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Changes in the gut microbiota 
composition during pregnancy in 
patients with gestational diabetes 
mellitus (GDM)
Ilario Ferrocino 1, Valentina Ponzo2, Roberto Gambino2, Adriana Zarovska2, 
Filomena Leone3, Clara Monzeglio4, Ilaria Goitre2, Rosalba Rosato5, Angelo Romano6, 
Giorgio Grassi2, Fabio Broglio2, Maurizio Cassader2, Luca Cocolin  1 & Simona Bo2

Gestational diabetes mellitus (GDM), a common pregnancy complication, is associated with an 
increased risk of maternal/perinatal outcomes. We performed a prospective observational explorative 
study in 41 GDM patients to evaluate their microbiota changes during pregnancy and the associations 
between the gut microbiota and variations in nutrient intakes, anthropometric and laboratory 
variables. GDM patients routinely received nutritional recommendations according to guidelines. The 
fecal microbiota (by 16S amplicon-based sequencing), was assessed at enrolment (24–28 weeks) and 
at 38 weeks of gestational age. At the study end, the microbiota α-diversity significantly increased 
(P < 0.001), with increase of Firmicutes and reduction of Bacteroidetes and Actinobacteria. Patients 
who were adherent to the dietary recommendations showed a better metabolic and inflammatory 
pattern at the study-end and a significant decrease in Bacteroides. In multiple regression models, 
Faecalibacterium was significantly associated with fasting glucose; Collinsella (directly) and Blautia 
(inversely) with insulin, and with Homeostasis-Model Assessment Insulin-Resistance, while Sutterella 
with C-reactive protein levels. Consistent with this latter association, the predicted metagenomes 
showed a correlation between those taxa and inferred KEGG genes associated with lipopolysaccharide 
biosynthesis. A higher bacterial richness and strong correlations between pro-inflammatory taxa 
and metabolic/inflammatory variables were detected in GDM patients across pregnancy. Collectively 
these findings suggest that the development of strategies to modulate the gut microbiota might be a 
potentially useful tool to impact on maternal metabolic health.

Gestational diabetes mellitus (GDM), one of the most common pregnancy complications, is associated with a 
moderately increased risk of maternal and perinatal outcomes1,2. Lifestyle interventions were reported to provide 
benefits to the health of GDM women and their babies1. It has been hypothesized that at least some of these ben-
eficial effects might be due to the modulation of the maternal microbiota during pregnancy3–7. Indeed, variations 
in nutrient and energy intake were associated to specific bacterial abundance8–10. During the course of normal 
pregnancy, gut microbiota has been reported to remain relatively stable11 or to change dramatically, with an 
increase in Proteobacteria and Actinobacteria, a decline in butyrate-producing bacteria, a reduction in bacterial 
richness and within-subject (α) diversity, and higher between-subject (β) diversity at the end of pregnancy3. 
These modifications were supposed to favor the metabolic changes which support the healthy fetal growth, such 
as reduced insulin sensitivity and increased nutrient absorption3,7. Only few studies have evaluated the microbi-
ota of GDM patients, showing contrasting results: either no differences3, decreased placental abundance of the 
Pseudomonadales order and Acinetobacter genus11, or increased placental Proteobacteria and reduced placental 
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Bacteroidetes and Firmicutes12 have been reported in comparison with normoglycemic mothers. In addition, dys-
biosis among GDM patients was reported to be associated with a few genus belonging to Firmicutes, Bacteroides 
and Actinobacteria phyla of the gut microbiota and the observed main differences in comparison to healthy 
women are relative to the gene contents of the gut microbes13. Two studies performed in women with previous 
GDM showed a relatively higher stool abundance of the Prevotellaceae family and a reduced abundance of the 
Firmicutes phylum14, or no differences in the gut microbiota composition15 in comparison to normoglycemic 
post-partum controls. Furthermore, increased gut relative abundance of the Ruminococcaceae family was associ-
ated with higher odds of developing GDM16. Finally, the cross-sectional design did not allow to draw conclusions 
about the causal relationships of the associations found.

In consideration of these highly divergent results, mostly derived from cross-sectional studies, we aimed to 
perform a prospective observational study evaluating the dynamic changes of the microbiota occurring during 
pregnancies of GDM women. All patients, after the diagnosis of GDM, underwent an educational dietary inter-
vention, according to guidelines17, but the compliance with the provided recommendations is variable between 
women.

Therefore, the aims of our study were evaluating: i) whether the within-patient gut microbiota composition 
varied from the second to the third trimester of pregnancy; ii) whether patients with greater adherence to dietary 
recommendations presented a different microbial pattern than the less adherent ones; iii) whether changes in 
microbiota composition were associated with variations in nutrient intakes, anthropometric and laboratory var-
iables; iv) whether specific microbiota oligotypes were implicates in these associations.

Results
Characteristics of the participants. Nine women did not return stool samples and were lost at follow-up. 
Data of 41 patients were therefore analyzed. The clinical characteristics of the participants did not differ from 
those of the 9 women who dropped out (data not shown).

Seven women (17.1%) gave birth before the 38th week. These patients provided the fecal and blood samples 
and the food questionnaire about a week before all the others (37th week); they did not differ with regard to nutri-
tional, anthropometric, or metabolic characteristics when compared to the others.

Most participants were overweight women, with excessive fat intake and lower than recommended fiber con-
sumption. From enrolment (24–28 weeks of gestational age) to the study end (38 weeks), weight and Body Mass 
Index (BMI) increased, and metabolic and inflammatory patterns of participants worsened, as usually occurs 
during the third trimester of pregnancy (Table 1).

Adherence to the dietary recommendations. After the dietary counselling, 34.1% (14/41) of the par-
ticipants declared to be adherent to the given dietary recommendations. Characteristics at enrolment did not 
significantly differ between adherents and non-adherents, even if adherents showed increased values of weight 
and BMI (Table 2). Adherent women showed reduced intakes of sugars, and increased consumption of fiber, oli-
gosaccharides, polyunsaturated fatty acids (PUFA) than non-adherents (Table 2). All participants had abolished 
alcohol consumption. Adherents had a better metabolic and inflammatory pattern, with a significantly greater 
reduction in fasting glucose and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) levels at the 
end of the study.

Microbiota composition at enrolment and at the study end. The microbiota α-diversity values were 
significantly different between subjects at enrolment when compared to subjects at the end of the study (P < 0.001). 
In details, species richness, number of different species and the Shannon index were significantly higher at the 
end of the study (P < 0.001) (Fig. 1). The analysis of microbial taxa abundance at phylum level showed an increase 
of Firmicutes at the study end, and a reduction of Actinobacteria and Bacteroidetes (Fig. 2). Going more deeply 
in the microbial composition, the level of diversity of the subjects based on the structure of their microbiota was 
clearly different across time (Supplementary Fig. S1). Moreover, Principal Component Analysis (PCA) based 
on microbiota composition (Fig. 3) revealed a significant relationship between genus-level microbiota compo-
sition and sampling time confirmed by ADONIS and ANOSIM statistical test (P < 0.001). Boxplot at genus level 
(Fig. 4) showed a significant reduction in the abundance of Bacteroides, Collinsella and Rikenellaceae, and a sig-
nificant increase of Blautia, Butyricicoccus, Clostridium, Coprococcus, Dorea, Faecalibacterium, L−Ruminococcus 
(Ruminococcus genus assigned to Lachnospiraceae family), and Lachnospiraceae at the study end when compared 
to enrolment (Fig. 4).

Microbiota signature between dietary adherences. The microbiota α- and β-diversity values were 
not significantly different between adherent and non-adherent subjects (data not shown). Similarly, there was 
no significant separation of the microbiota composition. We performed a number of analyses investigating the 
shift in microbiota as a function of the adherence to diet. Taking into account the shift in the microbiota between 
enrolment and study end in adherents and non-adherents (Fig. 4) a common microbiota signature was observed. 
Blautia, Coprococcus, Dorea and Lachnospiraceae significantly increased in both groups during the progres-
sion of pregnancy while Rikenellaceae decreased. We observed that the delta (study-end minus baseline) values 
of those OTUs was significantly higher in adherent patients. Between the two groups, we detected a specific 
microbiota shift at the study end: an impressive decrease in Bacteroides in adherents, and higher abundance of 
Faecalibacterium and L-Ruminococcus together with minor OTUs in non-adherents (Fig. 4).

Associations between microbiota and nutrient intakes and metabolic variables. Several dif-
ferent associations between nutrients/metabolic variables and microbiota could be detected both at enrolment 
(Supplementary Fig. S2A) and at the study end (Supplementary Fig. S2A).
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At enrolment, Alistipes was found positively related with fat intakes (β = 0.10; 95% CI 0.06 0.14; P < 0.001) in 
a regression model, after adjusting for age and weight values. Furthermore, glycated hemoglobin (HbA1c) levels 
correlated with both Bacteroidales (β = 1.43; 95% CI 0.67 2.19; P < 0.001) and Prevotella (β = 0.11; 95% CI 0.06 
0.16; P < 0.001).

At the end of the study, many associations among specific microbiota relative abundance and nutrient intakes, 
metabolic and inflammatory variables and their changes across pregnancy were detected in multiple regression 
analyses, after adjusting for age, weight change, and adherence to the given recommendations (Table 3). Among 
the relationships, we underline the direct associations between Roseburia and fiber intake (β = 0.09; 95% CI 0.02 
0.16; P = 0.01), and that between L-Ruminococcus and oligosaccharides (β = 0.02; 95% CI 0.01 0.03; P = 0.006), 
that however did not reach the established statistical cut-offs. Furthermore, Faecalibacterium resulted inversely 
correlated with fasting glucose; Collinsella and Blautia were respectively directly and inversely associated with 

At enrolment Study end P*
Number 41 41

Age 37.1 ± 4.2

Pre-pregnancy weight (kg) 69.3 ± 14.6

Pre-pregnancy BMI (kg/m2) 25.8 ± 5.9

Nulliparous (%) 58.5

Education (%)

Primary school 17.1

Secondary school 41.5

University degree 41.5

Anthropometric and Blood measurements

METS (h/week) 27.0 (36.4) 27.0 (26.5) 0.74**

Weight (kg) 75.8 ± 12.9 79.0 ± 13.3 <0.001

BMI (kg/m2) 28.2 ± 5.3 29.4 ± 5.4 <0.001

Systolic BP (mmHg) 110.8 ± 11.7 116.1 ± 11.6 0.02

Diastolic BP (mmHg) 72.9 ± 7.5 75.8 ± 9.1 0.07

Fasting glucose (mg/dL) 97.9 ± 19.2 96.6 ± 19.1 0.57

HbA1c (%) 4.6 ± 0.8 4.9 ± 0.8 0.06

Fasting insulin (µU/mL) 10.1 (8.4) 11.6 (10.0) 0.02**

HOMA-IR (mmol/L*µU/mL) 2.3 (1.9) 2.8 (2.7) 0.15**

Total cholesterol (mg/dL) 234.1 ± 32.4 257.0 ± 48.6 <0.001

HDL-cholesterol (mg/dL) 65.8 ± 13.4 67.0 ± 15.6 0.54

Triglycerides (mg/dL) 173.3 ± 53.0 259.2 ± 70.5 <0.001

CRP (mg/L) 4.1 (4.2) 4.5 (7.5) 0.007**

Dietary intakes

Energy (kcal) 1605.8 ± 254.4 1766.1 ± 306.7 0.009

Carbohydrates (% total kcal) 44.4 ± 6.6 43.1 ± 6.4 0.27

Sugars (% total kcal) 8.8 ± 4.7 6.2 ± 4.5 0.008

Sugars (g/day) 35.3 ± 20.1 27.9 ± 21.3 0.08

Oligosaccharides (g/day) 36.7 ± 19.7 54.2 ± 23.2 <0.001

Starch (g/day) 107.3 ± 28.9 109.7 ± 38.7 0.73

Fiber (g/day) 14.5 ± 4.2 15.1 ± 5.3 0.48

Proteins (% total kcal) 15.6 ± 2.3 16.6 ± 5.3 0.22

Total fats (% total kcal) 42.2 ± 5.2 42.3 ± 6.3 0.89

SFA (% total kcal) 11.3 ± 2.2 11.1 ± 2.7 0.65

PUFA (%kcal) 4.9 ± 1.7 4.4 ± 1.1 0.09

Pregnancy outcomes

Insulin treatment (%) 9.8

Cesarean section (%) 24.4

Gestational age at delivery (weeks) 39.2 ± 1.2

LGA newborns (%) 9.8

Male newborns (%) 53.7

Table 1. Characteristics of the participants at enrolment and at the study end. BMI = body mass 
index, METS = metabolic equivalent of activity, BP = blood pressure, HbA1c = glycated hemoglobin, 
HOMA-IR = Homeostasis Model Assessment-Insulin Resistance, HDL = high density lipoprotein, LDL = low-
density lipoprotein, CRP = C-reactive protein, SFA = saturated fatty acids, PUFA = polyunsaturated fatty acids, 
LGA = large-for-gestational age. Values are expressed as mean ± standard deviation or median (interquartile 
range) *Paired-sample t-test, **Wilcoxon matched pairs test.
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insulin and HOMA-IR values; Blautia was inversely correlated with HbA1c levels while Sutterella directly with 
CRP values (Table 3). Results did not change significantly, after adjusting for pre-pregnancy BMI, educational 
level and exercise (data not shown).

Gut microbiota signature at sub-genus level. In order to explore the possible effects at sub-genus level, 
we carried out oligotyping on sequences of Blautia and Roseburia since these were the only genera changing over 
time that showed a Shannon entropy index sufficient to identify all nucleotide positions that would resolve the 

Baseline Study End Delta

Adherent Not adherent P Adherent Not adherent P Adherent
Not 
adherent P*

Number 14 27 14 27 14 27

Age 35.5 ± 3.8 38.0 ± 4.3 0.08

Pre-pregnancy weight (kg) 73.1 ± 18.0 67.4 ± 12.5 0.24

Pre-pregnancy BMI (kg/m2) 28.0 ± 8.0 24.7 ± 4.3 0.09

Nulliparous (%) 64.3 55.6 0.27

Education (%)

Secondary school 42.9 40.7

University degree 42.9 40.7 0.94

METS (h/week) 32.3 (37.0) 24.5 (38.0) 0.39* 27.9 (31.5) 23.3 (32.3) 0.08* 0.0 0.0 0.17

Weight (kg) 78.6 ± 16.7 74.3 ± 10.4 0.31 80.9 ± 17.0 77.9 ± 11.2 0.50  + 2.0  + 3.0 0.10

BMI (kg/m2) 30.1 ± 7.4 27.2 ± 3.6 0.10 30.9 ± 7.4 28.6 ± 3.8 0.18  + 0.7  + 1.2 0.10

Systolic BP (mmHg) 111.7 ± 12.8 110.3 ± 11.4 0.73 117.1 ± 12.2 115.6 ± 11.5 0.70  + 7.0  + 4.0 0.61

Diastolic BP (mmHg) 71.8 ± 9.0 73.5 ± 6.6 0.49 77.9 ± 10.2 74.7 ± 8.5 0.29  + 7.0 0.0 0.21

Fasting glucose (mg/dL) 99.8 ± 29.3 96.9 ± 11.4 0.65 88.9 ± 25.3 100.6 ± 13.8 0.06 −6.0  + 1.0 <0.001

Post-prandial glucose (mg/dL) 106.3 ± 8.3 118.1 ± 12.9 0.004

HbA1c (%) 4.8 ± 0.9 4.6 ± 0.8 0.42 4.8 ± 0.8 5.0 ± 0.8 0.40  + 0.1  + 0.5 0.19

Fasting insulin (µU/mL) 11.3 (11.3) 9.0 (6.1) 0.83* 11.4 (10.8) 11.6 (12.4) 0.66* −0.20  + 2.0 0.003

HOMA-IR (mmol/L*µU/mL) 2.7 (2.8) 2.1 (1.3) 0.19* 2.4 (3.0) 3.1 (2.5) 0.38* −0.45  + 0.47 <0.001

Total cholesterol (mg/dL) 227.1 ± 33.1 237.8 ± 32.1 0.32 246.3 ± 41.5 262.6 ± 51.7 0.32  + 20.0  + 27.0 0.82

HDL-cholesterol (mg/dL) 68.0 ± 11.5 64.6 ± 14.4 0.45 68.9 ± 12.4 66.0 ± 17.1 0.58  + 1.0  + 1.0 0.73

Triglycerides (mg/dL) 159.1 ± 57.4 180.6 ± 50.1 0.22 246.5 ± 81.7 265.9 ± 64.5 0.41  + 76.5  + 91.0 0.65

CRP (mg/L) 3.2 (5.2) 4.3 (4.4) 0.76* 3.2 (3.1) 8.4 (8.3) 0.008* −0.02  + 2.5 0.003

Dietary intakes

Energy (kcal) 1659.2 ± 309.6 1578.1 ± 222.0 0.34 1828.6 ± 200.7 1733.6 ± 348.5 0.35  + 161.5  + 88.0 0.44

Carbohydrates (% total kcal) 44.2 ± 5.0 44.5 ± 7.3 0.90 43.0 ± 5.1 43.2 ± 7.1 0.92 −2.0 −2.0 0.74

Sugars (% total kcal) 9.7 ± 3.7 8.3 ± 5.1 0.36 3.9 ± 2.2 7.5 ± 5.0 0.015 −6.9 −1.5 0.005

Sugars (g/day) 40.7 ± 18.4 32.5 ± 20.8 0.22 17.5 ± 9.7 33.4 ± 23.7 0.02 −20.2 −7.6 0.004

Oligosaccharides (g/day) 39.7 ± 19.8 35.2 ± 19.9 0.50 66.7 ± 22.6 47.8 ± 21.1 0.01  + 14.7  + 13.8 0.41

Starch (g/day) 104.3 ± 24.3 108.8 ± 31.3 0.64 112.9 ± 44.9 108.1 ± 35.9 0.71  + 23.1 −13.8 0.33

Fiber (g/day) 15.2 ± 5.4 14.2 ± 3.5 0.43 20.5 ± 2.1 12.4 ± 4.2 <0.001  + 5.8 −0.94 <0.001

Proteins (% total kcal) 15.9 ± 1.6 15.4 ± 2.6 0.48 19.4 ± 6.4 15.2 ± 4.1 0.016  + 1.9 −0.1 0.26

Total fats (% total kcal) 41.7 ± 4.2 42.4 ± 5.7 0.67 39.7 ± 5.4 43.7 ± 6.4 0.06 −1.4  + 1.1 0.39

SFA (% total kcal) 11.6 ± 2.4 11.2 ± 2.2 0.60 9.7 ± 1.6 11.8 ± 2.9 0.017 −3.0  + 0.6 0.03

PUFA (%kcal) 5.2 ± 2.6 4.7 ± 1.1 0.32 5.0 ± 1.1 4.0 ± 0.9 0.003  + 0.1 −0.5 0.07

Pregnancy outcomes

Insulin treatment (%) 7.1 11.1 0.68**

Cesarean section (%) 21.4 25.9 0.75**

Gestational age at delivery (weeks) 39.2 ± 1.3 39.2 ± 1.2 0.91

LGA newborns (%) 7.1 11.1 0.68**

Male newborns (%) 50.0 55.6 0.74**

Table 2. Characteristics of the participants by adherence to the lifestyle recommendations and median changes 
from enrolment (deltas). BMI = body mass index, METS = metabolic equivalent of activity, BP = blood 
pressure, HbA1c = glycated hemoglobin, HOMA-IR = Homeostasis Model Assessment-Insulin Resistance, 
HDL = high density lipoprotein, LDL = low-density lipoprotein, CRP = C-reactive protein, SFA = saturated 
fatty acids, PUFA = polyunsaturated fatty acids, LGA = large-for-gestational age. Values are expressed as 
mean ± standard deviation or median (interquartile range); deltas = median values of the following difference: 
(end-of the study values minus baseline values). P-values were calculated by t-student test or chi-square test;  
*P-values by Mann-Whitney test; **P-values by Chi-square test.
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Figure 1. Boxplots to describe α-diversity measures of fecal microbiota of GDM patients at enrolment 
(green bars) and study end (blue bars). Individual points and brackets represent the richness estimate and the 
theoretical standard error range, respectively.

Figure 2. Boxplots showing the relative abundance of Actinobacteria, Bacteroidetes, Proteobacteria and 
Firmicutes phyla in fecal samples of GDM patients at enrolment (green bars) and study end (blue bars). Boxes 
represent the interquartile range (IQR) between the first and third quartiles, and the line inside represents the 
median (2nd quartile). Whiskers denote the lowest and the highest values within 1.56 IQR from the first and 
third quartiles, respectively. Circles represent outliers beyond the whiskers.
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oligotypes. Specific Blautia oligotypes (identified as Blautia wexlerae by BLASTn match): B1, B2, B4, B9, B11, 
B18, B27, B32, B36 B42, B49, B51 and B53, identified as Blautia luti were more abundant at the study end, while 
B41 and B59 decreased with the progress of pregnancy (Supplementary Fig. S3). When plotting the correlation 
between those oligotypes and dietary intake and blood variables (Supplementary Fig. S4), different correlations 
were found. In a multiple regression model, B42 was associated directly with total cholesterol (β = 16.6; 95% CI 
7.10 26.1; P = 0.002), and B42 inversely with diastolic blood pressure (β = −3.06; 95% CI −4.75 −1.37; P = 0.001).

Roseburia oligotypes R10, R24, R50, and R70 increased at the study end when compared to enrolment (data 
not shown). Among the different correlations found by Spearman’s nonparametric correlations, none resulted 
significantly different in the regression model.

Shift in predicted metagenomes. The pathway enrichment analysis of the predicted metagenomes 
showed an enrichment of KEGG orthologues, at study end when compared with baseline, of glycolysis/glucone-
ogenesis (ko00010), fructose and mannose metabolism (ko00051), galactose metabolism (ko00052), starch and 
sucrose metabolism (ko005009), biosynthesis of amino acids (ko01230), and a reduction of fatty acid metabo-
lism (ko01212), biotin metabolism (ko00780) and folate biosynthesis (ko00790). When plotting the correlations 
between OTUs and inferred metabolic pathways, we observed a positive correlation between Lipopolysaccaride 
(LPS) biosynthesis (ko00540) with Sutterella, Bacteroides and Phascolartobacterium (Supplementary Fig. S5).

Discussion
Our results showed a shift in the microbiota composition from the second to the third trimester of pregnancy, 
with higher α-diversity, Firmicutes increment, and Bacteroidetes and Actinobacteria reduction. Furthermore, 
associations between specific bacterial abundance and dietary and laboratory variables were detected.

The reduced insulin sensitivity of late pregnancy is considered beneficial to support fetal growth and increased 
nutrient absorption, even if it is associated with metabolic impairment and inflammation3. Women who devel-
oped GDM have greater reduction in insulin sensitivity and their insulin secretion is not sufficient to maintain 
euglycemia, leading to glucose intolerance17. This is counterintuitive owing to the progressive weight gain and 
increase in circulating levels of insulin, lipids, and inflammatory markers in the patients and the well-known asso-
ciation of low bacterial richness and adiposity, insulin resistance, dyslipidemia, and inflammatory phenotypes18. 
Going more deeply in the microbiota composition of our patients, we observed that the higher bacterial richness 
was related to Firmicutes. In a Finnish study, it has been reported that glycated hemoglobin values were positively 
associated with microbiota richness19 and mice transplanted with feces from obese and lean individuals showed a 
positive correlation of OTUs richness with both fasting insulin and HOMA-IR level20. The increase in Firmicutes 
abundance (and the reduction in Bacteroidetes) can be justified by the patients’ gestational weight gain, already 
overweight before pregnancy, not dissimilarly to what happens in obese patients21,22. Accordingly, the inferred 
metagenomic showed an increase in pathways involved in carbohydrate metabolism (in details, glycolysis/glu-
coneogenesis, fructose and mannose metabolism, galactose metabolism, and starch and sucrose metabolism) 
with the release of simply sugars due to the higher abundance of Firmicutes that harvested more energy from the 
diet23. It can be hypothesized that those enriched function could be related with the progressive weight gain and 
could be a feature in hyperglycemic phenomena.

Literature data are controversial: in normoglycemic pregnancy, weight gain was reported to be associated with 
Escherichia coli24 or Bacteroides abundance25 and both an increment in Proteobacteria and Actinobacteria and a 
decline in butyrate-producing bacteria (such as Faecalibacterium) were found3.

A higher Bacteroides-to-Firmicutes ratio has been found to correlate with elevated plasma glucose levels26. 
In our patients, however, the most relevant change was the weight gain at the end of pregnancy (Table 1). We 

Figure 3. Principal Component Analysis (PCA) based on OTUs relative abundance of GDM patients at 
enrolment (green) and study end (blue). The first component (horizontal) accounts for the 22.9% of the variance 
and the second component (vertical) accounts for the 23.5%.
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detected a reduction in Bacteroidetes across pregnancy, but we found significant direct associations between 
Bacteroidales and Prevotella and HbA1c levels at enrolment.

Indeed, studies are difficult to compare due to the different ethnicity and food habits of the analyzed cohorts27 
leading to inter-individual variations in the gut microbiota composition and the various methods used to analyze 
the microbiota, both causing results sometimes contradictory.

Further aspects of previous studies make the comparison with our results difficult, such as the fact that both 
normoglycemic and GDM women were combined together3,7, participants taking probiotics or antibiotics were 
not excluded3, dietary intakes did not change during pregnancy3, early pregnancy only was evaluated3,7,28.

Overall, our patients consumed a low-fiber and high-fat diet, an unhealthy dietary pattern which has been 
associated with GDM1. Most of them (about 2/3) did not change substantially their dietary habits after having 
received nutritional recommendations and showed a worse metabolic and inflammatory pattern than the adher-
ent women. Overall, patients increased their intake of oligosaccharides; consistent with this, we observed with the 
pregnancy progression an enrichment in inferred metabolic pathways related with polysaccharide degradation, 
which in turn could be linked to the increased insulin resistance.

We found few associations between nutrient intake and microbial abundance. Fat intake was associated with 
Alistipes among Bacteroidetes, while Roseburia and L-Ruminococcus among the Firmicutes appeared related, 
though not significantly, with nutrients related to vegetable foods (oligosaccharides and fiber). This observation 
is in agreement with DNA-based studies evaluating the fecal microbiota during pregnancy in healthy overweight 
Finnish women at early pregnancy stage (17 week)29 as well as in normal-weight Norwegian women during the 
second trimester of pregnancy30. On the opposite, we observed a positive association between protein intake and 
Faecalibacterium which is in disagreement with previous studies29,30.

Research about gut microbiota composition and dietary intakes during pregnancy showed controversial 
results. Either no relationships between bacterial groups and dietary intakes3,31 or association between dietary 
fat and vitamin D with Proteobacteria increase29 and higher gut microbiota richness and lower abundance of 
Bacteroidaceae with increased dietary fiber intake have been reported31. Those findings confirm the great heter-
ogeneity of results on this topic and highlight difficulties in the comparison of results from the studies, probably 
due to the different dietary habits, microbiota remodeling during pregnancy owing to hormonal changes and the 
additional insulin resistance determined by the presence of GDM.

Figure 4. Boxplots showing the relative abundance at genus or family level of the OTUs differentially abundant 
based on Wilcoxon matched pairs test (P ≤ 0.002) in fecal samples between: GDM patients at enrolment (green 
bars) and at the study end (blue bars); adherents to the dietary recommendations at enrolment (yellow bars) and 
at the study end (red bars); non-adherents to the dietary recommendations at enrolment (cyan bars) and at the 
study end (orange bars).
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Short-term changes in dietary pattern have been demonstrated to modulate quickly the microbiota composi-
tion. Rapid, but transient changes occur following dietary variations8,10, although longer and persistent modifica-
tions are needed to shape the human gut microbiota. In addition, the effects of diet on gut microbiota, rather than 
being direct, are hypothesized to be the consequence of the weight change and the subsequent variation in white 
adipose tissue inflammation and insulin resistance26.

In this study, we have assessed whether the modification of the dietary habits by dietary counselling during 
pregnancy can affect the gut microbiota composition. Even if arbitrary, the subdivision by dietary adherence 
distinguished women with greater increments of fasting glucose, insulin resistance and CRP values. During nor-
mal pregnancy a low grade of inflammation develops and GDM is a pro-inflammatory state32. Accordingly, we 
observed higher values of CRP at the pregnancy end. An imbalance of pro- and anti-inflammatory bacterial 
species have been proposed to trigger low-grade inflammation and insulin resistance in humans18. In particular 
Faecalibacterium, an anti-inflammatory commensal bacteria, significantly increased with pregnancy progression, 
but also increased in non-adherents, and is consistently reported to be more prevalent in individuals with higher 
bacterial richness18. It could be hypothesized that this increase could be a compensatory mechanism to counter-
balance the pro-inflammatory state, potentially harmful for the fetus.

Indeed, we found a strong inverse relationship between Faecalibacterium abundance and fasting glu-
cose values, supporting the well-known association between inflammation and dysmetabolism. Accordingly, 
Faecalibacterium prausnitzii resulted highly discriminant for the diagnosis of type 2 diabetes in metagenomic 
analyses33,34. Furthermore, these butyrate-producer bacteria have been found inversely linked to diabetes in 
human studies on fecal microbiota35–38.

In our patients, we observed a negative associations between diastolic blood pressure and Rikenellaceae and 
Oscillospira. Rikenellaceae is a butyrate producers, while Oscillospira is considered an enigmatic bacterial genus 
that has never been cultured, probably producing butyrate. Few available data support a beneficial role on human 
health39. Other studies found a protective role of Odoribacter (Bacteroidetes) on blood pressure in pregnant over-
weight women, and its capability to produce butyrate was mainly implicated in the maintenance of normal blood 
pressure40.

The strong direct associations that we found between the genus Collinsella and insulin/HOMA-IR values were 
in line with studies during pregnancy7,41 or not37 showing higher abundance of the lactate-producing Collinsella 
in type 2 diabetes mellitus. These bacteria can affect the metabolism by decreasing liver glycogenesis and playing 
pro-inflammatory effects41.

Rho Beta 95% CI P

Dietary intakes*
Proteins (% total kcal)

Faecalibacterium 0.32 0.08 0.04 0.12 <0.001

Metabolic variables**
Diastolic BP (mmHg)

 Oscillospira −0.44 −2.01 −3.11 −0.91 <0.001

 Rikenecellaceae −0.51 −2.74 −3.97 −1.51 <0.001

Delta fasting glucose (mg/dL)

Faecalibacterium −0.54 −1.28 −1.71 −0.85 <0.001

Delta glycated hemoglobin (%)

Blautia −0.51 −0.06 −0.10 −0.03 0.001

Delta fasting insulin (µU/mL)

Blautia −0.35 −0.42 −0.67 −0.17 0.001

Butyricimonas 0.41 36.1 14.7 57.5 0.002

Collinsella 0.45 8.69 6.00 11.4 <0.001

Coprobacillus 0.39 6.52 3.29 9.75 <0.001

Delta HOMA-IR (mmol/L*µU/mL)

Blautia −0.36 −0.11 −0.17 −0.05 0.002

Butyricimonas 0.51 11.2 6.50 15.9 <0.001

Collinsella 0.45 2.37 1.80 2.94 <0.001

Erysipelotrichia 0.37 1.87 1.09 2.65 <0.001

Delta CRP (mg/L)

Sutterella 0.62 7.57 5.02 10.1 <0.001

Table 3. Statistically significant associations between microbiota composition at the study end and dietary 
and metabolic variable by Spearman’s correlations (left) and multiple regression analyses (right). BP = blood 
pressure. *Multiple regression model evaluating the association between log-transformed bacteria relative 
amount (dependent variable) and the specific nutrient (independent variable), after adjusting for age, weight 
change **Multiple regression model evaluating the association between BP and laboratory variables (dependent 
variables) and bacteria (independent variables) after adjusting for age, weight change, and adherence to the 
given recommendations. Each row is a model.
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Insulin resistance was associated positively with Erysipelotrichia and negatively with Blautia in our patients. 
Very few human data are available on Erysipelotrichia, suggesting a relationship with inflammatory diseases for 
this class, which seems in a close relationship with the class of Mollicutes, which is in turn associated with many 
pathological human conditions like endotoxemia, obesity and insulin resistance26,42.

In our overweight GDM patients, the butyric acid-producing genus Butyricimonas was directly associated 
with insulin resistance. The possible role of this taxa in human diseases awaits further investigation, even if a 
positive association with mean arterial pressure has been detected43.

Changes in CRP values during the third trimester of pregnancy resulted directly associated with Sutterella. 
Even if we did not detect an overall increase in Proteobacteria during pregnancy, as other authors observed3, we 
found that Sutterella, a proteobacteria with known pro-inflammatory capacity, was associated with CRP incre-
ment across pregnancy. Consistent with this, the predicted metagenomes showed a correlation between Sutterella 
and KEGG genes associated with LPS biosynthesis. Gram-negative bacteria could produce inflammatory LPS 
triggering a pro-inflammatory state, a condition characterizing both type 2 diabetes and obesity44.

We also observed a correlation between LPS inferred KEGG genes and Bacteroides. In diabetic patients, LPS 
from a specie belonging to Bacteroides (B. fragilis) was reported to play a major pathogenic role45. Bacteroides is 
often associated with high fat-animal based diet9. Consistently, we found a Bacteroides reduction in adherents 
only, whose total and saturated fat intake, and CRP values decreased across pregnancy (Table 2). In addition, the 
metagenomic content of GDM patient was reported to be enriched of genes involved in LPS biosynthesis and in 
the regulation of blood glucose levels13.

At genus level, strong inverse relationships between Blautia and Hba1c and insulin resistance were observed. 
At sub-genus level, we observed a higher number of oligotypes belonging to the same species, even if only a few 
of them changed during the progression of the pregnancy, and controversial associations between Blautia and 
blood pressure and cholesterol values. A controversial role of Blautia in the human gut is reported. Several studies 
showed a direct association between Blautia and hyperglycemia46,47 but other studies reported that abundance 
of this taxon indicates a healthy gut, reduced inflammation and blood pressure values, diminished risk for type 1 
diabetes and obesity, and increased survival48,49. Our results suggest a possible different strain-dependent effect 
on metabolism. The diversity at sub-genus-level is indeed well known to play a key role in establishing the inter-
connection between gut microbiome and host responses50. As recently observed by De Filippis and colleagues51, 
different oligotypes belonging to the same species showed different relative abundance and different correla-
tion patterns with metabolomic data. Those authors suggested that different putative strains could have different 
impact on the host51.

The knowledge of the gut bacterial composition might allow the identification of subsets of women with dif-
ferent metabolic risks, owing to its role in the gestational pro-inflammatory status potentially contributing to the 
increased insulin resistance of pregnancy. This is a topic of great interest, also in consideration of the benefits of 
probiotic supplementation in the reduction of inflammation in women with GDM52, a condition well-known for 
exposing to an increased risk for chronic health conditions not only the mother but also her child.

One limitation of this study is the small sample size; nevertheless, the power of our study to detect differences 
in alpha diversity was 0.84 with α = 0.01. The fecal samples were used as proxies for the microbial content of 
the entire gastrointestinal tract; it is reasonable to consider that mouth and skin microbiota could vary too. The 
limitations of the food questionnaires must be recognized, even if these were widely used. Most of our patients 
had a very low fiber intake and consumed a high-fat diet; indeed, the dietary intakes of our patients resem-
bled those of other pregnant women31,53, and this finding is in line with the well-known associations between 
GDM and unhealthy diet1. The lack of substantial difference in dietary intakes between enrolment and study end 
should be recognized as a limitation; we cannot exclude that a better adherence to the dietary recommendations 
could have resulted in greater differences between adherents and non-adherents. Nonetheless, it is noteworthy 
that already small dietary changes have been able to lead to statistical and clinical significant difference between 
groups, suggesting the importance of a healthy diet in these patients. Owing to the observational design of this 
study, the presence of unmeasured confounding factors cannot be excluded. Microbiota assessment through 
amplicon-based sequencing has several biases due to the PCR amplification step, while shotgun metagenomic 
sequencing identified significantly more bacterial species per read than the 16S method54. Correlations were per-
formed by considering individual groups of bacteria independently from each other, therefore it was not possible 
to establish neither the causality nor the biological relevance of the reported relationships. Finally, the predictive 
metagenomic profiling was obtained from the bacterial abundance and was therefore a derived result.

In our overweight GDM patients, a shift in the microbiota composition with higher α-diversity, and numer-
ous associations between the metabolic/inflammatory pattern and specific bacterial abundance were detected. If 
confirmed by further studies in larger sample, these results suggest that the development of strategies to modulate 
the gut microbiota might be the next step in order to impact on maternal and possibly fetal health and their future 
risk for metabolic diseases.

Methods
Patients recruitment. The participants were 50 patients with GDM consecutively recruited from the “Città 
della Salute e della Scienza” Hospital of Turin from April 2016. Each participant gave her written informed con-
sent to participate in the study. The study protocol was approved by the Ethics Committee of the “Città della 
Salute e della Scienza” Hospital of Turin (approval 707/2016). All research was performed in accordance with 
relevant guidelines/regulations.

Inclusion criteria were: gestational age between 24–28 weeks, Caucasian race, GDM diagnosed by a 75 g oral 
glucose tolerance test (OGTT). Women who had the following criteria were excluded from the study: twin preg-
nancy, use of prebiotics/probiotics, antibiotics or any drug during pregnancy, any pathological conditions before 
or during pregnancy (known diabetes mellitus, hypertension, cardiovascular, pulmonary, autoimmune, joint, 
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liver or kidney diseases, thyroid dysfunction, cancer, any other disease/condition), no compliance to the study 
protocol. All women were taking folic acid supplementation.

GDM was diagnosed by OGTT performed at 24–28 gestational weeks in the morning, after at least 
8h-overnight fast, when the fasting plasma glucose was ≥92 mg/dL and/or 1 h post-OGTT glycemia ≥180 mg/dL 
and/or 2 h post-OGTT glycemia ≥153 mg/dL, according to international criteria17. In our cohort, all the patients 
with GDM routinely received dietary counselling and nutritional recommendations in line with guidelines (car-
bohydrates 45% total energy, rapidly absorbed sugars <10% total energy, proteins 18–20% total energy, fats 35% 
total energy, at least 20–25 g/day fibre intake, no alcohol)17. Furthermore, 30-min daily moderate exercise was 
recommended (i.e. brisk walking). Patients were instructed to self-monitor finger-prick capillary blood glucose 
at least 4 times per day. Insulin treatment was prescribed by the physicians in the presence of hyperglycemia, in 
accordance with guidelines55.

Sample collection, anthropometric measurements and dietary information. Questionnaires, 
anthropometric values, fasting blood samples and stool samples were collected for all participants both at 24–28 
weeks of gestational age at the time of GDM diagnosis (enrolment), and at 38 weeks, or before delivery, in the case 
of preterm delivery (study end). The researchers were in continuous contact with the patients, through weekly 
telephone contact. In this way, they were aware of the progress of pregnancy.

Stool samples were self-collected by the patients as previously described27. Briefly, the subjects were instructed 
on how to self-collect the samples, and all materials were provided in a convenient, refrigerated, specimen collec-
tion kit. Patients were provided with sterile containers to collect the feces (VWR, Milan, Italy). The fecal samples 
were collected at home and transferred to the sterile sampling containers using a polypropylene spoon (3 spoons 
of about 10 g) and immediately stored at 4 °C. The specimens were transported to the laboratory within 12 hours 
of collection at a refrigerated temperature. Containers were immediately stored at −80 °C for DNA extraction. 
No storage medium was used.

Participants completed a 3-day food record (2 weekdays and 1 weekend day) and the Minnesota-Leisure- 
Time-Physical Activity Questionnaire56 at enrolment and at the study end. Detailed information on how to record 
food and drink consumed by using common household measures was provided to all participants. Two dieticians 
checked all questionnaires for completeness, internal coherence and plausibility.

Data relative to pre-pregnancy weight was self-reported; weight, height, and arterial blood pressure (BP) were 
measured at time of enrolment, and weight and BP at the study end. Body weight was measured to the nearest 
0.1 kg, and height was measured to the nearest 0.1 cm with a stadiometer (SECA model 711, Hamburg, Germany), 
with the participants wearing light clothes and no shoes. Arterial BP was measured from the left arm, in a sitting 
position, after at least 10 min of rest, with a mercury sphygmomanometer with appropriate cuff sizes (ERKA 
Perfect-Aneroid, Germany). Two measurements were taken by trained personnel with arm supported at heart 
level and the values reported were the means of the two. Glucose levels were self-measured by the patients by the 
BGSTAR® glucometer (Sanofi-Deutscland GmbH, Frankfurt, Germany). The average of the values measured 
1-hour after each meal during the third trimester has been reported.

Babies were classed as large for gestational age (LGA) if their birthweights were >90th percentile, considering 
neonatal anthropometric standards for Northern Italy57.

Blood analyses. Serum glucose was measured by the glucose oxidase method (Sentinel Ch., Milan) with an 
intra-assay CV of 1.1% and an inter-assay CV of 2.3%. HbA1c levels were determined by a latex-based method 
(Sentinel, Milan, Italy). The intra-assay e inter-assay CVs were respectively 1.1–1.5% and 1.1–1.6%. Triglycerides 
and cholesterol were assayed by enzymatic colorimetric assays (Sentinel, Milan) with an intra-assay CV of 3.0% 
and an inter-assay CV of 3.5% for triglycerides and with an intra-assay CV of 2.2% and an inter-assay CV of 3.4% 
for cholesterol. HDL-cholesterol was determined by enzymatic colorimetric assay after precipitation of LDL and 
VLDL fractions using heparin-MnCl2 solution and centrifugation at 4 °C and it had an intra-assay variation CV of 
2.5% and an inter-assay CV of 4.1%. Insulin was measured by a biotin labelled antibody-based sandwich enzyme 
immunoassay (LDN, Germany). The kit had a sensitivity of less than 1.8 U/mL and a range of 0–100 U/mL. The 
intra-assay and inter-assay CVs were respectively 1.8–2.6% and 2.9–6.0%. Serum CRP values were determined 
using a high-sensitivity-latex agglutination assay on HITACHI 911 Analyzer (Sentinel, Milan). The intra-assay 
and inter-assay CVs were 0.8–1.3% and 1.0–1.5%, respectively. All laboratory measurements were centralized.

BMI was calculated as weight divided for the square of height. The HOMA-IR was calculated according to the 
published algorithm58. Adherence to the given dietary recommendations was considered in the presence of all the 
following criteria: consuming at least 20 g/day fiber (or increasing fiber intake more than 50% than enrolment) 
and reducing sugars <10% of total energy and abolishing alcohol intake.

Fecal DNA extraction. Nucleic acid was extracted from the feces collected. Total DNA from the samples was 
extracted using the RNeasy Power Microbiome KIT (Qiagen, Milan, Italy) following the manufacturer’s instruc-
tions. One microliter of RNase (Illumina Inc. San Diego. CA) was added to digest RNA in the DNA samples, with 
an incubation of 1 h at 37 °C. DNA was quantified using the QUBIT dsDNA Assay kit (Life Technologies, Milan, 
Italy) and standardized at 5 ng/μL.

16S rRNA amplicon target sequencing. DNA directly extracted from fecal samples was used to assess 
the microbiota by the amplification of the V3-V4 region of the 16S rRNA gene using the primers and protocols 
described by Klindworth et al.59. PCR amplicons were cleaned using Agencourt AMPure kit (Beckman Coulter, 
Milan, Italy) and the resulting products were tagged by using the Nextera XT Index Kit (Illumina Inc. San Diego. 
CA) according to the manufacturer’s instructions. After the 2nd purification step, amplicons products were quan-
tified using a QUBIT dsDNA Assay kit (Life Technologies). Subsequently, equal amounts of amplicons from 
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different samples were pooled. The pooled sample was run on an Experion workstation (Biorad, Milan, Italy) 
for quality analysis prior to sequencing. The sample pool (4 nM) was denatured with 0.2 N NaOH, diluted to 12 
pM, and combined with 20% (vol/vol) denatured 12 pM PhiX, prepared according to Illumina guidelines. The 
sequencing was performed with a MiSeq Illumina instrument (Illumina) with V3 chemistry and generated 250 bp 
paired-end reads according to the manufacturer’s instructions.

Bioinformatics analysis. Paired-end reads were first assembled using FLASH software60 with default 
parameters. Joint reads were further quality filtered (at Phred <Q20) using QIIME 1.9.0 software61 and short 
reads (<250 bp) were discarded through Prinseq62. Chimera filtering was performed through USEARCH soft-
ware version 8.163. Operational Taxonomic Units (OTUs) were picked at 97% of similarity threshold by UCLUST 
algorithms64 and centroids sequences of each cluster were matched to the Greengenes 16S rRNA gene database 
version 2013. After sequencing, a total of 2,100,009 raw reads (2 × 250 bp) were obtained. After joining, a total 
of 1,919,311 reads passed the filters applied with QIIME, with an average value of 23,406 ± 31,535 reads/sample 
and a sequence length of 457 bp. The rarefaction analysis and Good’s coverage, expressed as percentages, indi-
cated that there was satisfactory coverage for all the samples (Good’s coverage average, 92%). In order to avoid 
biases due to the different sequencing depth, OTU tables were rarefied to the lowest number of sequences per 
sample (4078 reads/sample). The OTU table displays the higher taxonomy resolution that was reached; when the 
taxonomy assignment was not able to reach the genus, family name was displayed. Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict abundances of KEGG 
orthologs (KO) based on 16S-based structure of the microbiota65. The KO abundance table was then collapsed at 
level 3 of the KEGG annotations in order to display the inferred metabolic pathways and the table was imported 
in gage Bioconductor package66 in order to carry out pathway enrichment analysis to identify biological pathways 
overrepresented or underrepresented between samples.

Oligotyping analysis. In order to identify sub-OTUs populations, reads assigned to genera within 
Ruminococcaceae and Lachnospiraceae were extracted and entropy analysis and oligotyping were carried out67. 
Briefly, the extracted reads were then used to identify nucleotide positions that will explain the maximum amount 
of biological diversity across the samples utilizes Shannon entropy in order to identify positional variation to 
facilitate the identification of nucleotide positions of interest67. Only Blautia and Roseburia oligotypes showed a 
higher level of entropy and were the only two taxa able to be differentiated in sub-OTUs. After the first round of 
oligotyping, high entropy positions were chosen (-C option) 8, 9, 12, 223, 225, 247, 261, 282, 432, 433 for Blautia; 
while position 8, 9, 12, 245, 432, 433 and 434 were chosen for Roseburia. To reduce the noise, each oligotype was 
required to appear in at least 10 samples, occur in more than 1.0% of the reads for at least one sample, represent 
a minimum of 500 reads in all samples combined, and have a most abundant unique sequence with a minimum 
abundance of 100. BLASTn was used to query the representative oligotype sequences against the NCBI nr data-
base, and the top hit was considered for taxonomic assignment.

Statistical analysis. Gut microbiota α-diversity was assessed by Chao1 index, estimating the number of 
different taxa, and by Shannon diversity index, evaluating the taxa richness and evenness calculated using the 
diversity function of the vegan package68 in R environment (http://www.r-project.org). OTU table was used to 
build a principal-component analysis (PCA) as a function of the sampling time by using the made4 package of R. 
ADONIS and ANOSIM statistical test was used to detect significant differences in the overall microbial commu-
nity by using the Weighted UniFrac distance matrices and the OTU table.

Not-normally distributed variables were presented as median (range interquartile). The individual differences 
between endof the study values minus baseline values were calculated (deltas). The delta median values were 
reported. Within-participant differences in bacterial richness and in the variables at enrolment compared with 
values at the pregnancy-end were evaluated by paired-sample t-test, or Wilcoxon matched pairs test, as appropri-
ate. Differences between categorical variables were computed by chi-square test.

Differences in gut microbiota or oligotypes between adherents and non-adherents were calculated by 
t-Student test or Mann-Whitney test. Box plots represented the interquartile range between the first and the 
third quartile, with the error bars showing the lowest and the highest value. Pairwise Spearman’s non-parametric 
correlations were used to study the relationships between the relative abundance of microbial taxa abundance or 
oligotypes and dietary and metabolic variables, and between gut microbiota and inferred metabolic pathways. 
The correlation plots were visualized in R using the corrplot package of R.

Multiple regression analyses were performed to evaluate the associations between log-transformed microbial 
taxa abundance or oligotypes (dependent variable) and nutrient intakes after adjusting for age and weight (varia-
bles at baseline), or age and weight change (variables at the pregnancy end). The associations between blood pres-
sure and laboratory variables (dependent variables) with OTUs were calculated by a multiple regression model, 
after adjusting for age and weight (variables at baseline) or age, weight change, and adherence to the given dietary 
recommendations (variables at the pregnancy end) (Statistica, ver. 7.0; StatSoft Inc., Tulsa, OK, USA).

Bonferroni’s correction for multiple comparisons was applied; a P value of 0.002 or lower was considered as 
statistically significant.

Ethics approval and consent to participate. Each participant gave her written informed consent to 
participate in the study. The study protocol was approved by the Ethics Committee of the “Città della Salute e della 
Scienza” Hospital of Turin (approval 707/2016).

Availability of data and material. All the sequencing data were deposited at the Sequence Read Archive 
of the National Center for Biotechnology Information (SRA accession number: SRP135886).

http://www.r-project.org
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