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Abstract. This paper presents an ontological model for defining competency 

paths in STEM education, designed for the implementation of an adaptive system 

integrated in virtual communities. The model is applied for clustering materials 

for automatic assessment and the results are discussed. 
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1 Introduction 

The present work is part of a research whose aim is to enhance competency-based ed-

ucation. To foster learners' formative assessment and to support instructors in extending 

teaching strategies, a new system is proposed. Development and experimentation are 

conducted in Technology Enhanced Learning Environments (TELEs), ideal tool for 

managing large amount of data. Semantic-capturing methods are considered for auto-

matically structuring resources by intended in-and-outcomes. 

A methodology for preparing materials for automatic assessment is discussed con-

sidering results from ontology-based clustering of resources shared within the virtual 

community of a national-wide project for Secondary School. 

2 Methodology 

To enable automatic organization of any kind of resource, the system provides for nat-

ural language descriptions about intended in-and-outcomes. Models are applied for 

clustering a collection of resources produced and shared by instructors. The comparison 

between the original grouping and generated clusters are exploited for gathering in-

sights about the applicability of the models. 
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2.1 Models 

The new model of Measurable Learning Object is designed and proposed as essential 

authoring guide to explicate learning intentions and success criteria the materials are 

designed for. This model is linked to an ontological one, designed for extracting infor-

mation about competences from free-texts. The Virtual Learning Community model 

specifies the context where the system can be implemented as integrated resource. 

Virtual Learning Community.  

The feasibility of the system relies on the existence of a common framework of com-

petences expected to be achieved by learners at the end of the learning process, which 

instructors agree upon. Such framework can be efficiently explained and maintained in 

a Virtual Learning Community (VLC) [1, 2]. It is a “community of communities”: the 

community of instructors who collaboratively learn new methodologies supported by 

tutors in the use of advanced tools; the community of the online courses held by a 

teacher for his students; the global community of students.  

The system is proposed to be experimented in national [3] and transnational [4, 5] 

scale, as integration of the Learning Management System hosting the VLC. 

Measurable Learning Object.  

This study focuses on the ‘atomic’ components of the products of Computer Aided-

Assessment [6], referred to as Measurable Learning Materials (MLO): digital resources 

containing one (only one) response area dedicated to automated assessment, associated 

to the “PRO” triple of descriptors: 

 P – Performance (“instructional”, “behavioural” or “learning” objective) is a specific 

statement about the observable behaviour required to the learner.  

 R – Requisites (“pre-requisites”) states the necessary and sufficient objectives that 

the learner is able to fulfil to successfully perform the MLO. 

 O – Objectives (or “goals”) specifies what the learner is required to be able to do as 

result of the educational activity the MLO was created for.  

Ontology. 

To extract knowledge from the descriptors’ textual description, this research in-

volves the use of an ontological version of Anderson & Krathwohl taxonomy integrated 

with the domain-specific OntoMathPRO ontology (translated in Italian). OntoMath-

PRO is a bilingual (Russian/English) ontology of mathematical knowledge, shared with 

the Semantic Web community [7]. Anderson & Krathwohl’s classification organizes 

types of knowledge and thinking processes into categories [8].  

Considering the ontological model, a MLO can be linked to a set of concepts’ cou-

ples referring to a matrix: the first dimension of the matrix represents the types of 

knowledge while the second dimension represents the cognitive processes involved. 

The connection between a MLO and a matrix’s element is established by identifying 

cognitive processes and knowledge type from its content or metadata.  
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2.2 Experimentation 

The models are applied for clustering a collection of MLOs by different features: the 

MLO’s surface text and two versions of the MLO’s Performance (P), Requisites (R) 

and Objectives (O) authored separately by two experts. On each MLO’s feature – which 

consists in an input string representing a descriptor or the surface text – the clustering 

process is performed by following 4 main phases. 

─ Tokenization, stop words removal, stemming, bag-of-words representation. Maple, 

the ACE on which Maple TA is based, is used for parsing surface text’s formulae. 

To enhance the influence of semantically relevant concepts, this phase is repeated 

with tokens’ filtering using the ontology: 

 Words that appear in less than 2 input strings are filtered out. 

 Words that appear in more than the half of the input strings are filtered out. 

 Words recognized as ontological concepts are kept regardless the previous rules. 

 After the previous rules, only the first n most frequent words are kept, with values 

of n between the average lengths of vectors. 

─ The ‘transformation model’, initialized from the corpus of bag-of-words vectors, is 

used to convert any vector to the tf-idf representation. 

─ Mini Batch k-Means clustering algorithm [9] is executed on each feature’s similarity 

matrices, constructed by calculating cosine similarity for each pair of vectors: each 

MLO is labelled with one out of k clusters, where k is equal to the number of “natu-

ral” MLOs’ groupings by ‘Disciplinary area’ and by ‘Response area type’.  

V_measure homogeneity metric enables to estimate correlations between different clus-

terings [10]. Mean and standard deviation of the v_measure values from 10 process’s 

repetitions are calculated. To evaluate whether clusterings correlation depends on the 

number of clusters generated, this is performed for different values of k. Clustering 

analysis is conducted by using tools from Gensim [11], nltk [12] and scipy [13]. 

3 Results  

196 MLOs, produced with the Automatic Assessment System Maple TA [14] of the 

PP&S VLC [15], were selected from problems shared by secondary school teachers.  

Fig. 1 shows the mean of the v_measure values obtained comparing each of the 6 

clusterings generated from the MLOs’ descriptors of each given author (1P, 1R, 1O, 

2P, 2R, 2O) to respectively the labelling by disciplinary area (D) and by response area 

type (A), in case of k = 8 clusters to be generated, both without and with filtering con-

sidering values of n between 7 and 15 in steps of 2. The standard deviation values are 

about two orders of magnitude smaller than the means. Correlation values slightly in-

crease/decrease with the increase/decrease of k from the number of D (and A) group-

ings, confirming the hypothesis of 8 clusters to be expected. Results highlight that clus-

terings generated by the descriptors highly reflect both D and A groupings, since the 

v_measure mean value is higher than 0.5. These results align with the expectation that 
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a MLO can be composed in potentially infinite modalities: the descriptors express con-

cepts of mathematical problems referring to the mathematical model covered by the 

problematic situation. Filtering influences the descriptors accordingly with their respec-

tive average lengths of the generated vectors: it might enable to generate clusters which 

express concepts slightly different from those implicit in D or A. 

 

 

Fig. 1. Mean values of the v_measure comparing 1P, 1R, 1O, 2P, 2R, 2O to D and A, in case of 

k = 8 clusters to be generated and values of n between 7 and 15 in steps of 2. 

Correlation is less strong in comparison with the clustering generated by the surface 

texts: on average, the v_measure mean is less than 0.3. To guarantee the quality of the 

clusterings obtained, 1P, 1R, 1O, 2P, 2R and 2O are compared to randomly generated 

clusterings: the v_measure mean values are significantly less than 0.1. 

Some correlation between descriptors is expected. Fig. 2 shows the mean of the 

v_measure values between different combinations of 1P, 1R, 1O, 2P, 2R and 2O. Re-

sults suggest significant correlation among Performance and Objectives of the same 

author, while Requisites appears to be highly independent. 

 

 

Fig. 2. Mean values of the v_measure, for combinations of clustering from authors’ descriptors, 

in case of k = 8 clusters to be generated and values of n between 7 and 15 in steps of 2. 

Only Objectives evidence stable inter-annotation agreement between the authors. 

Adopting ontologies as semantic-proxies would enable to capture semantically related 

concepts expressed with distinct words which generate differences between authors. 

Semantic measures based on ontologies will be the subject of further research towards 

the implementation of a system for adaptively providing learning resources. Ontology 

development will grow by activating projects at national and European scale. 
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