−1
+

(
1

4
∗ (σ ∧ σ) +

1

12
|σ|2 ω

)
+ π−1

− (2ν),

where ν is the JΩ2,1
0 (M)K-component of dσ (cf. (2.8)), and the maps π+ : S2

+(M)→ [Ω1,1
0 (M)]

and π− : S2
−(M) → JΩ2,1

0 (M)K are induced by the pointwise SU(3)-module isomorphisms
given in [3, §2.3].

Equation (3.2) together with a representation theory argument allows one to show that
the Riemannian metric g induced by a SHF structure is Einstein, i.e., Ric0(g) = 0, if and
only if the intrinsic torsion vanishes identically [3, Cor. 4.1]. In light of this result, it is
natural to ask which distinguished properties g might satisfy. Since the almost Hermitian
structure (g, J) underlying a SHF structure is almost Kähler, the Ricci tensor of g being J-
Hermitian seems a meaningful condition. Indeed, on a compact symplectic manifold (M,ω),
almost Kähler structures with J-Hermitian Ricci tensor are the critical points of the Hilbert
functional restricted to the space of all almost Kähler structures with fundamental form ω
(see [2, 5]).

Using the above decomposition of Ric(g), we can show that SHF structures with J-
Hermitian Ricci tensor are characterized by the expression of dσ.

Proposition 3.1. The Ricci tensor of the metric g induced by a SHF structure (ω, ψ) is
Hermitian with respect to the corresponding almost complex structure J if and only if

(3.3) dσ =
|σ|2

4
ψ.

When this happens, the scalar curvature of g is constant.
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Proof. The Ricci tensor of g is J-Hermitian if and only if it has no component in S2
−(M).

By (3.2), this happens if and only if ν = 0, i.e., if and only if dσ is given by (3.3).

Taking the exterior derivative of both sides of (3.3), we get d |σ|2 ∧ ψ = 0. This implies

that |σ|2 is constant, since wedging 1-forms by ψ is injective. The second assertion follows
then from (3.1). �

Examples of SHF 6-manifolds with J-Hermitian Ricci tensor include the twistor space of
an oriented self-dual Einstein 4-manifold of negative scalar curvature (cf. [9] and [35, §1.2]).

4. Compact homogeneous symplectic half-flat 6-manifolds

From now on, we focus on the homogeneous case. More precisely, we shall consider the
following class of SHF 6-manifolds.

Definition 4.1. A homogeneous symplectic half-flat manifold consists of a SHF 6-manifold
(M,ω, ψ) and a connected Lie group G acting transitively and almost effectively on M
preserving the SHF structure (ω, ψ).

Since the pair (g, J) induced by (ω, ψ) is a G-invariant almost Kähler structure, the
homogeneous manifold M is G-equivariantly diffeomorphic to the quotient G/K, where K
is a compact subgroup of G [25, vol. I, Ch. I, Cor. 4.8].

In what follows, we review some basic facts on homogeneous symplectic and almost
complex manifolds, and then we will focus on invariant SHF structures on compact and
noncompact homogeneous spaces.

4.1. Invariant almost Kähler structures on homogeneous spaces. Let G/K be a
homogeneous space with K compact. It is well-known that there exists an Ad(K)-invariant
subspace m of g such that g = k⊕m. Moreover, there is a natural identification of T[K](G/K)
with m, and every G-invariant tensor on G/K corresponds to an Ad(K)-invariant tensor of
the same type on m, which we will denote by the same letter.

From now on, we assume that G is semisimple, i.e., that the Cartan-Killing form B of g
is non-degenerate (see [20] for a more general setting).

Given a G-invariant symplectic form ω on G/K, the corresponding Ad(K)-invariant 2-
form ω ∈ Λ2(m∗) can be written as ω(·, ·) = B(D·, ·), where D ∈ End(m) is a B-skew-
symmetric endomorphism.

Extend D to an endomorphism of g by setting D|k ≡ 0. Then, dω = 0 if and only if D
is a derivation of g (see e.g. [6]). Since g is semisimple, there exists a unique z ∈ g such
that D = ad(z). By the Ad(K)-invariance of ω, z is centralized by k, and since ω is non-
degenerate on m, the Lie algebra k coincides with the centralizer of z in g. Consequently,
K is connected.

Since K is compact, there exists a maximal torus T ⊆ K whose Lie algebra t contains the
element z. Using the results of [22, Ch. IX, §4], a standard argument allows one to show
that the complexification gC has a Cartan subalgebra h given by tC. We can then consider
the root space decomposition gC = h⊕

⊕
α∈R gα with respect to h, where R is the relative

root system and gα is the root space corresponding to the root α ∈ R. For any pair α, β ∈ R
satisfying α+β 6= 0, the root spaces gα and gβ are B-orthogonal. Moreover, for each α ∈ R
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we can always choose an element Eα of gα so that gα = CEα, B(Eα, E−α) = 1, and

[Eα, Eβ] =

 Nα,βEα+β, if α+ β ∈ R,
Hα if β = −α,
0 otherwise,

with Nα,β ∈ Rr{0}, and Hα ∈ h defined as α(H) = B(Hα, H) for every H ∈ h (see e.g. [22,
p. 176]).

Since k contains a maximal torus, we have the decompositions kC = h ⊕
⊕

α∈Rk
gα and

mC =
⊕

β∈Rm
gβ, for two disjoint subsets Rk, Rm ⊂ R such that

R = Rk ∪Rm, (Rk +Rk) ∩R ⊆ Rk, (Rk +Rm) ∩R ⊆ Rm.

Let J ∈ End(m) be an Ad(K)-invariant complex structure on m. Then, its complex linear
extension J ∈ End(mC) is ad(h)-invariant and commutes with the antilinear involution τ
given by the real form g of gC. Moreover, the ad(h)-invariance implies that J preserves each
root space gα, α ∈ Rm, and determines a splitting mC = m1,0 ⊕m0,1, where

m1,0 =
⊕
β∈R+

m

gβ, m0,1 =
⊕
β∈R−

m

gβ,

and Rm = R+
m ∪R−

m, R−
m = −R+

m. The full Ad(K)-invariance is equivalent to

(Rk +R+
m) ∩R ⊆ R+

m.

4.2. Non-existence of compact non-flat homogeneous SHF 6-manifolds. We begin
reviewing a general result on compact homogeneous almost Kähler manifolds U/K, which
was proved in [34, Thm. 9.4] for U semisimple.

Proposition 4.2. A compact homogeneous almost Kähler manifold (M, g, J) is Kähler.

Proof. Let U be a compact connected Lie group acting transitively and almost effectively by
automorphisms on (M, g, J), and let ω be the fundamental form. The group U is (locally)
isomorphic to the product of its semisimple part G and a torus Z, and the manifold M
splits as a symplectic product M1×Z, where M1 = G/K and K is the centralizer of a torus
in G (see [36, §5]). The splitting is also holomorphically isometric, since the tangent spaces
to M1 and Z are inequivalent as K-modules.

Keeping the same notations as in §4.1, we recall that when g is a compact semisimple
Lie algebra, then Eα := τ(Eα) = −E−α, for every root α ∈ R.

Now, for every α ∈ Rm, we have Eα − E−α ∈ m and

0 < g(Eα − E−α, Eα − E−α) = −2g(Eα, E−α).

Therefore, when α ∈ R+
m

0 < −2g(Eα, E−α) = −2ω(Eα, JE−α) = 2iω(Eα, E−α) = 2iα(z).

This means that α ∈ R+
m if and only if iα(z) > 0. Hence, we have that (R+

m +R+
m)∩R ⊆ R+

m.
This last condition is equivalent to the integrability of J (see e.g. [6, (3.49)]). �

An immediate consequence of the previous proposition is the following.

Corollary 4.3. Let (M,ω, ψ) be a compact homogeneous SHF 6-manifold. Then, the SU(3)-
structure (ω, ψ) is torsion-free and M is a flat torus.
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Proof. Consider the almost Kähler structure (g, J) underlying (ω, ψ). By Proposition 4.2,
the almost complex structure J is integrable. Then, the SU(3)-structure is torsion-free. In
particular, the metric g is Ricci-flat, and thus flat by [1]. �

Remark 4.4. An alternative proof of the results presented in this section can be obtained
using the results of our subsequent work [31]. In detail, it can be shown that the identity
component of the automorphism group of a compact SHF 6-manifold (M,ω, ψ) is a k-torus
for suitable k. When k = 6, this implies that M ∼= T6 with (ω, ψ) torsion-free and inducing
a flat metric.

5. Noncompact homogeneous symplectic half-flat 6-manifolds

Motivated by the result of §4.2, we now look for examples of noncompact homogeneous
SHF 6-manifolds. In particular, assuming that the transitive group of automorphisms G is
semisimple, we shall prove the following classification result.

Theorem 5.1. Let (M,ω, ψ) be a noncompact G-homogeneous SHF 6-manifold, and assume
that the group G is semisimple. Then, one of the following situations occurs:

1) M = SU(2, 1)/T2, and there exists a 1-parameter family of pairwise non-homothetic and
non-isomorphic invariant SHF structures;

2) M = SO(4, 1)/U(2), and there exists a unique invariant SHF structure up to homothety.

Moreover, in both cases the Riemannian metric induced by the SHF structure has J-Hermitian
Ricci tensor.

Remark 5.2. Observe that the two examples are precisely the twistor spaces of CH2 and
RH4. The existence of a SHF structure on the latter was already known (see e.g. [35, §1.2]).
Moreover, these spaces were also considered in [15, 16] as examples belonging to the wider
class of symplectic Calabi-Yau manifolds.

For the sake of clarity, we divide the proof of Theorem 5.1 into various steps. We begin
showing a preliminary lemma.

Lemma 5.3. Let (G/K, ω, ψ) be a homogeneous SHF 6-manifold with G semisimple. Then,
G is simple.

Proof. Suppose that G is not simple. Then, g splits as the sum of two non-trivial ideals
g = g′⊕g′′. Since k is the centralizer of an element z ∈ g, it splits as k = (k∩g′)⊕(k∩g′′), and
the manifold G/K is the product of homogeneous symplectic manifolds of lower dimension,
say G/K = G′/K′×G′′/K′′. Without loss of generality, we may assume that dim(G′/K′) = 2
and dim(G′′/K′′) = 4. The tangent space m splits as m′ ⊕ m′′, and a simple computation
shows that [Λ3(m′ ⊕m′′)]K = {0}, since the isotropy representations of K′ and K′′ have no
non-trivial fixed vectors. �

By the previous lemma, we can focus on the case when the Lie group G is simple and
noncompact. Let L ⊂ G be a maximal compact subgroup containing K. Then (G,L) is a
symmetric pair, and K is strictly contained in L. Indeed, if L = K, then (G,L) would be
a Hermitian symmetric pair, and every invariant almost complex structure on G/L would
be integrable. In particular, every invariant SHF structure on G/L would be torsion-free,
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hence flat. This contradicts the simplicity of G. Moreover, the space L/K is symplectic, as
K is the centralizer of a torus in L. Consequently, as dim(G) ≥ 6, we have dim(G/L) = 4.

Therefore, we have to consider the list of symmetric pairs (g, l) of noncompact type, where
g is simple, l is of maximal rank in g, and dim(g) − dim(l) = 4. After an inspection of all
potential cases in [22, Ch. X, §6], we are left with two possibilities, which are summarized
in Table 1.

G L K

SU(2, 1) S(U(2)×U(1)) T2

SO(4, 1) SO(4) U(2)

Table 1.

We now deal with the two cases separately.

1) M = SU(2, 1)/T2

Here gC = sl(3,C), and we may think of t as the abelian subalgebra

t = {diag(ia, ib,−ia− ib) ∈ gC | a, b ∈ R} .
The root system R relative to the Cartan subalgebra tC is given by {±α,±β,±(α + β)}.
Without loss of generality, we assume that ±α are the compact roots, i.e., lC = tC⊕gα⊕g−α.
Notice that Eγ = −E−γ for a compact root γ ∈ R, while Eγ = E−γ when γ is noncompact.
We can then define the vectors

(5.1) vγ := Eγ + Eγ , wγ := i
(
Eγ − Eγ

)
, γ ∈ {α, β, α+ β},

so that if mγ := spanR(vγ , wγ), we have m = mα ⊕mβ ⊕mα+β.
An invariant symplectic form ω is determined by an element z ∈ t r {0}, and for every

root γ ∈ R the only nonzero components of ω on mC are given by

ω(Eγ , E−γ) = B([z, Eγ ], E−γ) = γ(z).

If we fix za,b := diag(ia, ib,−i(a+ b)) ∈ t, we have

ω(Eα, E−α) = α(za,b) = i(a− b),
ω(Eβ, E−β) = β(za,b) = i(a+ 2b),

ω(Eα+β, E−α−β) = (α+ β)(za,b) = i(2a+ b).

Let {Eγ}γ∈R denote the basis of (mC)∗ which is dual to the basis given by the root vectors
{Eγ}γ∈R. Then, we can write

(5.2) ω = i(a− b)Eα ∧ E−α + i(a+ 2b)Eβ ∧ E−β + i(2a+ b)Eα+β ∧ E−α−β,
and the volume form induced by ω on mC is

(5.3)
ω3

6
= i(b− a)(a+ 2b)(2a+ b)Eα ∧ E−α ∧ Eβ ∧ E−β ∧ Eα+β ∧ E−α−β.

We introduce the real volume form

(5.4) Ω := iEα ∧ E−α ∧ Eβ ∧ E−β ∧ Eα+β ∧ E−α−β ∈ Λ6((mC)∗).
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Observe that ω3 and Ω define the same orientation if and only if (b−a)(a+ 2b)(2a+ b) > 0.
In the next lemma, we describe closed invariant 3-forms on M.

Lemma 5.4. Let ψ ∈ Λ3(m∗) be a nonzero Ad(T2)-invariant 3-form whose corresponding
form on M is closed. Then, the 3-form ψ on mC can be written as

(5.5) ψ = iq
(
Eα ∧ Eβ ∧ E−α−β + E−α ∧ E−β ∧ Eα+β

)
,

for a suitable q ∈ Rr {0}.

Proof. The invariance of ψ under the adjoint action of the Cartan subalgebra implies that

(γ1 + γ2 + γ3)(H)ψ(Eγ1 , Eγ2 , Eγ3) = 0,

for all γ1, γ2, γ3 ∈ R and for all H ∈ t. Thus, ψ is completely determined by the values

(5.6) ψ(Eα, Eβ, E−α−β) := p+ iq,

and

(5.7) ψ(E−α, E−β, Eα+β) = −ψ(Eα, Eβ, E−α−β) = −p+ iq,

for suitable p, q ∈ R.
Using the Koszul formula for the differential of invariant forms on mC, we have

dψ(X0, X1, X2, X3) =
∑
i<j

(−1)i+j ψ ([Xi, Xj ]mC , Xk, Xl) , X0, . . . , X3 ∈ mC,

where {i, j} ∪ {k, l} = {0, 1, 2, 3} for each 0 ≤ i < j ≤ 3 and k < l.
By the ad(tC)-invariance, we only need to check the values dψ (Eγ1 , E−γ1 , Eγ2 , E−γ2), with

γ1, γ2 ∈ R. From (5.6), (5.7), and the identity N−α,−β = −Nα,β (cf. e.g. [22, p.176]), we get

dψ(Eα, E−α, Eβ, E−β) = ψ ([Eα, Eβ], E−α, E−β) + ψ ([E−α, E−β], Eα, Eβ)

= Nα,β ψ(E−α, E−β, Eα+β) +N−α,−β ψ(Eα, Eβ, E−α−β)

= Nα,β [−p+ iq − (p+ iq)]

= −2pNα,β.

Similarly, we obtain

dψ(Eα, E−α, Eα+β, E−α−β) = 2pNα,β, dψ(Eβ, E−β, Eα+β, E−α−β) = 2pNα,β.

Hence, the condition dψ = 0 is equivalent to p = 0. �

Throughout the following, we will consider a closed invariant 3-form ψ as in Lemma 5.4.
The next result proves the compatibility condition (2.3) and the stability of ψ.

Lemma 5.5. Let ψ be a closed invariant 3-form on mC as in (5.5). Then, ψ is compatible
with every invariant symplectic form ω. Moreover, ψ is always stable, and it induces an
invariant almost complex structure J ∈ End(mC) such that

(5.8) J(Eα) = −iδa,bEα, J(Eβ) = −iδa,bEβ, J(Eα+β) = iδa,bEα+β,

where δa,b is the sign of (b− a)(a+ 2b)(2a+ b).
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Proof. First, we observe that ω∧ψ = 0, since there are no non-trivial invariant 5-forms (or,
equivalently, 1-forms) on m.

In order to check the stability of ψ and compute the almost complex structure induced
by it and ω3, we complexify the relation (2.1) for the endomorphism Sψ and we fix the real
volume form δa,b Ω (cf. (5.3) and (5.4)). In this way, we obtain a map Sψ ∈ End(mC) such
that Sψ(m) ⊆ m and S2

ψ = P (ψ)Id. A simple computation shows that for every γ ∈ R

Sψ(Eγ) = cγEγ ,

where
cα = cβ = −cα+β = −δa,b i q2, and c−γ = −cγ .

Consequently, P (ψ) = −q4 < 0. The expression of J can be obtained from (2.2). �

Since ω ∧ ψ = 0, we can consider the J-invariant symmetric bilinear form g := ω(·, J ·).
It is positive definite if and only if

0 < g(vα, vα) = 2ω(JEα, E−α) = −2iδa,b ω(Eα, E−α) = 2δa,b (a− b),
0 < g(vβ, vβ) = −2ω(JEβ, E−β) = 2iδa,b ω(Eβ, E−β) = −2δa,b (a+ 2b),

0 < g(vα+β, vα+β) = −2ω(JEα+β, E−α−β) = −2iδa,b ω(Eα+β, E−α−β) = 2δa,b (2a+ b).

Therefore, the set Q of admissible real parameters (a, b) can be written as Q = A ∪ (−A),
where

A :=
{

(a, b)
∣∣∣ 0 < −a

2
< b < −2a

}
.

Note that δa,b < 0 and δ−a,−b > 0 for (a, b) ∈ A.
The last condition we need is the normalization (2.4). Using (5.5) and (5.8), we see that

(5.9) ψ̂ = −δa,b q
(
Eα ∧ Eβ ∧ E−α−β − E−α ∧ E−β ∧ Eα+β

)
.

Thus,

ψ ∧ ψ̂ = 2 δa,b q
2 Ω.

Combining this identity with (5.3) and (2.4) gives

(5.10) q2 = 2 |(b− a)(a+ 2b)(2a+ b)| ,
which determines q up to a sign. This provides two invariant SHF structures, namely (ω, ψ)
and (ω,−ψ), which induce isomorphic SU(3)-reductions. Hence, we assume q to be positive.

Summing up, for any choice of real numbers (a, b) ∈ Q, there is an Ad(T2)-invariant SHF
structure on m defined by the 2-form ω (5.2) and the 3-form ψ (5.5), with q > 0 satisfying
(5.10). Moreover, the Ricci tensor of any metric g in this family is J-Hermitian. Indeed, m
is the sum of mutually inequivalent T2-modules, and on each module the invariant bilinear
form Ric(g) and the metric g are a multiple of each other.

Remark 5.6. It is straightforward to check that g has signature (2, 4) for all (a, b) ∈ R2rQ.
Hence, in such a case one gets examples of invariant SHF SU(1, 2)-structures on M.

Now, we investigate when two invariant SHF structures corresponding to different values
of the real parameters (a, b) ∈ Q are isomorphic.

Since the transformation (a, b) 7→ (−a,−b) maps the 2-form ω corresponding to (a, b)
into its opposite, it leaves the metric ω(·, J ·) invariant (cf. (5.8)). Note that the standard
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embedding of g into sl(3,C) (see e.g. [22, p. 446]) is invariant under the action of the
conjugation θ of sl(3,C) with respect to the real form sl(3,R). The involution θ preserves

t, and θ|t = −Id. The induced map θ̂ : M → M is a diffeomorphism with θ̂∗(ω) = −ω and

θ̂∗(ψ) = ψ. Thus, the SHF structures corresponding to the pairs (a, b) and (−a,−b) are
isomorphic, and we can reduce to considering (a, b) ∈ A.

For any nonzero λ ∈ R+, the SHF structures associated with (a, b) and (λa, λb) are
homothetic, i.e., the defining differential forms and the induced metrics are homothetic.
Then, we can restrict to a subset of A where the volume form is fixed, e.g.

V := {(a, b) ∈ A | (b− a)(a+ 2b)(2a+ b) = −1} .
We now claim that the SHF structures corresponding to the pairs (a, b) and (b, a) in A

are isomorphic. Indeed, the conjugation in G by the element

u :=

 0 1 0
1 0 0
0 0 −1

 ∈ S(U(2)×U(1))

preserves the isotropy T2 mapping za,b into zb,a. Consequently, it induces a diffeomorphism
φu : M → M, which is easily seen to be an isomorphism of the SHF structures under
consideration. Therefore, we can further reduce to the set

VSHF := {(a, b) ∈ V | 0 < −a ≤ b < −2a} ,
which is represented in Figure 1.

a

b

Figure 1. The set VSHF.

To conclude our investigation, we prove that the SHF structures corresponding to differ-
ent points in VSHF are pairwise non-isomorphic by showing that the induced metrics have

different scalar curvature. From the expression (5.9) of ψ̂ and the identity dψ̂ = σ ∧ ω, we
can determine the intrinsic torsion form σ ∈ [Λ1,1

0 (m∗)] explicitly. Then, by (3.1) we have

Scal(g) = −1

2
|σ|2 = −24N2

α,β

(
a2 + ab+ b2

)
.

Using the method of Lagrange multipliers, it is straightforward to check that the function
Scal(g) subject to the constraint (b− a)(a+ 2b)(2a+ b) = −1 has a unique critical point at
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the vertex C =
(
− 1

3√2
, 1

3√2

)
∈ VSHF of the curve on the graph in Figure 1. Moreover, Scal(g)

is easily seen to be strictly decreasing when the point (a, b) ∈ VSHF moves away from C.

Remark 5.7.

i) Clearly, the SHF structure corresponding to C has maximal scalar curvature among all
SHF structures parametrized by VSHF. Moreover, one can verify that the underlying
almost Kähler structure is homothetic to the unique almost Kähler structure inside
the family of almost Hermitian structures considered in the classical theory of twistor
spaces (cf. [29, Thm. 2, (vi)]);

ii) using the properties of the Chern connection ∇ of a homogeneous almost Hermitian
space (see e.g. [30, §2]), it is possible to check that the natural operator Λm : m →
End(m) associated with ∇ is identically zero for all almost Kähler structures underly-
ing the SHF structures parametrized by VSHF. Consequently, all (g, J) in this family
share the same Chern connection, which coincides with the canonical connection of
the homogeneous space SU(2, 1)/T2. In particular, using [25, vol. II, Ch. X, Cor. 4.3]
we see that the holonomy Hol0(∇) reduces to S(U(1)3) ⊂ SU(3) (cf. [4] for a similar
situation in the nearly Kähler setting).

2) M = SO(4, 1)/U(2)
In this case, gC = so(5,C). We fix the standard maximal abelian subalgebra t of the compact
real form so(5) and the corresponding root system R = {±α,±β,±(α + β),±(α + 2β)}.
Without loss of generality, we may choose Rk = {±(α + 2β)} and {±α} as compact roots,
and {±(α + β),±β} as noncompact roots. Note that Rk ∪ {±α} is the root system of
lC ∼= so(4,C). The tangent space m splits as the sum of two inequivalent U(2)-submodules
m = m1 ⊕ m2, with dimRm1 = 2 and dimRm2 = 4. In particular, if we define the vectors
vγ , wγ as in (5.1), then m1 = spanR(vα, wα) and m2 = spanR(vβ, wβ, vα+β, wα+β).

Any invariant symplectic form ω on m is determined by a nonzero element z in the
one-dimensional center z of k ∼= u(2). Since the root α + 2β ∈ Rk vanishes on z, we have
α(z) = −2β(z). Setting α(z) = ia, a ∈ R r {0}, we obtain the following expression for the
complexified ω on mC

ω = iaEα ∧ E−α − 1

2
iaEβ ∧ E−β +

1

2
iaEα+β ∧ E−α−β,

{Eγ}γ∈R being the basis of (mC)∗ dual to {Eγ}γ∈R.
We consider an invariant 3-form ψ on m and its complexification on mC. As in Lemma

5.4, the ad(tC)-invariance implies that ψ is completely determined by the value

ψ(Eα, Eβ, E−α−β) := p+ iq,

and its conjugate

ψ(E−α, E−β, Eα+β) = −ψ(Eα, Eβ, E−α−β) = −p+ iq,

for some p, q ∈ R. In this case, we also have to check the invariance under Ad(U(2)). This
follows from the vanishing of ψ(Eα, Eβ, [Eα+2β, E−α−β]), ψ(Eα, [E−α−2β, Eβ], E−α−β), and
ψ(E−α, E−β, [E−α−2β, Eα+β]).

Using the same arguments as in the proofs of Lemma 5.4 and Lemma 5.5, we can show
the following.
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Lemma 5.8. Let ψ ∈ Λ3(m∗) be a nonzero Ad(U(2))-invariant 3-form whose corresponding
form on M is closed. Then, the complexified ψ on mC can be written as

(5.11) ψ = iq
(
Eα ∧ Eβ ∧ E−α−β + E−α ∧ E−β ∧ Eα+β

)
,

for a suitable q ∈ R r {0}. Consequently, ψ is compatible with every invariant symplectic
form ω, it is always stable, and it induces an invariant almost complex structure J ∈
End(mC) such that

J(Eα) = −iδaEα, J(Eβ) = −iδaEβ, J(Eα+β) = iδaEα+β,

where δa is the sign of a.

The J-invariant symmetric bilinear form g := ω(·, J ·) is positive definite for all a ∈
Rr {0}. Indeed

g(vα, vα) = 2δaa, g(vβ, vβ) = δaa, g(vα+β, vα+β) = δaa.

Finally, we observe that

ω3 =
3

2
a3 Ω, ψ ∧ ψ̂ = 2δa q

2 Ω,

where Ω is a real volume form on mC defined as in (5.4). Therefore, the normalization
condition gives

q2 =
1

2
δa a

3.

Summarizing, we have obtained a 1-parameter family of invariant SHF structures on M
which are clearly pairwise homothetic. As the tangent space m has two mutually inequiva-
lent U(2)-submodules, on each module the Ricci tensor of the SHF structure is a multiple
of the metric. Hence, it is J-Hermitian.

Remark 5.9. Also in this case the Chern connection ∇ is easily seen to coincide with the
canonical connection of the homogeneous space G/K. By [25, vol. II, Ch. X, Cor. 4.3], we
see that the holonomy Hol0(∇) reduces to U(2), with the fibres of the twistor fibration being
invariant under the holonomy representation. This is again in analogy with [4].

Remark 5.10. The arguments in the proof of Theorem 5.1 show also that any noncom-
pact G-homogeneous almost Kähler 6-manifold is either a product of Kähler homogeneous
manifolds, or an irreducible Hermitian symmetric space, or one of the homogeneous spaces
in Table 1.
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