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Abstract

Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour
of lattice gauge theories. They are much simpler to simulate than the original lattice model
and are affected by a milder sign problem, but it is not clear to which extent they really
capture the rich spectrum of the original theories. We propose here a simple way to address
this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd
between the exponential correlation length and the second moment one is equal to 1 if only
a single mass is present in the spectrum, and it becomes larger and larger as the complexity
of the spectrum increases. Since both ξ and ξ2nd are easy to measure on the lattice, this is
a cheap and efficient way to keep track of the spectrum of the theory. As an example of the
information one can obtain with this tool we study the behaviour of ξ/ξ2nd in the confining
phase of the (D = 3 + 1) SU(2) gauge theory and show that it is compatible with 1 near
the deconfinement transition, but it increases dramatically as the temperature decreases. We
also show that this increase can be well understood in the framework of an effective string
description of the Polyakov loop correlator. This non-trivial behaviour should be reproduced
by the Polyakov loop effective action; thus, it represents a stringent and challenging test of
existing proposals and it may be used to fine-tune the couplings and to identify the range of
validity of the approximations involved in their construction.
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1 Introduction

The study of the phase diagram of quantum chromodynamics (QCD) from first principles on the
lattice is severely limited by the well-known “sign problem”: when the quark chemical potential
µ is added to the theory, the fermion determinant becomes complex, making Monte Carlo sim-
ulations unfeasible as importance sampling is not applicable anymore. Many different methods
have been proposed to circumvent this problem but while they are generally in agreement for
small values of the chemical potential (µ . T ), reliable computations for larger values of µ are
still missing.

In the last few years, several attempts to investigate the phase structure of QCD and QCD-
like theories and to address the sign problem for any value of the chemical potential were instead
based on a family of models called effective Polyakov Loop (EPL) models [1–21]. In a nutshell,
the original theory regularized on the lattice is mapped to a three-dimensional, center-symmetric,
effective Polyakov loop spin model obtained by integration over the gauge and matter degrees
of freedom. This type of approach is particularly interesting, since in the resulting effective
description the sign problem is milder and can be treated with known methods, or it can be
avoided entirely.

An exact integration of timelike degrees of freedom is too difficult, but from strong-coupling
expansions one can infer a few important features of such an effective action:

• first, it should be nonlocal since, as the order of the strong-coupling expansion increases,
far apart Polyakov loops are involved in the interaction;

• second, it should involve higher representations of the Polyakov loop;

• third, it should contain multispin interactions.

In most of the existing proposals multispin interactions are neglected, assuming that they can
be taken into account by a suitable tuning of two-spin interactions. As a result, one ends up with
an action of this type:

Seff =
∑
p

∑
|r|≥1

∑
|x−y|=r

λp,r χp(x)χp(y) (1)

where χp(x) is the character in the p representation of the loop in the spatial site x and λp,r is
the coupling between the effective spins.

Several strategies have been devised to address the problem of determining the infinitely many
interaction terms between the degrees of freedom in the new three-dimensional theory. In general,
the main idea of EPL proposals is to keep the number of free parameters in the action as small as
possible and try to summarize in a few relevant couplings the complexity of the original model.

The purpose of this paper is to suggest a quantitative way to test these proposals, to eval-
uate their ability to capture the relevant features of the original four-dimensional model, and,
possibly, to fine-tune the coupling constants λp,r. More precisely, we propose the ratio between
the exponential correlation length ξ and the second moment correlation length ξ2nd as a tool to
test existing EPL actions: indeed, this ratio is well defined for any model and it can be readily
evaluated in Monte Carlo simulations on the lattice.

1



This study has been inspired by the observation that any EPL proposal must face two non-
trivial requirements, which are indeed two faces of the same coin.

The first issue is that Polyakov loop correlators extracted from EPL actions should display the
so-called “Lüscher term” [22], i.e. a 1/R correction in the static quark-antiquark potential. Such
a term is present in the confining phase of the original model and has been detected and precisely
measured on the lattice in SU(N) gauge theories, both using Wilson loops [23] and Polyakov loop
correlators [24–27]. EPL actions should be able to reproduce the same behavior. This is indeed a
very nontrivial requirement, since such a term is typical of extended gauge invariant observables
in gauge theories, and, in general, spin models with short distance interactions do not show such
a behavior.

The second issue is that the original lattice gauge theory (LGT) is characterized by a rich
spectrum of excitations, with an exponential “Hagedorn” type of dependence on the energy,
which, again, is typical of gauge theories and it is not easy to reproduce with a spin model.

These two features are deeply related: it is exactly the accumulation of an infinite number
of excitations which leads to the 1/R correction in the potential. This relation can be shown
explicitly in the framework of the so-called effective string Description of LGTs using the open-
closed string duality (or, equivalently, performing a modular transformation of the effective string
result for the interquark potential). We shall address this issue in Sec. 4 of this paper.

A simple and easy way to keep track of the spectrum of a statistical model is exactly the
ξ/ξ2nd ratio that we discuss in this paper. Our idea is to use this easily computable quantity to
understand if the spectrum is dominated by a single mass or contains several masses in competition
among them. This information could help to select the terms to be included in the effective action
and, possibly, to fine-tune the couplings obtained with the existing approaches. We shall discuss
as an example the case of the (3 + 1)-dimensional SU(2) Yang-Mills theory and compare the
results with the simplest possible EPL for this theory, namely the nearest-neighbor Ising model
in three dimensions.

This paper is organized as follows: in Sec. 2 we shall introduce the second moment correlation
length ξ2nd and discuss its relation with the exponential correlation length ξ. Section 3 is devoted
to the results of the simulation of the SU(2) theory and to a comparison with the three-dimensional
Ising model. In Sec. 4 we shall discuss these results in the framework of the effective string picture
and finally, Sec. 5 will be devoted to some concluding remarks.

2 The relation between ξ and ξ2nd in spin models

In a d-dimensional spin model, the exponential correlation length ξ describes the long distance
behavior of the connected two point function and is defined as

1

ξ
= − lim

|~n|→∞

1

|~n|
log〈s~0s~n〉c (2)

where s~x denotes the spin s in the position ~x, and the connected correlator is defined as

〈s~ms~n〉c = 〈s~ms~n〉 − 〈s~m〉2. (3)
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The square of the second moment correlation length ξ2nd is defined as:

ξ2
2nd =

µ2

2dµ0
, (4)

where

µ0 = lim
L→∞

1

V

∑
~m,~n

〈s~ms~n〉c (5)

and

µ2 = lim
L→∞

1

V

∑
~m,~n

|~m− ~n|2〈s~m s~n〉c , (6)

where V = Ld is the lattice volume, and the sum on ~m is on the d indices m0,m1, ...,md−1.
This estimator for the correlation length was very popular a few years ago, since its numerical

evaluation in Monte Carlo simulations is simpler and faster than that of the exponential correla-
tion length. Moreover it is the length scale which is directly observed in scattering experiments.

It is important to notice that ξ2nd is not exactly equivalent to ξ. The difference is in general
very small, but it carries important information on the spectrum of the underlying theory. To
better understand this issue it is useful to move to “time-slice” variables. Let us fix for simplicity
d = 3, and let us denote ~n = (n0, n1, n2), where n0 denotes the “time” direction. We can define
the time-slice variables as

Sn0 =
1

L2

∑
n1,n2

s(n0,n1,n2) (7)

and the time-slice correlation function as

G(τ) =
∑
n0

{
〈Sn0Sn0+τ 〉 − 〈Sn0〉2

}
; (8)

the wall average on the (n1, n2) plane indicates a projection to zero spatial momentum. As for the
standard correlator, the exponential correlation length can be extracted from the large distance
behavior of G(τ),

G(τ) ∼ exp(−τ/ξ) . (9)

The relation between ξ and ξ2nd can be obtained by noticing that we can rewrite µ2 as follows:

µ2 =
1

V

∑
~m,~n

|~n− ~m|2 〈s~m s~n〉c

=
1

V

∑
~m,~n

d−1∑
i=0

(ni −mi)
2 〈s~m s~n〉c

=
d

V

∑
~m,~n

(n0 −m0)2 〈s~m s~n〉c (10)

where the last identity holds when the lattice is symmetric in all the d directions, so that inside
the sum over ~m and ~n the d terms of the sum over i are equal.
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Because of the exponential decay of the correlation function, this sum is convergent, and we
can commute the spatial summation with the summation over configurations so as to obtain

µ2 = dL2
∞∑

τ=−∞
τ2 〈S0 Sτ 〉c (11)

and

µ0 = L2
∞∑

τ=−∞
〈S0 Sτ 〉c (12)

for which we used the definition given in Eq. (7). If we now insert these results in Eq. (4), we
obtain

ξ2
2nd =

∑∞
τ=−∞ τ2 G(τ)

2
∑∞

τ=−∞ G(τ)
. (13)

Assuming a multiple exponential decay for G(τ),

〈S0 Sτ 〉c ∝
∑
i

ci exp(−|τ |/ξi) , (14)

and replacing the summation by an integration over τ , we get

ξ2
2nd =

1

2

∫∞
τ=0 dτ τ2

∑
i ci exp(−τ/ξi)∫∞

τ=0 dτ
∑

i ci exp(−τ/ξi)
=

∑
i ciξ

3
i∑

i ciξi
, (15)

which is equal to ξ2 if only one state contributes. It is, thus, clear that we can use the ξ/ξ2nd to
gain some insight on the spectrum of the theory and on the amplitude ci of these states.

In the following, we examine a set of results for the Ising universality class that is reported in
Table 1: this class of models has not only been studied in great detail and with high accuracy, but
it is also the relevant one for the test for the SU(2) gauge theory that we will discuss in Sec. 3.
The d = 2 results are obtained from the exact solution of the two-dimensional Ising model,
while the d = 3 results are obtained from ε expansion calculations, Monte Carlo simulations, or
strong-coupling expansions. For a review of these and other results see, for instance, Ref. [28].

In the high-T symmetric phase, where the spectrum is composed by a single massive state,
we would expect that ξ/ξ2nd = 1: the small but not negligible difference from 1 can be better
understood looking at the Fourier transform of G(τ). Besides isolated poles, which correspond to
isolated exponentials in G(τ), we also have cuts above the pair production threshold at momentum
p equal to twice the lowest mass. In the original correlator, these cuts can be thought of as the
coalescence of infinitely nearby exponentials1, and as such, they also contribute to the ratio ξ/ξ2nd.

In d = 3, both in the low-T broken symmetry phase and on the critical isotherm curve (T = Tc,
H 6= 0), the ξ/ξ2nd ratio is definitely larger: indeed, besides the cuts discussed above, we also
have one (or more) isolated bound states which contribute to the spectrum. This is the case, for

1As a matter of fact on a finite lattice, this is their correct description, since the transfer matrix has only a
finite number of eigenvalues.
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d ξ/ξ2nd Method

High-T phase 2 1.00040...
3 1.00016(2) Strong-coupling + ε exp. [29]
3 1.00021(3) Perturbative calc. [30]
3 1.000200(3) Strong-coupling [29]

Low-T phase 2 1.58188...
3 1.031(6) MC simulations [31]
3 1.032(4) Strong-coupling [29]

Critical isotherm 2 1.07868...
(t = 0, |H| 6= 0) 3 1.024(4) Strong-coupling + ε exp. [29]

Table 1: Values of the ξ/ξ2nd ratio for an Ising spin system in three different conditions: in the
high-temperature symmetric phase, in the low-temperature broken symmetry phase, and along
the critical isotherm. It is important to notice that in d = 3, there is a general agreement among
the results obtained with very different approaches ranging from Monte Carlo simulations to
strong-coupling expansions.

instance, of the 3d Ising model for T < Tc, for which an infinite tower of bound states exists [32]:
in particular, the lowest of such states takes the value mbound = 1.83(3)mph [31] and is, thus,
located below the two-particle threshold.

The d = 2, T = Tc, H 6= 0 case is of particular interest: thanks to the exact solution of
Zamolodchikov [33] we know that there are three particles in the spectrum below the two-particle
threshold, and accordingly, the difference ξ

ξ2nd
− 1 is about 3 times larger than in the d = 3,

T < Tc case, which, as we have seen, has only one state below threshold.
Finally, it is very instructive to look at the d = 2, low-T case, in which the Fourier transform

of the correlators starts with a cut. Following the analysis of McCoy and Wu [34] (and, more
recently, of Fonseca and Zamolodchikov [35]), we know that we may interpret the spectrum of
this model as the coalescence of an infinite number of states. Accordingly, a much larger value
of the ratio ξ/ξ2nd is found, with a difference from 1 which is 1 order of magnitude larger than
the value in the presence of an isolated bound state and 3 orders of magnitude larger than the
T > Tc case.

3 Numerical results for the (D = 3+1) SU(2) lattice gauge theory

We performed a numerical study of the ξ/ξ2nd ratio in the context of the SU(2) non-Abelian
gauge theory, which is regularized on a finite hypercubic lattice of spacing a and spacetime
volume V = a4Nt ×N3

s .
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The Yang-Mills action is discretized with the usual Wilson action [36]

SW = − 2

g2

∑
x

∑
0≤µ<ν≤3

TrUµν(x) (16)

where Uµν(x) is the plaquette associated to the site x and to the oriented plane in the (µ, ν)
directions, while g2 is the bare coupling; we also introduce the inverse coupling β = 4/g2.

The main observable of interest is the so-called Polyakov loop, defined as the trace of a Wilson
line winding around the lattice in the temporal (“0”) direction:

P (x, y, z) =
1

2
Tr

∏
0≤t<Nt

U0(x, y, z, t a) . (17)

Furthermore, following the definition used for the spin model of Eq. 7, we can define the zero-
momentum projection of the Polyakov loop by taking the average over two spatial dimensions

P̄ (z) =
1

NxNy

∑
x,y

P (x, y, z) (18)

and we can write down the zero-momentum correlator G(τ),

G(τ) = 〈P̄ (0)P̄ (τ)〉 − |〈P 〉|2 (19)

which we can identify with the definition given in Eq. (8).
The temperature T is defined by the inverse of the shortest compactified dimension (which

is usually identified as the temporal one) via the relation T = 1/aNt; the sizes of the “spatial”
directions are chosen to be much larger (Ns � Nt), and periodic boundary conditions are imposed
on all directions. In practice, in order to change the temperature, both the number of sites Nt

and the lattice spacing a can be varied. The lattice spacing in particular is controlled by the
inverse bare coupling β: for the details concerning the determination of the relation between a
and β, we refer to Ref. [37], in which the scale has been set using the square root of the string
tension σ. In order to express our results in terms of the critical temperature, we used the value
T/Tc = 0.7091(36) computed in Ref. [38]. The setup of the numerical simulations, including the
corresponding temperatures, is reported in Table 2.

The data for the zero-momentum correlator have been fitted with a functional form of the
type

G(τ) ∼ exp

(
−τ
ξ

)
+ exp

(
−L− τ

ξ

)
(20)

where ξ is the estimate of the exponential correlation length of the system as defined in Eq. (2),
and L is the size of the three-dimensional space (in our case, L = Ns). Numerical results for ξ in
units of the lattice spacing at different values of the temperature T are reported in Table 3. For
each of the fits at different values of β, the first two values of the distance τ have been excluded
in order to avoid lattice discretization artifacts.
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β N3
s ×Nt T/Tc nconf

2.27 323 × 6 0.59 4.5× 105

2.33 323 × 6 0.71 2.25× 105

2.3 323 × 5 0.78 5.5× 105

2.357 323 × 6 0.78 2.25× 105

2.25 643 × 4 0.84 3× 104

2.4 643 × 6 0.90 2× 104

Table 2: Setup of the lattice simulations performed for the SU(2) gauge theory in the confined
phase. In the first column we report the inverse coupling β and in the second the spatial and
temporal sizes, while the resulting temperature in units of Tc and the statistics for the measure-
ments of the zero-momentum Polyakov loop correlator are shown in the third and fourth columns,
respectively.

The results of the fit for ξ have been compared also with an effective definition of the corre-
lation length given by

ξeff (τ) =
1

log(G(τ + 1))− log(G(τ))
. (21)

The ξeff (τ) stabilizes to values which are in good agreement with the one extracted using Eq. (20).
For the simulations close to the deconfinement transition (those reported in line 5 and line 6

of Table 3), the spatial size L of the lattice was increased in order to accommodate for a larger
correlation length and to reduce the effect of the echo due to the periodic boundary conditions
imposed on the spatial directions.

Next, we computed µ2 and µ0: in order to do so, we followed a procedure similar to that used
in Ref. [39]. For µ2 we used an ansatz of the type

µ2 =

τmax∑
τ=1

τ2G(τ) +
∞∑

τ=τmax+1

τ2G(τmax) e−(τ−τmax)/ξ (22)

and similar for µ0. The contribution of the tail, i.e., of the second term of Eq. (22), depends on
the value assigned to the distance cutoff τmax: during our analysis. we kept τmax ∼ 3ξ, which
generally yielded stable results. Using Eq. (4) (with d = 3), we computed ξ2nd for different values
of the temperature T : the results are reported in Table 3.

The somewhat arbitrary choice of τmax introduces a systematic error in the computation of
µ0 and µ2: in the former case, such error is negligible since the contribution of the tail is very
small compared to the first term. On the contrary, µ2 has a substantial contribution coming from
large values of τ , especially for temperatures close to Tc; however, we checked that the results
obtained by changing τmax were all within statistical error with each other.

The data show a clear dependence on T/Tc and in particular a dramatic increase of ξ/ξ2nd

as the temperature decreases. In order to test if there are other dependences in our results, we
realized the T/Tc = 0.78 case with two different combinations of β and Nt. We found the same
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T/Tc Ns ξ/a ξ2nd/a ξ/ξ2nd

0.59 32 1.31(2) 0.887(8) 1.48(3)
0.71 32 2.31(4) 1.842(15) 1.25(2)
0.78 32 2.56(2) 2.22(1) 1.153(11)
0.78 32 3.08(4) 2.67(2) 1.151(16)
0.84 64 3.05(6) 2.74(4) 1.11(3)
0.90 64 6.9(2) 6.6(3) 1.04(6)

Table 3: Results for the exponential correlation length ξ (third column) and the second moment
correlation length ξ2nd (fourth column) in units of the lattice spacing, along with their ratio ξ

ξ2nd

(fifth column) in the confined phase: the temperature T = 1/(a(β)Nt) (first column) is varied
using the inverse coupling β and the temporal extent Nt.

 1

 1.2

 1.4

 1.6

 1.8

 0.5  0.6  0.7  0.8  0.9  1

ξ/
ξ 2

nd

T/Tc

Figure 1: The ξ/ξ2nd ratio for different values of the temperature T/Tc in the confining region.

value of ξ/ξ2nd even if the values of ξ and ξ2nd were quite different in the two cases: this result
makes us confident that scaling corrections are under control and that our results are tracing a
true physical behavior of the SU(2) model.
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3.1 Comparison with the 3d Ising model.

The simplest possible EPL model for the SU(2) lattice gauge theory discussed in the previous
section is the 3d Ising model, which corresponds to the case in which in Eq. (1) we truncate the
action to the nearest-neighbour term, choose only the fundamental representation, and approx-
imate the Polyakov loop with its sign. This is a very crude truncation, but in the SU(2) case,
in the vicinity of the deconfinement transition, it turns out to be a very good approximation. In
fact, the Svetitsky-Yaffe conjecture [40] tells us that if a (d+ 1) LGT with gauge group G has a
second order deconfinement transition and the d-dimensional spin model with a global symmetry
group being the center of G has a second order magnetization transition, then the two models
belong to the same universality class. This is exactly the case of the (D = 3 + 1) SU(2) LGT
and of the 3d Ising model. It is easy to see using symmetry arguments that the Polyakov loop
(order parameter of the deconfinement transition) is mapped by this identification into the spin
of the Ising model (which is, in fact, the order parameter of the magnetization transition) and
that the confining phase (the one which we studied in the previous section) is mapped into the
high-temperature symmetric phase of the Ising model. From the discussion of Sec. 2, we, thus,
expect the ξ/ξ2nd ratio to be very close to 1 when the SU(2) model is close to the deconfinement
transition, as this is the observed behavior in the high-T phase for the 3d Ising model (as reported
in Table 1). This is indeed the case for the highest value of T/Tc that we simulated. However,
we see from the data that the ratio increases dramatically as T/Tc decreases. This shows that as
T/Tc decreases, the Ising approximation becomes indeed too crude, and more sophisticated EPL
models are needed. We will see below that this increase in the ξ/ξ2nd is essentially due to the
combination of two nontrivial features of the gauge theory spectrum:

• first, the fact that as T/Tc decreases, the states of the spectrum coalesce toward the ground
state, exactly as it happens in the d = 2 Ising model below Tc;

• second, the fact that the overlap constants ci increase exponentially with the energy of the
states.

The nearest-neighbour Ising model cannot mimic these two features and, thus, must be discarded
as T/Tc decreases. It is interesting to notice as a side remark that our analysis offers a nice and
simple way to estimate the range of validity of the the Svetitsky-Yaffe conjecture which, within
our range of precision, holds for T/Tc > 0.9.

4 Effective string description of the interquark potential

A very useful tool to understand both the features of the spectrum mentioned above is the effective
string description of the Polyakov loop correlators [22,41], which indeed predicts, as a consequence
of the “string” nature of the color flux tube, a rich spectrum of excitations. In particular, it has
been recently realized that the Nambu-Gotō action [42, 43] is a very good approximation of this
effective string model [24, 44]. The Nambu-Gotō action is simple enough to be exactly solvable
so that the spectrum can be studied explicitly: for example, the large distance expansion of the
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Polyakov loop correlator in D spacetime dimensions is [24,45]

〈P (x)∗P (y)〉 =
∑∞

n=0wn
2rσNt
En

(
π
σ

) 1
2

(D−2)

×
(
En
2πr

) 1
2

(D−1)
K 1

2
(D−3)(Enr) (23)

where wn denotes the multiplicity of the state, Nt the size of the lattice in the compactified time
direction, and En the closed-string energies which are given by

En = σNt

{
1 +

8π

σN2
t

[
− 1

24
(D − 2) + n

]}1/2

. (24)

The weights wn can be easily obtained from the expansion in series of q of the infinite products
contained in the Dedekind functions which describe the large-r limit of Eq. (23) (see Ref. [45] for
a detailed derivation): ( ∞∏

r=1

1

1− qr

)D−2

=

∞∑
k=0

wkq
k. (25)

For D = 3, we have simply wk = pk, the number of partitions of the integer k, while for D > 3,
these weights can be straightforwardly obtained from combinations of the pk. It is important to
notice that these weights diverge exponentially as n increases; in particular, we have

wn ∼ exp

(
π

√
2(D − 2)n

3

)
. (26)

In the D = 3 + 1 case we are interested in, thanks to the identity

K 1
2
(z) =

√
π

2z
e−z

Eq. (23) becomes

〈P (x)∗P (y)〉 =

∞∑
n=0

Nt

2r
wne

−Enr (27)

which represents a collection of free particles of mass En.
In the framework of the Nambu-Gotō approximation, one can also derive an estimate of the

critical temperature Tc measured in units of the square root of the string tension
√
σ [46]

Tc√
σ

=

√
3

π(D − 2)
(28)

given by the value of the ratio Tc√
σ

for which the lowest mass E0 vanishes. We can, thus, rewrite

the energy levels as a function of T/Tc; setting D = 3 + 1, we find

En =
2πT 2

c

3T

{
1 + 12

T 2

T 2
c

[
n− 1

12

]}1/2

. (29)

10



This equation gives us a concrete realization of the two nontrivial features of the spectrum that
we mentioned above.

• First, the gap between the different states decreases as T/Tc decreases, and all the states
tend to accumulate toward the lowest state. This is clearly visible in Fig. 2, where we
plotted the differences (En − E0)/E0 as a function of T/Tc for the first ten states. The
horizontal line represents the two-particle threshold.

• Second, the amplitudes wn increase exponentially with n. We plot the first 50 terms of this
expansion in Fig. 3.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(E
n-

E
0)

/E
0

T/Tc

Effective string spectrum

Figure 2: The (En − E0)/E0 ratio as a function of T/Tc for the first nine states, from n = 1
(red solid line) to n = 9 (blue dashed-dotted line). The black horizontal line represents the
two-particle threshold.

The combination of these two effects drives the ξ/ξ2nd ratio to larger values as the temperature
decreases, as represented in Fig. 1. It is this behavior which EPL actions should be able to mimic,
and in our opinion, it represents a stringent test for existing proposals.

Notice, as a side remark, that it is exactly the accumulation of infinite massive excitations
toward the lowest state which drives the “Lüscher” 1/R term in the low-T regime of the theory.
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Figure 3: The state multiplicity wn defined in Eq. (23) as a function of the level n for the first
50 levels.

It is unlikely that such a term could be obtained by any mechanism other than an accumulation
of infinite poles, in a local 3d spin theory like the existing proposal for EPL actions. It is also
interesting to observe that the values that we measure of the ξ/ξ2nd ratio in the SU(2) lattice
gauge theory are significantly larger than the single state expectation even for temperatures in the
range 0.6 < T/Tc < 0.9, where (see Fig. 2) there are no masses below the two-particle threshold.
This large value is due to the exponential increase of the weights of the excited states with their
energy as shown in Eq. (26). This is a typical “stringlike” effect, and it is exactly this type of
signatures that the EPL model should be able to reproduce.

Unfortunately, it is not easy to obtain quantitative estimates of the ξ/ξ2nd ratio within the
effective string framework. The reason lies in the fact that this description holds only for distances
larger than a critical scale rc, which in the Nambu-Gotō case is fixed to be rc = 1/

√
2σ from the

exponential divergence of the weights wk, while it can be shown that a significant contribution
to the ratio comes exactly from the distances below rc. On the other side this makes the ξ/ξ2nd

ratio a perfect tool to explore the small distance completion of the effective string description of
the interquark potential: this is an issue that we plan to address in a future publication.
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5 Concluding remarks

In this work, we introduced a novel tool for the refinement and fine-tuning of effective Polyakov
line models in the form of the ratio between the exponential correlation length ξ and the second
moment correlation length ξ2nd. In Sec. 3 we performed a numerical analysis in the context of
the SU(2) lattice pure gauge theory, which showed how the original LGT at low temperatures
presents values of the ξ/ξ2nd ratio that are much larger than 1. This feature, which is easy to
study with lattice simulations, indicates that the theory possesses an extremely rich spectrum
which must be taken into account when using EPL models to probe this region of temperature. In
principle, one could certainly reproduce the correct spectrum of the theory by a careful matching
of the correlator of the original theory with that of the EPL model. However, this may be a
quite expensive strategy when the space of possible terms in the effective action is large (say, if
one must decide if higher representation terms should be taken into account or if large distance
couplings in the effective action must be truncated). In this respect, the ξ/ξ2nd ratio represents an
economic and easily computable tool to perform this preliminary selection. Moreover, in order to
understand the mechanisms underlying the behavior of the spectrum, we presented in Sec. 4 the
prediction of the effective string theory for the Polyakov loop correlator: this approach provides
a clearer picture of the features of the spectrum, in particular, in terms of the coalescence of the
states and the increase in their multiplicity.

It is interesting to notice that there is a natural implementation in effective Polyakov Loop ac-
tions of the infinite tower of excited states discussed in Sec. 4: these are the traces of the Polyakov
loop in representations higher than the fundamental one. These terms naturally appear in the
strong-coupling expansion: they are subleading and are, thus, usually considered as negligible,
but we expect that they should become more and more important as the temperature decreases.
Indeed, it was recently observed [13] that, as the temperature decreases, higher representation
terms in the effective action become more and more important, and their contribution is not
compensated by an increase in the distance of couplings in the fundamental representation. At
the same time, it is likely that EPL models with long-range interactions with a powerlike decrease
of the coupling constants (as those recently proposed in Refs. [5–8]) could be characterized by a
much richer spectrum than standard nearest-neighbour models, and they could represent another
strategy to obtain larger values of the ξ/ξ2nd ratio. We hope that the analysis we propose in this
paper could help to fine-tune various proposal for EPL actions and to ensure a correct description
of the original lattice gauge theory even at temperatures significantly lower than the critical one.
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