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Introduction

In the last decade, cancer immunotherapy has positively 
revolutionized outcomes and basic concepts of oncological 
treatments. Most of such breakthroughs are due to the 
discovery and therapeutic modulation of key immune-
regulatory molecules (checkpoints) at the interface between 
immune effectors and tumor microenvironment (1). 
Monoclonal antibodies blocking the inhibitory checkpoints 
CTLA-4 and PD-1 (or the corresponding ligand PD-L1) 
were the first to enter the clinical arena with impressive 

results, initially confined to metastatic melanoma and 
now progressively extending to multiple tumor settings 
like lung, kidney, bladder, head and neck cancers (2-8). 
The underlying biological concept exploited by these 
treatments is to unleash a potentially effective antitumor 
adaptive immune response that has been inhibited by 
tumor adaptive-resistance expedients. Even considering 
the important clinical successes obtained by the “first 
generation” of checkpoint inhibitors (CI), a relevant 
rate of patients has unsatisfactory responses or relapses 
following an initial clinical benefit. A profound, progressive 
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exploration of the complex regulatory interactions among 
the heterogeneous protagonists of the anticancer immune 
response is absolutely necessary to understand issues of 
resistance/relapse and plan rational innovative counteractive 
strategies. It is now clear that multiple modulatory 
checkpoints, either inhibitory of stimulatory, play important 
or situational roles providing multiple new appealing 
targets for innovative modulatory/therapeutic strategies 
(9,10). Their initial exploration is starting in clinical trials 
with promising initial results and with possibly exciting 
perspectives offered by combinatorial opportunities. A 
summary of the main emerging immune-checkpoints with 
their functional role is reported in Figure 1.

Here we review the main “new potential targets” for 
immunotherapy, focusing on emerging regulatory molecules 
that may be involved at different levels of the complex 
antitumor immune response, either with “positive” or 
“negative” functions. We aim to provide an overview with 
insights in their biological role, evidence of function and 
perspective clinical exploitation.  

Stimulatory checkpoints

Beside the well-known negative modulatory axes given by 
CTLA-4/B7 and PD-1/PD-L1, the induction of effective 
adaptive and innate immune response is regulated by a 
panel of activatory signals. They are mainly mediated by co-
stimulatory molecules that are often transitorily expressed 
following the first T-cell receptor (TCR) activation. They 
are usually either members of immunoglobulin superfamily 
or tumor necrosis factor (TNF) receptors (TNFR). The 
discovery of such co-stimulatory modulators has prompted 
the preclinical and clinical testing of agonistic antibodies 
that hold promises in several tumor settings, especially 
if combined with a simultaneous blocking of inhibitory 
checkpoints. 

ICOS

ICOS is a member of the CD28 family of B7 binding 
proteins. It is relatively low expressed by naïve unstimulated 
T lymphocytes, while its expression is enhanced upon T 
cell activation. The designated ligand (ICOS-L; B7-H2) is 
mainly expressed by dendritic cells and macrophages but 
also a direct expression by tumors has been reported (11-19).  
The binding of ICOS with such ligand determines T cell 
activation, mostly resulting in the secretion of various types 
of cytokines than in the induction of a direct cytotoxic 

activity. The secreted cytokines are mostly of pro-
inflammatory Th1 type despite also regulatory Th2 types 
are produced (9,20,21). 

The expression of ICOS-positive lymphocytes and 
ICOS-L has been reported in various tumor settings and 
considered with alternate prognostic valence (9,22-24). In 
a recent report, its expression at tumor sites in colorectal 
carcinoma (CRC) patients was strongly correlated with 
favorable prognosis (19) while other studies in breast cancer 
settings suggested a negative correlation with the outcome 
(9,25,26). The activity of ICOS appears to be linked to T cell 
activation following CTLA-4 blockage. ICOS stimulation may 
significantly enhance the immune-stimulatory effect of CTLA-
4 blocking antibodies that, conversely, is impaired in ICOS 
knock-out models (27,28). A positive synergism was reported 
also following anti-PD-1 treatment (9,29). 

Altogether current evidences support ICOS as a relevant 
and potentially exploitable marker of T cell activation. Its 
expression by CD4 and CD8 T lymphocytes, following 
treatments with checkpoint inhibitors, may be indicative of 
the intended re-activation of anticancer immune response. It 
seems to be associated with clinical responses and correlates 
with prognosis (23,24,29-32). Currently available evidences 
support a foreseeable therapeutic scenario wherein ICOS 
stimulation may be explored more in association with anti-
CTLA4 or anti-PD-1 than as single treatment. 

OX40

OX40 is a type 1 transmembrane receptor, originally 
described to be expressed by activated CD4 T cells, 
subsequently demonstrated on CD8 but also natural killer 
(NK) cells and neutrophils (33-37). Its regulatory function 
goes beyond the adaptive immunity and may also involve 
innate response. Its ligand (OX40-L) is mainly expressed by 
antigen-presenting cells (APCs) but may also be found in 
other circulating cells (NK, Mast T, activated lymphocytes) 
or other tissues like muscles or vascular endothelium 
(38,39). OX40 expression is transiently enhanced following 
TCR binding and upon ligand binding enhances T 
cell activation, with production of cytokine sustaining 
lymphocyte survival, proliferation and sustained memory 
(40,41). The increased IFN-γ levels, beside sustaining 
Th1 type responses may also favor PD-L1 expression with 
negative regulatory implications laying basis for synergism 
with checkpoint inhibitors (36,42). Notably, OX40 is also 
expressed by regulatory T cell (Treg), but in this context 
the activity of OX40 is mainly inhibitory, either resulting 
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Figure 1 Main stimulatory and inhibitory checkpoints, immune cells involved and principal regulatory function. Stimulatory interactions 
are marked by solid arrows while inhibitory interactions are marked by dashed arrows. Up arrows highlight function increase while down 
arrows highlight function decrease. GITR, glucocorticoid-induced TNF receptor-related gene; TNF, tumor necrosis factor; GITR-L, 
glucocorticoid-induced TNF receptor-related gene ligand; LAG-3, lymphocyte activation gene-3; MHC, major histocompatibility complex; 
HLA, human leucocyte antigen; TIM-3, T-cell immunoglobulin and mucin domain 3; ICOS, inducible T-cell costimulator; ICOS-L, 
inducible T-cell costimulator ligand; TIGIT, T cell Immunoglobulin and ITIM domain; VISTA, V-domain Ig suppressor of T-cell 
activation; IDO, indoleamine-2,3-dioxygenase; KIR, killer immunoglobulin-like receptor; SIRPα, signal-regulatory protein alpha; DNAM-
1, DNAX Accessory Molecule-1; NK, natural killer; APC, antigen-presenting cell; Tregs, regulatory T cells; ADCC, antibody dependent 
cellular cytotoxicity.
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in their functional inhibition or direct depletion (43). The 
role of OX40 in Tregs is not however completely clear 
and, according to the context and cytokine environment, 
stimulating activities have also been reported (44). Early 
preclinical evidence showed that OX40 stimulation could 
induce effective antitumor responses against immunogenic 
models including sarcoma, melanoma and breast cancer 
(45-47). Its activity as monotherapy was less effective 
against poorly immunogenic models (48), supporting the 
concept that OX40 stimulation could be better exploited 
in association with other therapeutic strategies that may 
concurrently contribute to or benefit from Tregs depletion 
(49,50). The first phase I clinical trial reported an excellent 
safety profile, with promising but not impressive results in 
terms of tumor responses (51). Given the murine origin of 
the agonistic Ab against OX40, an intense immunization 
was observed in most of the first treated patients (51). 
Several trials are currently exploring humanized forms of 
anti-OX40 agonists against various types of cancers, in 
particular exploiting potentially powerful synergism with 
immune-stimulating agents like checkpoint inhibitors (52). 

Glucocorticoid-induced TNF receptor-related gene (GITR) 

GITR is a member of TNFR family. It is constitutively 
found in Tregs (53,54) and intensely expressed by 
CD8 and CD4 lymphocytes upon TCR activation 
(55,56). GITR has also described in elements of the 
innate  immune system l ike  NK, eosinophi ls  and 
macrophages (57). Similarly to OX40, the ligand for 
GITR (GITR-L) is mainly expressed by APC but have 
been also reported in vessel endothelial cells (58). GITR 
stimulation is capable of activating T effector cells (59),  
by upregulation of IL2Rα and production of IL-2 and 
IFN-γ (56,60), while inhibiting Tregs functions with 
FOXP3 suppression (61-63). Early preclinical data in several 
solid tumor models confirmed the therapeutic antitumor 
potential of GITR stimulation, especially in combination 
with other immune-modulatory agents (64-71). Notably, 
the beneficial effect of GITR agonists included also poorly 
immunogenic models that were limitedly affected by the 
activation of other stimulatory pathways like that of OX40 
(65-71). A first clinical phase I experience with humanized 
GITR agonist confirmed the optimal safety profile, with 
only limited responses as single agent (10). Anyway the 
clinical exploration was warranted and clinical trial are 
currently ongoing, focusing on combinatorial approaches 
with other strategies like checkpoint inhibitors (59).  

4-1BB (CD137)

CD137 is an inducible co-stimulatory cell-surface 
glycoprotein, member of TNFR proteins (72). It is 
expressed by various types of immune cells like activated T 
lymphocytes (CD4+ and CD8+), NK, macrophages, B cells 
(73,74). Following the TCR engagement, its expression 
supports T cell proliferation, activation, survival and 
IL-2 production (75). The only ligand so far identified 
is a member of TNF family (76). Notably, CD137 can 
potentiate NK cell activation following the triggering of 
their FC receptor (77). The agonistic stimulation could 
mediate effective antitumor response in murine models, 
both by T cell activation (78) and NK antibody dependent 
cellular cytotoxicity (ADCC) in association with antitumor 
monoclonal antibodies (79).

Such parallel activity involving the innate arm of the 
immune response may explain the apparent superior 
antitumor activity of monotherapy with CD137 agonists 
compared with similar stimulation of other co-stimulatory 
molecules described above. Preclinical models are also 
supporting a synergistic activity with anti-PD-1 and anti-
CTLA-4 checkpoint inhibitors (80).

Clinical trials are currently exploring the activity of a 
humanized anti-CD137 agonistic antibody in combination 
with anti-CD20 (Rituximab) against B cell lymphoma 
and, with checkpoint inhibitors in solid tumors settings. 
Early results from phase I trial showed an excellent safety 
profile with very promising results (10,80). For instance, 
in combination with anti-PD-1 (Pembrolizumab), 6 out 23 
patients with various types of advanced cancers reported 
complete or partial responses including a durable complete 
response in one patient with small cell lung cancer (10). 

CD40

CD40 is a member of TNF receptor family, expressed on 
APC, macrophages, B lymphocytes and various other types 
of cells including tumors (81). The main known function 
of CD40 is that of inducing macrophages activation with 
consequent increase in cytokines secretion and stimulation 
of activated T helper lymphocytes that express the 
corresponding ligand (CD40L or CD154), a crucial step in 
the induction of adaptive immune responses (82). Various 
and heterogeneous functions however may be attributed to 
CD40, depending on the expressing cells and context (82).  
Preclinical models supported the antitumor effect of 
monotherapy with CD40 agonists, in various hematologic 
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and solid tumor settings (83). Clinical trials are exploring 
multiple CD40 agonist antibodies with promising results. 
Overall, as monotherapy the response rate is around 20%, 
with some remarkably long-lasting responses (81,84-86). 
The safety profile appears favorable, even if it was associated 
with liver toxicity, platelet count decrease and infusion-
related reactions.

It is foreseeable that further explorations of CD40 
agonists will include combinations with other agents, like 
chemotherapy, radiotherapy or obviously other checkpoint 
modulators. 

CD27-CD70

CD27 is a potent co-stimulatory molecule that, following 
the first activatory signal by TCR, is important for the 
clonal expansion of naïve T cells and differentiation into 
effector cytotoxic lymphocytes. Its ligand is the CD70 
molecule, mainly expressed by activated lymphocytes and 
mediating B cell activation and immunoglobulin production. 
Following promising preclinical data with stimulatory 
monoclonal antibodies, clinical explorations are ongoing 
with agonists of the CD27-CD70 axis. They are either 
targeting CD70 or CD27. Early results with anti-CD70 Abs 
reported a promising rate of disease stabilizations in various 
types of advanced cancers, with fatigue being a common 
side effect (10). A humanized agonistic anti-CD27 antibody 
is also under exploration in phase I/II trials against multiple 
solid tumor malignancies, including CRC, NSCLC, 
ovarian and head and neck tumors (10). The safety profile 
appears acceptable also in this case and reports of activity 
are awaited. As for the previous stimulatory molecules, 
the targeting of CD27-CD70 is also being explored, with 
reasonable expectations, in combination with PD-1/PD-L1  
or CTLA-4 blockage. A summary of main clinical trials 
targeting lymphocyte-stimulatory checkpoints is reported 
in Table 1.

Inhibitory checkpoints

Lymphocyte activation gene 3 (LAG-3)

LAG-3 is a membrane receptor expressed by activated T 
lymphocytes and Tregs (87). It is believed to physiologically 
contribute to control the “size” of CD8+T cell clonal 
expansion following their priming and to enhance the 
suppressor activity of Tregs (88-91). The main ligand is 
represented by MHC class-II molecules on APCs (88). Along 

with PD-1, the membrane expression of LAG-3 is associated 
with an exhaustion profile of tumor infiltrating lymphocytes, 
correlated with negative clinical features (92-98).  
Preclinical models confirmed the possibility to restore T 
cell antitumor function by LAG-3 blocking, associated with 
reduction of Tregs activity (99,100). Notably, a soluble form 
of LAG-3 may be found with ability to stimulate APCs and 
reinvigorate the immune response (101). Clinically, LAG-
3 blocking antibodies are under evaluation in early phase 
clinical trials, either alone or in combination with anti-
PD-1 antibodies (9,10). Biologically it could be speculated 
that the generation of new T cell clones may be favored by 
anti-LAG-3, helping to react against the clonal evolution 
of tumor neoantigens. Moreover a soluble LAG-3 isoform 
antibody is being explored as APC immune-stimulatory 
agent in advanced cancers (102). 

T-cell immunoglobulin- and mucin-domain-containing 
molecule 3 (TIM-3)

TIM-3, is a membrane inhibitory receptor expressed by 
Th1 CD4+ and CD8+ T cells (103). More recently it was 
also found on Tregs (104,105), Th17 (106) and elements 
of the innate immune response (107-109). Its main ligand 
is galactine-9, a widely expressed lectin detectable in 
multiple organs in physiologic and inflammatory/pathologic 
condit ions (110).  TIM-3 engagement determines 
functional inhibition and apoptosis in T cells (111-113), 
while enhancing the immune-suppressive activity of Tregs 
(114,115). Tumor infiltrating lymphocytes co-expressing 
TIM-3 and PD-1 have been described in several tumor 
settings, both solid and hematologic, associated with 
exhausted functions (116-122). This is in line with the 
experimental observations that a single blocking TIM-3 did 
not induce relevant antitumor immune responses but much 
better results may derive from the concomitant association 
of anti-PD-1 blockers (121-124). Conversely, it is likely that 
the expression of TIM-3 associates with the development 
of resistance to PD-1/PD-L1 blocking, offering possible 
therapeutic opportunities in this setting (119,125).

Currently early clinical trials are exploring TIM-3 
blocking in clinical settings of advanced cancers, mainly 
exploiting its association with PD-1/PD-L1 inhibitors 
(9,10). 

T cell immunoglobulin and ITIM domain (TIGIT)

TIGIT is another interesting negative checkpoint expressed 
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Table 1 Main clinical trials involving agents targeting lymphocyte-activating immune checkpoints 

Target Agent Combination NCT identifier Phase Setting

ICOS JTX-2011 Anti-PD-1 NCT02904226 1–2 Advanced solid malignancies

MEDI-570 – NCT02520791 1 Advanced hematologic malignancies

GSK3359609 Anti-PD-1 NCT02723955 1 Advanced solid malignancies

OX40 (CD134) MEDI6469 – NCT02559024 1–2 Metastatic colorectal cancer

SBRT NCT01862900 1–2 Metastatic breast cancer, lung  
metastases, liver metastases

surgery NCT02274155 1 stage III and IV oral head and neck 
squamous cell carcinoma

Cyclophosphamide + RT NCT01303705 1–2 Metastatic prostate cancer

MEDI6383 +/− Anti-PD-L1 NCT02221960  1 Selected advanced solid tumors

MEDI0562 Anti-PD-L1 or anti-CTLA-4 NCT02705482 1 Selected advanced solid tumors

PF-04518660 +/− Axitinib NCT03092856 2 Metastatic kidney cancer

+/− PF05082566 NCT02315066 1 Advanced solid malignancies

Alone or in combination with: avelumab 
(anti-PD-L1), azacitidine, utomilumab (4-
1BB agonist), avelumab (anti-PD-L1) + 
utomilumab (4-1BB agonist), azacitidine 
+ avelumab

NCT03390296 2 Acute myeloid leukemia

Anti-PD-L1, Anti-PD-L1 + utomilumab (4-
1BB agonist)

NCT02554812 2 Advanced solid malignancies

INCAGN01949 – NCT02923349 1–2 Advanced solid malignancies

Anti-PD-1 NCT03241173 1–2 Advanced solid malignancies

MOXR0916 Anti-PD-L1 NCT02410512 1b Advanced solid malignancies

GSK3174998 +/− Anti-PD-1 NCT02528357 1 Advanced solid malignancies

GITR TRX518 – NCT01239134 1 Unresectable and metastatic solid 
malignancies

– NCT02628574 1 Advanced solid malignancies

MEDI1873 – NCT02583165 1 Advanced solid malignancies

GWN323 Anti-PD-1 NCT02740270 1 Advanced solid and hematologic  
malignancies

MK-4166 +/− Anti-PD-1 NCT02132754 1 Advanced solid and hematologic  
malignancies

INCAGN01876 – NCT02697591 1–2 Advanced solid malignancies

Anti-PD-1 and/or anti-CTLA-4 NCT03126110 1–2 Advanced solid malignancies

Epadocast (anti-IDO) + (anti-PD-1) NCT03277352 1–2 Advanced solid malignancies

OMP-336B11 NCT03295942 1 Advanced solid malignancies

4-1BB (CD137) PF-05082567 Anti-PD-1 NCT02179918 1 Advanced solid malignancies

Trastuzumab emtansine or trastuzumab NCT03364348 1 Stage III-IV HER2 positive breast 
cancer

Table 1 (continued)
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by T lymphocytes and NK. Its ligands, mainly present 
at APC level, are the lectins CD155 and CD112 (126). 
It is interesting to note that TIGIT is part of a complex 
regulatory system together with CD96 and CD226 
(DNAM-1) receptors (127). They all bind CD155, but 
while the resulting signal is inhibitory in the cases of 
TIGIT and CD96, it is activatory for DNAM-1, a situation 
similar to what is known for the CTLA-4/CD28/B7 
complex. This system contributes to the fine tuning of the 
immune response, especially regarding NK cells. Similarly 
to what reported above for TIM-3, TIGIT+ lymphocytes 
have been reported to infiltrate several types of tumors 
in patients, including melanoma, colon, renal and breast 
cancer (93,128-131). Its expression is often associated with 
other negative checkpoints like PD-1 and TIM-3 (93). 
Preclinical models confirmed that TIGIT blockages may 
induce important antitumor responses, with lymphocyte re-
activation (128,129). The clinical development of TIGIT-
blocking antibodies is ongoing, even in this case there are 
attempts to explore combinations with blockers of PD-1/
PD-L1 axis (9). 

V-domain Ig suppressor of T-cell activation (VISTA) 

VISTA is a negative immune-checkpoint structurally 
analogue to PD-L1, mainly expressed by APC, myeloid 
cells but also T lymphocytes and Tregs. VISTA, whereof 

receptor has still to be clearly identified, is capable of 
inhibiting T cell proliferation along with IFN-γ and TNFα 
production. It was also described to enhance the conversion 
of naïve T lymphocytes into Tregs (132).

In preclinical models it was confirmed that, even if 
structurally analogue to PD-L1, the role of VISTA is 
functionally distinct from that the PD-1/PD-L1 axis in 
controlling T-cell activation (133). Blockage of VISTA 
resulted in enhanced T cell infiltration, concomitantly with 
reduction of myeloid derived suppressor cells (134), with 
beneficial antitumor responses enhanced by combination 
with anti-PD-1/PD-L1 (132,133). VISTA+ lymphocytes 
have been reported to infiltrate relevant rates of gastric 
cancers (135). The expression of VISTA may contribute 
to a compensatory mechanism following treatment 
with checkpoint inhibitors, suggested by its presence 
in lymphocytes and M2 macrophages of melanoma or 
prostate cancer patients that had been previously treated 
with Ipilimumab (136). Early clinical trials are exploring 
VISTA blockage in advanced cancers and it is foreseeable 
its next evaluation in combination with other checkpoint 
inhibitors (9,10). Of note, an oral small-molecule 
inhibiting both VISTA and PD-L1 has been developed 
with promising preclinical data and ongoing clinical 
testing (10).  

A summary of main clinical trials targeting lymphocyte-
inhibitory checkpoints is reported in Table 2.

Table 1 (continued)

Target Agent Combination NCT identifier Phase Setting

+/− PF04518600 NCT02315066 1 Advanced solid malignancies

Rituximab (anti-CD20) NCT01307267 1 Non-Hodgkin lymphoma, renal cell 
carcinoma, squamous cell head and 
neck cancer, melanoma

Rituximab (anti-CD20) + avelumab (an-
ti-PD-L1)

NCT02951156 3 Diffuse large B cell lymphoma

CD40 CP870893 tremelimumab (anti-CTLA-4) NCT01103635 1 Advanced melanoma

RO7009789 Anti-PD-L1 NCT02304393 1b Advanced solid malignancies

MOXR0916 Anti-PD-L1 NCT02410512 1 Advanced solid malignancies

CDX-1140 – NCT03329950 1 Selected advanced solid tumors

CD27-CD70 Varlilumab 
(CDX-1127) 
SGN-CD70A

– NCT01460134 1 Selected refractory or relapsed  
hematologic or solid malignancies

Anti-PD-1 NCT02335918 1–2 Advanced solid malignancies

SBRT, stereotactic body radiation therapy.
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Table 2 Main clinical trials involving agents targeting lymphocyte-inhibiting immune checkpoints

Target Agent Combination NCT identifier Phase Setting

LAG3 IMP321 – NCT00351949 1 Metastatic renal cell carcinoma

– NCT03252938 1 Advanced solid malignancies

Paclitaxel NCT00349934 1 Metastatic breast cancer

Paclitaxel NCT02614833 2 Metastatic breast cancer

Anti-PD-1 NCT02676869 1 Advanced melanoma

Or urelumab (anti-CD137) 
+/− anti-PD-1

NCT02658981 1 Recurrent glioblastoma

LAG525 Anti-PD-1 NCT02460224 1–2 Advanced solid malignancies

BMS986016 Anti-PD-1 NCT01968109 1–2 Advanced solid and hematologic malignancies

Anti-PD-1 NCT02061761 1–2 Hematologic malignancies

Anti PD-1 NCT02060188 2 Colorectal cancer

Anti-PD-1 NCT02488759 1–2 Virus-associated tumors

Anti-PD-1 NCT02935634 2 Advanced gastric cancer

Anti-PD-1 NCT02750514 2 Advanced NSCLC

Anti-PD-1 NCT02996110 2 Advanced RCC

Anti-PD-1 NCT02658981 1 Recurrent brain neoplasms

Anti-PD-1 NCT02966548 1 Advanced solid malignancies

REGN3767 Anti-PD-1 NCT03005782 1 Advanced malignancies without any available  
therapy and immune checkpoint naive

TSR-033 +/− Anti-PD-1 NCT03250832 1 Advanced solid malignancies

MGD013 – NCT03219268 1 Advanced solid malignancies

TIM-3 TSR-022 Anti-PD-1 NCT02817633 1 Advanced solid malignancies

LY3321367 Anti-PD-L1 NCT03099109 1 Advanced solid malignancies

MBG453 Anti-PD-1 NCT02608268 1–2 Advanced solid malignancies

Anti-PD-1 NCT03066648 1 Acute myeloid leukemia or high-risk  
myelodysplastic syndrome

TIGIT OMP-313M32 – NCT03119428 1 Advanced solid malignancies

MTIG7192A/RG6058 Anti-PD-L1 NCT02794571 1 Advanced solid malignancies

VISTA JNJ-610588 – NCT02671955 1 Advanced solid malignancies

CA-170 – NCT02812875 1 Advanced solid and hematologic malignancies

Additional checkpoints of innate immunity

CD47/SIRPα

CD47 is a cell-surface immunoglobulin ubiquitously 

expressed by normal tissues (137). SIRPα (signal-regulatory 

protein alpha), its ligand, is a cell-surface immunoglobulin 

mainly expressed by macrophages and dendritic cells (138). 

Physiological role of CD47 is to protect viable erythrocytes 

from phagocytosis (139-144). 

CD47/SIRPα is a “don’t eat me signal” that inhibits 

phagocytosis suppressing myosin-II accumulation at 

phagocytic synapse and respiratory burst (145,146). CD47 
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on naïve T cell induces differentiation in regulatory T cells 
(Tregs) and inhibits development of T helper 1 cells (Th1) 
(147,148). 

Evasion of phagocytosis prevents tumor cell presentation 
by APCs and indirectly decreases T cell activation (149). 

Several cancers express high levels of CD47 and high 
CD47 mRNA expression correlates with poor clinical 
prognosis (9,150-154). 

CD47/SIRPα axis blockade induces human and mouse 
macrophages phagocytosis of cancer cells in vitro and shows 
antitumor activity in xenograft models (152-158). 

Early phase clinical trials investigate toxicity and activity 
of this axis blockade (158). 

IDO

Indoleamine-2,3-dioxygenase (IDO—two isoforms: IDO1, 
IDO2) is an intracellular enzyme involved in oxidative 
catabolism of tryptophan, expressed by macrophages 
and dendritic cells (159-162). It catalyses conversion of 
L-tryptophan to N-formyl kynurenine by cleavage of the 
2,3-double bond (163). Depletion of tryptophan reduces 
T cells proliferation while presence of kynurenine induces 
apoptosis of Th1 and naïve T cells differentiation in Tregs 
(164-168). 

In this way, IDO activity contributes to create an 
immune-suppressed environment and to generate tumor 
tolerance. 

Inflammatory cytokines as IFN-γ, IL-6 and TNF-α can 
induce IDO expression (169). 

IDO is expressed by most human cancer types and, 
in clinical studies, its expression levels correlate with 
lower overall survival (OS), progression-free survival 
(PFS) and response to chemotherapy, radiotherapy and 
immunotherapy (159-162,164-173).

Preclinical studies demonstrate that transfecting tumor 
cell lines with IDO impairs their immune rejection in tumor 
antigen-immunized mice. On the contrary, IDO inhibitors 
stimulate T cell response and inhibit tumor progression in 
mouse models (173-175). 

Actually, clinical trials are investigating several small 
molecule inhibitors of IDO. Among these, epacadostat has 
entered phase III clinical development and is undergoing its 
evaluation in combination with anti-PD-1 (pembrolizumab) 
for metastatic melanoma (10,176). 

A more complete knowledge of the role of IDO isoforms 
and their affected pathways in mediating tumor immune-
suppression is necessary to improve clinical development of 

IDO inhibitors (10).

NK cell markers 

CD94/NKG2A

NK cells have MHC class I-specific inhibitory and 
activating receptors that control their responsiveness on 
self-cells and their killing activity against non-self-cells that 
have lost or downregulated MHC class I. 

This process is called “licensing” and is based on shifts 
of the receptors balance towards NK activation or NK 
inhibition. The heterodimer formed by CD94, an invariant 
chain receptor, and NKG2A, member of C type lectin 
like family, is part of these NK inhibitory receptors while 
the CD94/NKG2C and CD94/NKG2E are activating 
heterodimers (177-179). 

CD94/NKG2A receptor is also expressed by T cells. 
CD94/NKG2A receptor binds to MHC class I HLA-E to 
carry out its inhibition of NK cells and T cells activation (180). 

Some solid cancers overexpress HLA-E and this 
overexpression is associated with poor prognosis (181-183).

CD94/NKG2A+ NK cells with lower cytotoxic potential 
are found elevated in peripheral blood samples and in 
intratumoral region of several cancer patients (181-190). 

The rationale of NKG2A blockade is to improve NK 
cell-mediated ADCC and to increase availability of ligands 
on tumor cells for activating NK receptors with same 
specificity of CD94/NKG2A receptor (180). 

Monalizumab (IPH2201) enhances NK cell response to 
HLA+ tumor cells in preclinical models (191).

Phase I/II trials are assessing activity and safety of 
NKG2A antibody, some in monotherapy and others in 
combination with PD-1/PDL-1 axis inhibitors (9,180). 

CD94/NKG2A blockade can also be obtained by 
targeting ERAP-1, that positively modifies ability of specific 
ligands to engage several classes of NK inhibitory receptors 
on human tumor cell lines (192). 

Killer immunoglobulin-like receptors (KIRs) 

KIR family includes several receptors expressed by NK 
cells and by some T cells. Some members (KIR2DL1-2-3 
and KIR3DL1) of this family are able to impair NK self-
recognition. HLA-A, HLA-B and HLA-C are ligands of 
these inhibitory KIRs and ligand-receptor interaction turns 
off NK activation (193-196).

In vitro assays on patient peripheral blood mononuclear 
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cells (PBMC) treated with KIR2DL1 inhibitor (IPH2101) 
show induction of APC FcγRI-mediated trogocytosis of 
KIR2DL1 on NK cells with a consequent decrease of NK 
cell cytotoxic activity. These findings agree with phase I/II 
clinical trials that failed to increase disease response treating 
cancer patients with IPH2101 (197,198). 

More studies on KIR2DL activating and inhibitory 
properties are necessary to explain NK anergy mediated by 
KIR2DL inhibitors. To overcome this anergy KIR blockade 
can be combined with stimulatory cytokines treatments (IL-
2, IL-15), anti-TAA antibodies, other checkpoints inhibitors 
(anti-PD-1/anti-PD-L1, anti-CTLA-4) or stimulators of 
NK activation (lenalidomide) (199-201). 

Actually, lirilumab (inhibitor KIR2DL1-2-3 - IPH2102) 
is in ongoing phase I/II clinical trials in combination with 
anti-PD-1 or anti-CTLA-4 in solid and haematological 
malignancies with preliminary encouraging results (9). 

In cancer patients is described an enrichment in PD-1+ 
NK cells, among the subset of CD56dimNKG2A−KIR+ NK 
cells associated with poor anti-tumor activity and reduced 
proliferation (202-204). This could be a rationale for 
combination treatments with KIRs blockade or stimulation 
and anti-PD-1/anti-PD-L1, especially in MHC class I 
deficient malignancy.

CD96

CD96 (or TACTILE) is  a  co-inhibitory receptor 
constitutively expressed by human NK cells. 

CD96 binds nectin (or CD112) and nectin-like ligands, 
which are upregulated on cell membrane of several tumor 
cell types, and CD155 (or PVR) (205,206). CD96 ligation 
of CD155 decreases NK production of IFN-γ, antagonizing 
DNAM-1 signalling that induces NK cells cytotoxic activity, 
sharing same ligands of CD96 (207,208). 

In preclinical tumor models, CD96 blockade activity 
depends on NK cells phenotype (209). 

A summary of the main clinical trials targeting 
additional checkpoints of innate immunity and tumor 
microenvironment is reported in Table 3.

Conclusive remarks

The discovery and clinical application of monoclonal 
antibodies that can therapeutically modulate the immune 
response is profoundly changing both the present and 

perspective therapeutic scenario in multiple tumor settings. 
The progressive comprehension of the complex immune 
regulatory networks that are in place, with stimulatory and 
inhibitory pathways, is providing continuous rationale and 
opportunities to refine the existing treatments, designing 
innovative strategies to overcome resistances, relapses 
and enhancing the response rates. It is also progressively 
emerging that multiple additional effectors [e.g., NK, 
macrophages, APC, myeloid-derived suppressor cells 
(MDSC)] beyond T lymphocytes directly or indirectly 
participate to control the onset, intensity and persistence 
of  antitumor immune responses.  Such addit ional 
effectors are themselves promising immunotherapy 
targets. Moreover, they often express the same regulatory 
checkpoints as T lymphocytes even if sometimes with 
different functional sense. 

Even considering the important promises hold by the new 
combinatorial approaches, issues about dose, schedule and 
settings still require to be defined. Results from early clinical 
trials are awaited, with early data suggesting a favorable 
safety profile for most of the new checkpoint modulators, 
along with interesting but also scattered signs of activity. The 
“conventional” concepts of trial design and endpoints are 
challenged by the new biologic knowledge and its continuous 
evolution. It would be desirable that new clinical studies 
would, whenever possible, be paralleled by translational 
studies that might provide immunological insights to 
interpreter both events of responses and resistance, 
providing reliable basis for subsequent adjustments and 
study designing. Ideally the future treatment strategies will 
trend toward personalized approaches accounting for the 
individual biological complexity and costs considerations. 
In this perspective the concept of predictive biomarkers will 
likely evolve in wider concepts of “predictive immunological 
landscapes” including the multiple cellular, molecular and 
metabolic variables that might simultaneously impact the 
antitumor immune responses. 

It is necessary to patiently await for the advancements 
of scientific knowledge and biological rational rather 
than to attempt random associations of these many new 
compounds. Important efforts are needed at multiple levels, 
from the academia to the regulatory agencies. It will be 
important to define a positive compromise between the 
comprehensible need for prompt “clinically useful” answers 
and the necessary time to develop the appropriate parallel 
biological comprehension.
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Table 3 Main clinical trials involving agents targeting macrophage and NK immune markers

Target Agent Combination NCT identifier Phase Setting

CD47 Hu5F9-G4 – NCT02216409 1 Advanced solid malignancies

– NCT02678338 1 Relapsed/refractory acute myeloid 
leukemia

Cetuximab (EGFR inhibitor) NCT02953782 1b/2 Solid malignancies and advanced  
colorectal cancer

Rituximab (CD20 inhibitor) NCT02953509 1b/2 Relapsed/refractory B-cell  
non-Hodgkin’s lymphoma

Azacitidine NCT03248479 1 Acute myeloid leukemia and  
myelodysplastic syndrome

TTI-621 – NCT02890368 1 Relapsed/refractory solid  
malignancies and mycosis fungoides

Anti-PD-1, rituximab  
(CD20 inhibitor)

NCT02663518 1a/1b Advanced hematologic and selected 
solid malignancies

CC-90002 Rituximab (CD20 inhibitor) NCT02367196 1 Advanced solid and hematologic  
malignancies

– NCT02641002 1 Acute myeloid leukemia and high-risk 
myelodysplastic syndrome

ALX148 Anti-PD-L1, trastuzumab  
(HER2 inhibitor), rituximab  
(CD20 inhibitor)

NCT03013218 1 Advanced solid malignancies and 
lymphoma

IDO Epacadostat 
(INCB024360)

– NCT01195311 1 Advanced malignancies

– NCT01822691 2 Myelodysplastic syndrome

– NCT02042430 pilot Newly diagnosed stage III–IV  
epithelial ovarian, fallopian tube, or 
primary peritoneal cancer

Sirolimus NCT03217669 1 Advanced solid tumors, non-small cell 
lung cancer

Anti-PD-1 NCT03361865 3 Advanced/unresectable urothelial  
cancer

Anti-PD-1 NCT03374488 2 Head & neck cancer (neoadjuvant)

Anti-PD-1 +/− platinum-based  
chemotherapy

NCT03322566 3 Metastatic non-small cell lung  
cancer

Anti-PD-1 + platinum-based  
chemotherapy

NCT03348904 3 Metastatic non-small cell lung  
cancer

Anti-PD-1 + chemotherapy NCT03342352 3 Squamous cell carcinoma of the head 
& neck

Anti-PD-1 NCT03310567 2 Recurrent/metastatic endometrial  
carcinoma

Anti-PD-1 NCT03260894 3 Locally advanced or metastatic renal 
cell carcinoma

Anti-PD-1 NCT03402880 2 Small cell lung cancer

Table 3 (continued)
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Table 3 (continued)

Target Agent Combination NCT identifier Phase Setting

Anti-PD-1 NCT03358472 3 Recurrent/metastatic head & neck 
squamous cell carcinoma

    Anti-PD-1 NCT02178722 1–2 Selected cancers

    Anti-PD-1 NCT02327078 1–2 Select advanced cancers

    Anti-PD-L1 NCT02298153 1 Non-small cell lung cancer, previously 
treated stage IV urothelial carcinoma

Azacitidine, anti-PD-1 NCT02959437 1–2 Advanced solid tumors, and  
previously treated stage IIIB/IV  
non-small cell lung cancer and stage 
IV colorectal cancer

Anti-PD-L1 NCT02318277 1–2 Selected advanced solid tumors

Anti-PD-1 oxaliplatin  
leucovorin 5- fluorouracil  
gemcitabine nab-paclitaxel  
carboplatin paclitaxel  
pemetrexed cyclophosphamide

NCT03085914 1–2 Advanced or metastatic solid tumors

Anti-PD-1 NCT02752074 3 Unresectable or metastatic  
melanoma

Anti-PD-1 NCT02862457 1 Advanced solid tumors

INCB039110 (JAK-1 inhibitor), 
INCB050465 (PI3K-delta  
inhibitor)

NCT02559492 1 Advanced or metastatic solid tumors

Multipeptide melanoma  
vaccine (MELITAC 12.1)

NCT01961115 2 Advanced melanoma

Survivin vaccine DPX-Survivac,  
Cyclophosphamide

NCT02785250 1b Recurrent ovarian, fallopian tube, or 
peritoneal cancer

CDX-1401 vaccine  
(DEC-205/NY-ESO-1 fusion  
protein), Poly-ICLC

NCT02166905 1/2b NY-ESO-1 or LAGE-1 expressing  
epithelial ovarian, fallopian tube, or  
primary peritoneal carcinoma in  
remission

Anti-PD-1 + CRS-207  
(listeria-based vaccine)  
+/− cyclophosphamide +/− GVAX 
(pancreas vaccine) 

NCT03006302 2 Metastatic pancreatic  
adenocarcinoma

Anti-PD-1 + CRS-207  
(listeria-based vaccine)

NCT02575807 1–2 Platinum-resistant ovarian, fallopian, or 
peritoneal cancer

Anti-PD-1 NCT03414229 2 Metastatic/locally advanced sarcoma

Anti-PD-1, azacitidine NCT03182894 1–2 Chemo-refractory metastatic  
colorectal cancer

Anti-PD-1 NCT03196232 2 Metastatic or unresectable  
gastroesophageal junction and  
gastric adenocarcinoma

Anti-PD-1 NCT03291054 2 Gastrointestinal stromal tumors

Table 3 (continued)
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Table 3 (continued)

Target Agent Combination NCT identifier Phase Setting

Anti-PD-1 NCT03322540 3 Metastatic Non-small cell lung cancer

Arginase inhibitor  
(INCB001158) +/− anti-PD-1

NCT03361228 1–2 Advanced solid tumors

Pf-06840003 – NCT02764151 1 Malignant gliomas

GDC-0919 – NCT02048709 1 Advanced solid tumors

Atezolizumab NCT02471846 1 Advanced solid tumors

NLG802 – NCT03164603 1 Recurrent advanced solid tumors

CD94/NKG2A IPH2201  
(monalizumab)

– NCT02921685 1 Hematologic malignancies

Ibrutinib NCT02557516 1–2 Chronic lymphocytic leukemia

KIRs BMS-986015/IPH-
2102 (lirilumab)

Anti-PD-1, anti-CTLA4 NCT01714739 1–2 Advanced malignancies

Rituximab (CD20 inhibitor) NCT02481297 2 Advanced chronic lymphocytic  
leukemia

Anti-PD-1, anti-CTLA4 NCT03203876 1 Advanced malignancies

IPH4102 – NCT02593045 1 Relapsed cutaneous T-cell  
lymphomas

IPH2101 – NCT01222286 2 Multiple myeloma
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