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Abstract 

Diabetic retinopathy is a sight-threatening complication of diabetes, characterized by loss of retinal 

pericytes and abnormal angiogenesis. We previously demonstrated that extracellular vesicles (EVs) derived 

from mesenchymal stem cells cultured in diabetic-like conditions are able to enter the pericytes, causing 

their detachment and migration, and stimulating angiogenesis in vitro. The purpose of this work was the 

molecular and functional characterization of EVs derived from diabetic subjects with or without diabetic 

retinopathy, compared with healthy controls.  Characterization of EVs extracted from serum/plasma of 

diabetic patients with or without retinopathy, and healthy controls, was performed by FACS and microarray 

analysis of microRNA (miRNA) content. Relevant miRNA expression was validated through qRT-PCR.  EV 

influence on pericyte detachment, angiogenesis and permeability of the blood-retinal barrier was also 

investigated. Diabetic subjects had a 2.5 fold higher EV concentration than controls, while expression of 

surface molecules was unchanged. Microarray analysis revealed 11 differentially expressed miRNAs. Three 

of them (miR-150-5p, miR-21-3p and miR-30b-5p) were confirmed by qRT-PCR. Plasma EVs from subjects 

with diabetic retinopathy induced pericyte detachment and pericyte/endothelial cell migration, increased 

the permeability of pericyte/endothelial cell bilayers and the formation of vessel-like structures, when 

compared with EVs from controls. In conclusion, circulating EVs show differences between diabetic patients 

and healthy subjects. EVs extracted from plasma of diabetic retinopathy patients are able to induce 

features of retinopathy in in vitro models of retinal microvasculature. Our data suggest a role for miR-150-

5p, miR-21-3p and miR-30b-5p as potential biomarkers of the onset of diabetic retinopathy.  
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1. Introduction 

The pathogenesis of diabetic microvascular complications is closely linked to vessel abnormalities, due to 

altered interactions between pericytes and endothelial cells (ECs) (Raza et al., 2010). ECs are primarily 

exposed to the complex signalling from the blood flow and can influence pericytes, while pericytes transmit 

to the endothelium signals from neighbouring tissues (Armulik et al., 2005). This is further complicated by 

the angiogenesis paradox in diabetes: while diabetic retinopathy eventually leads to increasing hypoxia 

which stimulates abnormal neovascularization in the retina, potentially useful angiogenesis is inhibited in 

other ischaemic organs, such as the heart and limbs (Costa and Soares, 2013).  

Therapeutic use of autologous/donor material is considered a potential option for the treatment of 

patients with multifactorial diseases. Extracellular vesicles (EVs) are released by different cell types in the 

vascular environment. EV surface antigens are specific of the donor cells and can help identify their origin. 

EVs have a regenerative potential, since they contain lipids, proteins, RNA and microRNAs (miRNA), and 

shuttle information that regulate the functions of target cells (Camussi et al., 2010). On the other hand, 

important pathophysiologic mechanisms associated with endothelial dysfunction in vascular disease 

(diabetes, atherosclerosis and hypertension), could be orchestrated by circulating EVs, or EVs from 

surrounding tissues acting in a paracrine way. As EVs can modulate vascular permeability, tone and 

angiogenesis, they might contribute to vascular complications, in particular diabetic retinopathy (Müller, 

2012). EV secretion depends on the status of donor cells; therefore they could represent promising 

biomarkers in patients with metabolic diseases, such as type 2 diabetes(Müller, 2012). An increased 

concentration of circulating EVs has been reported in diabetic animals (Müller, 2012) and type 2 diabetic 

individuals (Koga et al., 2005; Feng et al., 2010; Helal et al., 2010). 

MicroRNAs (miRNAs) are small non-coding sequences of 18-24 nucleotides, which interfere with stability 

and translation of target mRNAs by coupling with complementary sequences and thus exerting a negative 

regulatory effect (Fabbri et al., 2008). They can circulate freely in the blood flow or be embedded inside 

EVs, which can transfer them from cell to cell (Valadi et al., 2007). Circulating miRNAs are correlated with 

the disease states and are currently studied as putative biomarkers of cancer and chronic diseases, such as 

type 1 and 2 diabetes (Guay and Regazzi, 2013; Snowhite et al., 2017), and diabetic retinopathy 

(Mastropasqua et al., 2014). 

We have recently demonstrated that EVs derived from the mesenchymal stem cells (MScs) enter human 

retinal pericytes (HRPs), causing their detachment from substrate and migration. They also induce 

angiogenesis in vitro and increase blood-retinal barrier permeability. These effects are worsened by 

culturing MSCs in high glucose and hypoxia, conditions similar to those described in the diabetic 

microvasculature (Beltramo et al., 2014). Subsequently, we showed that the expression of miR-126, which 

plays a prominent role in angiogenesis (Mastropasqua et al., 2014) and is involved in diabetic retinopathy 

(Bai et l., 2011; Ye et al., 2013), is down-regulated in HRPs exposed to MSC-derived EVs obtained in 

hyperglycaemic/hypoxic conditions, leading to increased expression of angiogenic molecules, such as 

vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 α (HIF-1α) (Mazzeo et al., 2015). 

Therefore, we concluded that diabetic-like conditions may influence vessel stability through EV paracrine 

signalling. 

Our present hypothesis is that circulating EVs, affected by the diabetic condition, may influence small vessel 

homeostasis, and that identification of molecular differences in EVs from healthy controls and diabetic 

subjects, with and without microvascular complications, could represent a predictive option for diagnostic 
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purposes. The objectives of this work are therefore the molecular and functional characterization of 

circulating EVs from serum and plasma of diabetic patients with or without retinopathy and healthy 

controls, and to investigate their role in the regulation of small vessel homeostasis and angiogenesis.  

 

2. Materials and methods 

2.1 Subjects 

Seven type 1 diabetic subjects with proliferative diabetic retinopathy, but without other diabetic 

complications, systemic diseases limiting life expectancy (eg cancer, cirrhosis), or other autoimmune 

diseases, were included in the DR group. They were age- and gender-matched with 7 healthy controls (CTR 

group) and 7 diabetic subjects without retinopathy (noDR group) (Table 1). All diabetic patients were on 

multiple daily insulin injections and performed self-blood glucose monitoring, but took no other 

medication. Participants were asked to sign an informed consent. Ethical clearance for involvement of 

human subjects in research was obtained from the Comitato Etico Interaziendale A.O.U. Città della Salute e 

della Scienza di Torino - A.O. Ordine Mauriziano - A.S.L. TO1. 

Overnight fasting venous blood samples were collected in tubes containing EDTA for plasma separation and 

clot activator for serum.  

2.2 Cell cultures 

Human retinal pericytes (HRPs) were stabilized in our laboratory, as previously described (Berrone et al., 

2009). Human bone marrow MSCs, and human microvascular ECs (HMECs) were purchased from Lonza 

(Basel, Switzerland). HRPs and MSCs were maintained in DMEM + 10%FCS, while HMECs in EBM-2 growth 

medium (Lonza) supplemented with angiogenic factors, according to the instructions. When subcultured 

for the experiments they were grown in DMEM + 10% FCS. Reagents for cell cultures were purchased from 

Sigma-Aldrich (St Louis, MO, USA). 

 

2.3 EV isolation and characterization 

Collection of EVs from serum, plasma and MSCs was performed by centrifugation at 3000 g for 30 minutes 

to remove debris, apoptotic bodies and platelets, followed by ultracentrifugation at 100,000 g for 3 hrs at 

4°C of the cell-free supernatants (ultracentrifuge: Optima L-100K, Beckman Coulter, Brea, CA, USA; rotor: 

90 Ti, 90000 rpm, fixed angle, Beckman Coulter). EVs were either used immediately or stored at −80°C in 

DMEM + 5% dimethyl-sulfoxide. No differences in biological activity were observed between fresh and 

stored EVs. EV size, distribution and number were assessed using a NanoSight LM10 (NanoSight Ltd, Minton 

Park, UK), running the Nanoparticle Tracking Analysis 2.3 software. For all in vitro experiments we used an 

EV concentration similar to the one measured in peripheral blood of CTR group, according to our 

preliminary data (8-10×108 EV/ml), in order to rule out possible dose-dependent effects on microvascular 

cells. 

2.4 Expression of surface molecules 

EV expression of surface molecules was measured by FACS analysis using Guava easyCyte™ Flow Cytometer 

(Millipore, Burlington, MA, USA) with a panel of antibodies (Abcam, Cambridge, UK) against adhesion 

molecules (CD29, CD44, CD81), VEGF-receptor 1 and 2 (VEGFR-1 and VEGFR-2), marker proteins for: MSCs 

(CD73, CD29, CD90, CD105, CD44), exosomes (CD63, CD81), ECs (CD105, CD31), platelets (CD42), 

monocytes (CD14), lymphocytes (CD3, CD4, CD20, CD45, CD81). Staining with FITC-conjugated annexin-V 

was used as a marker for phosphatidyl-serine (PS). 
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2.5 Cell survival parameters 

We evaluated the ability of EVs from the 3 groups to influence viability and proliferation of microvascular 

cells. HMECs and HRPs cultured in serum-deprived DMEM were exposed for 24 hrs to serum/plasma EVs 

from the different subjects and from MSCs, when appropriate. To evaluate HRP detachment, cells remained 

attached to wells after washing were trypsinized and counted by 2 individual operators in Bürker chambers 

after Trypan blue staining. Proliferation was measured as DNA synthesis (Cell Proliferation ELISA BrdU kit, 

Roche Diagnostics, Basel, Switzerland) and apoptosis as DNA fragmentation (Cell Death Detection ELISAPLUS 

kit, Roche), according to the manufacturer’s instructions. 

 

2.6 Permeability 

40,000 ECs/well were seeded on the inner surface of 0.45-μm pore-transwell inserts (Corning, New York, 

USA) and let adhere for 24 hrs. 40,000 HRPs were subsequently added into the same insert. After further 24 

hrs, inserts were washed and moved to clean wells. 600 µl DMEM without red phenol and FCS were added 

in the lower chamber, while 200 µl of the same medium supplemented with serum/plasma EVs were added 

into the inserts. After 2 hrs, FITC-dextran (100 µg/ml final concentration) was added into the upper 

chamber, and fluorescence measured in the lower chamber after further 30’, 1, 2, 3 and 4hrs, through a 

Victor-3 Multilabel Plate Reader (Perkin Elmer, Waltham, MA, USA). 

 

2.7 Cell migration 

HRP and HMEC migration rate following 24hr exposure to plasma EVs from the different groups was 

evaluated using the colorimetric QCM Chemotaxis Cell Migration Assay (Merck-Millipore, Darmstadt, 

Germany), according to the instructions. Briefly, cells were seeded inside 8µm pore polycarbonate 

membranes and exposed to EVs. Cells still inside the insert were removed and those migrated through the 

membrane stained. The stain was subsequently extracted and transferred to a 96-well ELISA plate for 

colorimetric reading at 560 nm. 

 

2.8 Vessel-like formation assay 

15,000 HRPs and 15,000 HMECs were seeded together onto Matrigel-coated 24-well plates and cultured in 

serum-deprived DMEM added with plasma EVs from all subjects of the 3 groups. Control cultures were 

obtained seeding 30,000 HRPs or 30,000 ECs alone in Matrigel-coated wells. After 24 and 48 hr incubation, 

phase-contrast images at 200x magnification of five random fields per each well were recorded, and the 

total length of the network structures in each field measured using the MicroImage analysis system (Casti 

Imaging, Venice, Italy), as previously described (Bussolati et al., 2003). Mean of the 5 fields of each well was 

calculated. Each measure was performed in duplicate wells and expressed as ratio of control without EVs. 

2.9 MicroRNA profiling and bioinformatics analysis 

Preliminary microRNA profiling was performed on plasma EVs extracted from the 4 subjects in each group, 

who best matched with their correspondent subjects in the other two groups, as regards physical and 

clinical characteristics, in order to reduce as much as possible individual variations. 

Total RNA was extracted from EVs using mirVana RNA Isolation kit (Thermo Fisher Scientific, Waltham, MA, 

USA), which also allows for isolation of small RNAs. 50 ng of total RNA were reverse-transcribed to cDNA 

using TaqMan® MicroRNA Reverse Transcription Kit (Thermo Fisher Scientific). Subsequently, cDNA was 

pre-amplified with Megaplex™ RT Primers, Human Pool Set v3.0 and TaqMan® PreAmp Master Mix 

(Thermo Fisher Scientific). The expression profile of a panel of 754 human microRNAs was evaluated by 

TaqMan® Human MicroRNA Array, Card Set A and B, v3.0 (Thermo Fisher Scientific), according to the 

manufacturer’s instructions. qRT-PCR was performed using the QuantStudioTM 12K Flex Real-Time PCR 
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System (Applied Biosystems). Raw Ct values were calculated using the QuantStudio 12k Flex Software, 

while the Expression Suite software was used to compare miRNA expression.  Relative quantification (RQ) 

was obtained using the 2−ΔΔCt method. Data were normalized using global normalization (Mestdagh et al., 

2009). MiRNAs expressed in all groups (i.e. at least 3 samples out of 4 in each group with Ct < 35) were 

selected for the statistical analysis. Fold increases in DR and noDR were expressed as ratio against the 

values of the correspondent CTR sample.  

2.10 Quantitative Real Time PCR (qRT-PCR) 

On the basis of data obtained with arrays, qRT-PCR was performed on plasma EVs from all individuals (7 

subjects per each group) to validate the 11 miRNAs found to be differentially expressed. Total RNA was 

extracted using mirVana RNA Isolation Kit and quantified spectrophotometrically (Nanodrop ND-1000, 

Wilmington, DE, USA). 50 ng of RNA were reverse-transcribed using TaqMan® microRNA Reverse 

Transcription kit. qRT-PCR was performed through TaqMan® microRNA assay kits specific for the 11 

miRNAs, using the QuantStudioTM 12K Flex Real-Time PCR System. miRNA expression was normalized 

against the small nuclear RNA RNU6B.  

2.11 Statistical analysis 

Statistical comparisons as regard subject characteristics, functional studies, and miRNAs expressed in all 

groups were carried out by one-way ANOVA with Bonferroni post-hoc correction and/or two-tailed 

Student’s t-test for paired data, as appropriate. Results were considered significant for p≤0.05. SPSS 

software version 24.0 (IBM) was used for statistical analysis. 

 

 

3. Results 

 

3.1 EV characterization 

EVs collected from serum and plasma of subjects belonging to the 3 groups (CTR, noDR and DR) by 

ultracentrifugation were analyzed by NanoSight. They showed similar mean size among groups, and 

between serum and plasma. The number of EV/ml was 2.5 fold higher in both diabetic groups in 

comparison with healthy controls, but inside each group there were no differences between serum and 

plasma (Table 1). Among diabetic patients, there was no correlation between HbA1c levels and EV 

concentrations in serum (r=0.137, p=0.673) or in plasma (r=0.269, p=0.541). 

 

3.2 Expression of surface molecules 

EVs from serum and plasma of all groups, analyzed by Guava FACS analysis, expressed surface markers for 

MSCs (CD73, CD29, CD90, CD105, CD44), ECs (CD105, CD31), exosomes (CD63, CD81), monocytes (CD14), 

lymphocytes (CD3, CD4, CD20, CD45, CD81) and platelets (CD42), as well as adhesion molecules (CD29, 

CD44, CD81), VEGFR-1 and VEGFR-2. The expression of all the above did not change among groups or 

between serum/plasma (Table 2). Instead, we found a higher PS+ EV concentration in serum than in plasma 

in noDR and DR groups.  

 

3.3 EV effects on HRP detachment and survival parameters 

Sub-confluent HRP cultures were exposed for 24 hrs to EVs extracted from serum and plasma of the 3 

groups and to EVs derived from MSC, as we previously showed that MSC-EVs provoke HRP detachment 

from the substrate (Beltramo et al., 2014). We found that EVs from blood induce a 20-30% HRP 
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detachment, similar to that induced by MSC-EVs (-18% vs HRPs cultured without EVs, p<0.05 in all cases vs 

control cultures without EVs), without significant differences between serum and plasma (Fig. 1). 

Proliferation and apoptosis measured in HRPs which had remained attached to wells were unchanged by EV 

exposure. As regards HMECs, no direct effects of EV exposure to survival/proliferation/apoptosis 

parameters were found (data not shown). 

 

3.4 EV effects on retinal blood-barrier permeability 

FITC filtration through EC/HRP bilayers mimicking the inner blood retinal barrier was increased in a time-

dependent manner by EV exposure (Fig. 2a). EVs derived from both serum and plasma of noDR and DR 

patients increased permeability significantly more than EVs from healthy subjects (CTR group), but DR-EVs 

further enhanced permeability in comparison with noDR-EVs (Fig. 2b). Again, no differences were found 

between serum and plasma EVs inside each group, consistently with previous observations in the literature 

(Witwer et al., 2013). Therefore, we chose to use plasma-derived EVs only for the subsequent experiments. 

 

3.5 Retinal cell migration following EV exposure 

Migration of HMECs and HRPs through Transwell membranes was measured after 24 hr exposure to plasma 

EVs from the 3 different groups of subjects. noDR and DR-EVs were able to increase of a 20-40% both 

HMEC and HRP migration rate, in comparison with CTR-EVs and control cultures without EVs (p<0.05 vs 

both) (Fig. 3).  

 

3.6 In vitro formation of vessel-like structures by HRP/EC co-cultures 

Plasma EVs from the 3 groups added to HRP/EC co-cultures on Matrigel promoted the formation of vessel-

like structures. While in control wells ECs and HRPs seeded separately remained in a sub-confluent shape, 

in wells where they had been seeded together, tubular structures were present. EV exposure of EC/HRP co-

cultures enhanced the number of these newly-formed structures in all cases. New vessel number was 

further increased by EVs extracted by noDR subjects (+ 47% in comparison with CTR) and, most of all, by DR 

patients (+111%, p=0.001 vs CTR and p<0.05 vs noDR) (Fig. 4). 

 

3.7 MicroRNA profiling 

We assessed the expression of 754 miRNAs in plasma EVs extracted from 4 subjects per each group. 

MiRNAs considered as expressed (at least 3 samples out of 4 in each group with Ct < 35) were analyzed 

individually. Microarray analysis revealed 11 miRNAs to be differentially expressed in the 3 groups, 

especially as regards DR group in comparison with healthy controls (CTR). In particular, 6 miRNAs were 

upregulated in DR vs CTR (p<0.05):  miR-17-5p, miR-21-3p, miR-30b-5p, miR-106a, miR-139-5p, and miR-

484. Among these, miR-21-3p was significantly upregulated also in noDR vs CTR (p<0.001), and miR30b-5p 

in DR vs noDR (p<0.05).  

Conversely, 5 miRNAs were downregulated in DR vs CTR (p<0.05): miR-24-3p, miR-150-5p, miR-155-5p, 

miR-342-3p, and miR-1243. miR-24-3p, miR-150-5p, and miR-1243 were decreased also in DR vs noDR 

(p<0.05) (Fig. 5). The complete list of miRNAs expressed in the 3 groups without significant differences is 

shown in Suppl. Mat. 1.  

Subsequently, the expression of the differentially expressed miRNAs was checked by qRT-PCR and 3 out of 

11 were confirmed to change significantly among groups. In particular, miR-150-5p was strongly decreased 

in the DR group (-77.5%, p=0.000 vs CTR and p<0.05 vs noDR) (Fig. 6a), while miR-21-3p was 3-fold 

upregulated in noDR (p<0.05) and 5-fold in DR (p=0.001), as compared with CTR (Fig. 6b). Finally, miR-30b-

5p was unchanged in noDR group and 5-fold increased in the DR group (p=0.001 vs CTR and p<0.05 vs 
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noDR) (Fig. 6c). miRNA expressions did no correlate with HbA1c levels in diabetic subjects: miR-150-5p (r=-

0.378, p=0.281), miR-21-3p (r=0.520, p=0.123), or miR-30b-5p  (r=0.283, p=0.428). 

 

 

4. Discussion 

In this paper, we address the molecular and functional characterization of circulating EVs from diabetic 

subjects with or without retinopathy, as compared with healthy age- and gender-matched controls, to 

evaluate if they can be considered as potential biomarkers of the disease. Our results demonstrate, for the 

first time in our knowledge, that EVs extracted from patients with diabetic retinopathy have a different 

miRNA profiling pattern in comparison with both patients without complications and healthy controls. 

Moreover, EVs derived from diabetic patients, and especially from DR ones, are able to increase 

permeability of an in vitro model of the retinal blood-barrier, as well as migration of microvascular cells, 

and to enhance the formation of vessel-like structures in pericyte-endothelial cell co-cultures. 

Novel non-invasive and reliable biomarkers are needed to predict the risk of developing diabetes and its 

complications. To date, the prediction of the systemic disease is generally based on the measurements of 

traditional serum biomarkers (carbohydrate and lipid metabolites, glycated hemoglobin), which, together 

with physical characteristics (BMI, gender), familiarity and life styles, allow to reach a level of probability of 

prediction that still remains quite low (Herder et al., 2011; Müller, 2012). As regards biomarkers for diabetic 

retinopathy, research has focused on several molecules involved in the pathogenic mechanisms at the basis 

of the development of the complication (markers of inflammation, adhesion molecules, advanced glycation 

end products, turnover of the basement membrane and the extracellular matrix) (Kaviarasan et al., 2015; 

Simó-Servat et al., 2016). None of them, however, is specific for the retinal tissue, which all together is a 

very small portion of the body, and could rather represent a marker of systemic damage induced by 

diabetes (Simó-Servat et al., 2016). 

Circulating miRNAs have been largely addressed and investigated as non-invasive potential markers, 

especially in cancer research (Chen X et al., 2008; Kaduthanam et al., 2013; Liu et al., 2013). More recently, 

they have been proposed as markers of metabolic disorders (Heneghan et al., 2011; Pescador et al, 2013), 

and miRNA patterns different from healthy controls have been highlighted in type 1 (Snowhite et al., 2017) 

and type 2 diabetic patients (Pandey et al., 2009; Zampetaki et al., 2010; Pescador et al, 2013; Cui et al., 

2018). In the latest years, the importance of modulation of miRNAs in diabetic retinopathy has also been 

investigated (Mastropasqua et al., 2014). 

EVs could represent promising biomarkers for metabolic disease and diabetes, since their secretion is 

strictly correlated with the status of the donor cells: increased number of circulating EVs has been detected 

in diabetic animals (Müller, 2012), as well as in diabetic patients (Koga et al., 2005; Feng et al., 2010; Helal 

et al., 2010). Moreover, as EVs can modulate vascular permeability and angiogenesis, they might play a role 

in the development of retinopathy (Müller, 2012). Our results confirm that diabetic subjects, with or 

without complications, have a 2.5 fold higher serum and plasma EV concentration than healthy controls. 

Nevertheless, the same EV concentration was used for the 3 groups, in order to rule out possible dose-

dependent effects on microvascular cells. The finding that EVs extracted from DR patients, even though 

added to cell cultures in lower concentrations than circulating ones, are equally able to induce features of 

retinopathy in in vitro models of retinal microvasculature, in our opinion strengthens our data. 
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An univocal consensus in the literature about EV subdivision by size has not yet been reached. A recent 

review indicates exosome range as 50-150 nm, and microvesicle as 50-500 nm, with a substantial 

overlapping in size, and similar morphology (van Niel et al., 2018). The size of the EVs we extracted from 

the three groups ranged between 74-233 nm, with high deviation among cases. Therefore, they can be 

considered to include both microvesicles and exosomes, this being confirmed by the presence of typical 

exosome markers (CD63 and CD81, Kowal et al., 2016) on 20-30% EVs. EVs extracted from the three groups 

own surface markers of platelets, lymphocytes, monocytes, ECs and MSCs, showing their heterogeneous 

origin. Moreover, their expression of adhesion molecules and VEGF receptors suggest that they could play a 

role in angiogenesis. However, since no differences were found among groups as regards the expression of 

surface antigens, we hypothesize that their putative different effects on retinal microvasculature could be 

rather ascribed to inner molecules. EVs are in fact a reservoir of lipids, cytokines, signaling proteins, 

receptors, transporters, enzymes, mRNAs and miRNAs that are shuttled from cell-to-cell (Camussi et al., 

2010), and can also be transferred across the blood-brain and blood-retinal barriers (Müller, 2012). 

The study of the effects of EVs extracted from the 3 groups on in vitro models of retinal microvasculature 

and retinal blood-barrier showed that circulating EVs have the same potential as MSC-derived EVs to induce 

pericyte detachment from the substrate (Beltramo et al., 2014). No differences were found between EVs 

extracted from serum or plasma within each group, consistently with previous observations about 

superimposable behavior of serum and plasma EVs (Witwer et al., 2013). Therefore, we chose to use 

plasma-derived EVs only for the subsequent experiments, in agreement with the review by Witwer et al. 

(2013), which indicates plasma as the medium of choice for EV extraction. 

The characteristic features of early diabetic retinopathy comprise loss of retinal pericytes, leading to 

increased permeability through the blood-retinal barrier, neovascularization and angiogenesis (Armulik et 

al., 2005; Beltramo and Porta, 2013). In this paper, we demonstrate that EVs derived from DR patients 

induce a significantly higher detachment of pericytes from the substrate, without affecting those remaining 

attached. Moreover, pericytes and ECs exposed to EVs from both diabetic groups show a greater migration 

rate. These findings are consistent with previous observations demonstrating that pericytes detached from 

their substrate following stimulation with EVs derived from MSCs cultured in diabetic-like conditions 

remain viable, maintaining their capability of adhesion to new substrates and showing no signs of apoptosis 

(Beltramo et al., 2014). Pericytes play a major role in new vessel stabilization during angiogenesis (Gerhardt 

and Betsholtz, 2003), so we can speculate that those that detach from vessels following EV exposure 

migrate to stabilize new vessels, as previously hypothesized (Pfister et al., 2008; Beltramo et al., 2014). 

Furthermore, our results show an increased permeability through EC/pericyte bilayers exposed to EVs 

derived from both groups of diabetic subjects, with a greater increase for those derived from DR patients. 

Consistently, data from the tube formation assay in EC/pericyte co-cultures in Matrigel further underline 

the role of EVs from DR patients in inducing in vitro pathologic dysfunctions characteristic of retinopathy.  

We chose to investigate EV miRNA content because, as stated above, miRNAs are considered promising 

biomarkers. Differences in circulating miRNAs in diabetic patients (Pandey et al., 2009; Zampetaki et al., 

2010; Guay et al., 2013; Pescador et al, 2013; Snowhite et al., 2017; Cui et al., 2018) and in retinopathy 

(Mastropasqua et al., 2014) have been described, but the role of miRNAs shuttled by EVs in diabetes and its 

complications is scarcely addressed. Moreover, circulating miRNAs are subject to possible degradation in 

the blood flow, while miRNAs shuttled by EVs are protected by the lipid membrane of the EVs itself (Müller, 

2012). Using the microarray analysis, 11 miRNAs were found to be differentially expressed in DR patients as 

compared with healthy controls, while uncomplicated diabetic subjects showed only one of these to be 

altered. This suggests that miRNAs shuttled by EVs might be involved in the development of diabetic 
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retinopathy, rather than generically in diabetes. To support this hypothesis, some of the miRNAs we found 

upregulated have already been described as involved in angiogenesis and inflammation (miR-21-3p) (Ng et 

al., 2015; Snowhite et al., 2017), migration (miR-21-3p, miR-17-5p) (Otsuka et al., 2008; Ng et al., 2015), 

increased in the ischemic retina (miR-106a-5p) (Shen et al., 2008), or overexpressed in the retina of diabetic 

mice (miR-21) (Chen Q et al., 2017). Among those downregulated, miR-150-5p and miR-342-3p are 

described as anti-angiogenic (Shen et al., 2008; Fayyad-Kazan et al., 2013; Li et al., 2014), miR-150-5p is 

decreased in type 1 (Estrella et al., 2016) and miR-155-5p in type-2 diabetes (Corral-Fernandez et al., 2013).  

Subsequent validation through qRT-PCR using specific primers confirmed 3 out of the 11 miRNAs only to be 

differentially expressed. miR-150-5p was found to be strongly downregulated in the EVs from DR subjects, 

consistently with previous findings showing its suppression in pathological neovascularization in mice with 

oxygen-induced proliferative retinopathy (Liu CH et al., 2015). miR-150 was also demonstrated to decrease 

EC migration and tubular formation, by inhibiting the expression of several angiogenic mediators (Liu CH et 

al., 2015). On the contrary, miR-21-3p was confirmed to be upregulated in both noDR and DR groups. This is 

consistent with observations of its overexpression in the retina of db/db mice, with concomitant decrease 

in peroxisome proliferator-activated receptor-α levels (Chen Q et al., 2017). miR-21 was also shown to 

induce angiogenesis through activation of AKT and extracellular-signal-regulated kinase (ERK), and 

associated increase of HIF-1α and VEGF expression (Liu LZ et al., 2011), while, more recently, an analogue 

function specific for miR-21-3p has been proposed (Báez-Vega et al., 2016; Snowhite et al., 2017). Finally, 

our finding of an upregulation of miR-30b-5p in patients with DR is consistent with recent evidence in the 

literature showing its role as a pro-angio-miRNA, shuttled by EVs inside EC, and promoting EC migration and 

tube formation in vitro (Gong et al., 2017). Thus, we can hypothesize a role for miR-150-5p, miR-21-3p and 

miR-30b-5p as potential biomarkers for the onset of DR. 

The strengths of our study are bound to the description of novel mechanisms involved in the onset and 

progression of diabetic retinopathy. For the first time in our knowledge we demonstrate that circulating 

EVs from diabetic patients with retinopathy have miRNA profiling patterns different from both diabetic 

subjects without complications and healthy controls. In addition, we show that EVs derived from DR 

patients are able to determine pathological changes in microvascular cells compatible to those 

characteristics of the disease. Finally, we hypothesize that miR-150-5p, miR-21-3p and miR-30b-5p could be 

novel potential biomarkers for the onset and progression of diabetic retinopathy. As regards the 

weaknesses of our work, a limited number of patients have been enrolled. Further subjects are needed to 

confirm the potential role of these molecules. Moreover, we restrict to the miRNA profiling, but EVs 

contain several other molecules, such as proteins and mRNAs, which are worthwhile to be investigated.  

 

5. Conclusions 

Non-invasive and reliable biomarkers are needed to predict the risk of developing diabetes and its 

complications. Our results demonstrate that circulating EVs extracted from DR patients are able to induce 

features of retinopathy in in vitro models of retinal microvasculature, such as detachment and migration of 

pericytes, formation of new vessels and increased retinal blood-barrier permeability. The identification of 

molecular differences in EVs from healthy controls and diabetic subjects with or without retinopathy could 

hopefully provide new predictive biomarkers of the onset of diabetic retinopathy or for prevention 

purposes. We present here a panel of EV-derived miRNAs, involved in angiogenesis and inflammation, 

which are differently modulated in DR subjects. Among these, miR-150-5p, miR-21-3p and miR-30b-5p 
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seem to be strongly related to diabetic retinopathy and might be taken into account as potential 

biomarkers of the onset/development of the disease. In addition, they could be addressed as specific 

targets for anti-angiogenic strategies aimed at the prevention of this complication. 
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Table 1 Group characteristics. CTR: healthy controls; noDR: diabetic subjects without retinopathy, DR: diabetic 

patients with severe retinopathy. a) Subjects clinical characteristics, b) EV characteristics. Data are expressed as 

mean±SD (range), as appropriate. HbA1c is expressed as mmol/mol (%). Statistical comparisons among groups were 

performed by one-way ANOVA with Bonferroni post-hoc correction or Student’s t-test for paired data. No differences 

among groups were found as regards age and BMI (3 groups), duration of disease and HbA1c (noDR and DR). noDR 

and DR had a 2.5 fold increase in EV concentration vs CTR, 
a)

 = p<0.05. 

 

 

 CTR noDR DR 

a. Subject clinical characteristics    
Gender (F/M) 3/4 3/4 3/4 

Age (years) 

 
41.0±10.6  
(33-63) 

46.1±11.7 
(27-67) 

39.3±5.9 
(29-56) 

Bmi (Kg/m
2
) 24.3±2.9  

(20.2-29.0) 
23.1±2.0  
(20.3-26.4) 

26.8±2.9  

(22.1-29.0) 
Duration of disease (years) 

N/A 
27.3±14.2  
(15-47) 

28.0±12.8  
(8-41) 

HbA1c [mmol/mol (%)]  

N/A 
58.5±10.1 
(7.5±1.3) 

68.3±4.1  
(8.4±0.5) 

Diabetic retinopathy Y/N) N/A N Y  

b. EV characteristics    
Serum EV size (nm) 181±36  165±28  173±34  

Plasma EV size (nm) 166±31  175±24  158±39  

Serum EV concentration (EV/ml) 8.6±1.1x10
8
  19.8±4.1x10

8
 
a)

 18.6±3.1x10
8
 
a)

 

Plasma EV concentration (EV/ml) 7.3±1.0x10
8
  19.2±2.7x10

8
 
a)

 18.8±4.3x10
8
 
a)
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Table 2  Marker expression on EV surface.  CTR: healthy controls; noDR: diabetic subjects without retinopathy, DR: 

diabetic patients with severe retinopathy. Data are expressed as mean±SD. Statistical comparisons among groups 

were performed by one-way ANOVA with Bonferroni post-hoc correction. 
a)

 = p<0.05 vs no DR serum, 
b)

 = p<0.05 vs DR 

serum 

 

 CTR 
serum 

CTR 
plasma 

noDR 
serum 

noDR 
plasma 

DR 
serum 

DR 
plasma 

CD3 10.5±12.0 7.3±9.3 32.1±10.1 30.2±8.3 30.8±15.2 29.7±15.1 

CD4 52.0±26.7 54.7±25.7 59.1±7.9 52.9±7.6 65.5±9.5 63.1±11.3 

CD14 70.1±7.5 74.0±7.5 70.4±8.2 71.0±6.9 68.8±5.3 69.5±6.3 

CD20 25.7±15.0 27.3±15.5 47.2±8.6 50.8±11.3 52.5±7.8 53.8±9.5 

CD29 66.7±7.5 70.0±4.3 60.1±5.8 59.0±6.1 60.3±0.4 60.5±4.9 

CD31 69.0±3.1 70.2±2.1 72.2±8.5 70.6±6.7 73.8±2.5 72.5±3.5 

CD42 49.7±12.7 51.0±10.3 52.3±5.3 58.1±10.4 56.1±9.5 55.3±7.8 

CD44 70.3±3.2 72.0±7.5 58.1±7.8 67.1±11.6 66.2±2.8 69.3±8.5 

CD45 38.2±6.0 39.1±6.6 28.5±8.7 37.5±7.7 38.8±14.5 42.3±13.8 

CD63 21.7±4.9 21.7±6.1 18.8±5.2 17.2±6.8 19.5±9.2 20.7±5.3 

CD73 69.7±5.9 72.7±3.2 70.0±5.9 68.4±6.8 68.5±2.2 67.8±6.7 

CD81 30.7±2.9 30.6±2.8 35.1±5.8 41±9.9 37.2±14.1 36.9±14.0 

CD90 72.5±7.8 73.3±10.7 79.1±8.7 80.3±9.5 82.3±7.4 80.7±6.2 

CD105 54.3±4.9 57.7±6.7 49.2±6.7 55.7±5.8 39.5±13.4 47.2±11.3 

VEGFR-2 10.8±7.6 12.8±9.8 15.3±2.9 22.0±8.5 22.0±6.2 23.5±5.8 

VEGFR-1 62.7±13.7 64.3±12.2 77.0±12.1 74.1±11.0 75.0±13.6 75.2±9.8 

PS 39.9±15.2 25.6±7.8 23.5±2.5 3.5±3.2 
a)

 18.3±3.6 10.4±3.8 
b)
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Fig. 1 Comparison of the effects of EV from different sources on HRP detachment after 24 hr exposure to EV derived 

from serum (light grey bars) and plasma (dark grey bars) of the 3 groups (CTR, noDR, DR), compared to MSC-derived 

EV (black bar) and control HRP cultures without EV (white bar), n=7 per group, * p<0.05 vs noEV, # p<0.05 vs CTR 

serum EV, $ p<0.05 vs CTR plasma EV. Same EV concentration (8-10×10
8 

EV/ml) was used for all cases. 

 

 

 

 
 

Fig. 2 Effects of EVs from serum/plasma on permeability of EC/HRP co-cultures in transwell inserts a) time-course 

permeability, after 2 hr EV stimulation; b) permeability at t=4 hrs. n=7 per group, sEV= EVs derived from serum, pEV = 

EVs derived from plasma, *=p<0.05 vs serum-derived EVs in CTR group, # = p<0.05 vs plasma-derived EVs in CTR 

group, $ =p<0.05 vs serum-derived EVs in noDR group, £=p<0.05 vs plasma-derived EVs in noDR group. Same EV 

concentration (8-10×10
8 

EV/ml) was used for all cases. 
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Fig. 3 EVs from plasma of diabetic subjects enhance retinal cell migration. a) HMEC, b) HRP. N=7 per group, noEV= 

cell cultures without EV exposure, CTR-EV= cell cultures exposed to EVs from CTR group, noDR-EV cell cultures 

exposed to EVs from noDR group, DR-EV cell cultures exposed to EVs from DR group.  * p<=0.05 vs noEV and CTR-EV. 

Same EV concentration (8-10×10
8 

EV/ml) was used for all cases. 
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Fig. 4 EVs from plasma of diabetic subjects increase in vitro formation of vessel-like structures by HRP/EC co-

cultures. a-f) Vessel-like structure formation by HRPs and HMECs alone, HRP/HMEC co-cultures in Matrigel without 

addition of EVs (noEV), and after 48 hr addition of EVs from the 3 groups: healthy controls (CTR), diabetic subjects 

without (noDR) and with retinopathy (DR). Magnification 200x. g) Quantitative analysis of newly-formed vessel-like 

structures after 48 hr EV incubation, fold increases vs CTR group, n=7 per group, * p=0.001 vs CTR and p<0.05 vs noDR. 

Same EV concentration (8-10×10
8 

EV/ml) was used for all cases. 
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Fig. 5 miRNA profiling in plasma EVs extracted from healthy subjects (CTR) and from diabetic patients without (noDR) 

and with retinopathy (DR), expression of the 11 differentially expressed miRNAs, fold increases vs the control group 

(CTR). White bars: CTR, light grey bars: noDR, dark grey bars: DR. N=4 per group, * p<0.05 vs CTR, # p<0.05 vs noDR. 
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Fig. 6 a) miR-150-5-p, b) miR-21-3-p and c) miR-30b-5p expression in plasma EVs extracted from healthy subjects 

(CTR) and from diabetic patients without (noDR) and with retinopathy (DR), fold increases vs the control group (CTR). 

White bars: CTR, light grey bars: noDR, dark grey bars: DR. N=7 per group, * p<0.05 vs CTR, # p<0.05 vs noDR. 

 

 


