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ABSTRACT 

 

Trachyte of the Euganean Hills is a subvolcanic porphyritic rock historically used as carving and building stone in 

northern and central Italy, primarily from the Roman times onwards, with first evidences dating back to Prehistory. The 

numerous quarries and very similar trachyte varieties, as well as the widespread use of this stone, entail several 

problems in defining its provenance for archaeological and historical materials. New petrographic and geochemical 

tracers for recognizing provenance quarry of Euganean trachyte are presented here, providing a comprehensive 

reference database for archaeometric studies. The petrographic markers principally include quantitative data about 

mineralogical composition and textural features of phenocrysts and groundmass, determined by image analysis of µ-

XRF and SEM-EDS chemical maps, in particular: abundance and grain size distribution of feldspar phenocrysts, 

phenocrysts-groundmass ratio, content of SiO2 phases in the groundmass, arrangement and grain size of microlites in 

the matrix. On the other hand, the geochemical tracers involve composition of bulk rock and phenocrysts, determined 

by XRF and LA-ICPMS, respectively; quarry recognition can be achieved using plots built from concentrations of 

major and trace elements, with mineral-scale chemistry being the most effective and precise discriminant parameter, 

especially referring to biotite and, secondarily, augite, kaersutite and magnetite. 
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1. THE EUGANEAN HILLS 

 

The Euganean Hills are a group of hills South-West of the city of Padova (Veneto) in northeastern 

Italy, covering an area of about 110 km
2
 entirely surrounded by the Venetian Plain. Here, the 

landscape is typically characterized by dome- and cone-shaped reliefs rising up to a maximum 

elevation of 601 m amsl (M. Venda). These were mainly produced by magmas that intruded into 

pre-existing sedimentary sequences and creating laccoliths, domes, or dikes; the igneous bodies 

emplaced at shallow depths were eventually exhumed in a subaerial environment, and their base 

was later buried by fluvial deposits (Cucato & Mozzi, 2011).  

Specifically, the geology of the region is characterized by a deep-water sedimentary succession of 

limestones and marls dated to the upper Jurassic–lower Oligocene, followed by a Paleogene 

volcanic and hypabyssal series, and by Quaternary deposits of alluvial origin or derived from 

weathering of the igneous rocks (Cucato et al., 2011).  

The volcanic activity in the Euganean region was part of the Veneto Volcanic Province (VVP). This 

formed in the upper Paleocene to Oligocene over an area of about 2,000 km
2
 between the Garda 

Lake and Bassano del Grappa-Padova axis, in response to the extensional tectonics of the Southern 

Alps foreland related to the collision between the Adria and European plates. The Euganean 

volcanic activity was the latest within the VVP, and included two main events. The first one, upper 

Eocene in age, was associated with submarine basic and ultrabasic products with alkaline and 

subalkaline affinity, encompassing pillow and flow lavas, breccias, hyaloclastites and tuffs, known 

as the Castelnuovo di Teolo formation. The second one, lower Oligocene in age, yielded mostly 

acid and intermediate subvolcanic rocks, at times combined with effusive and explosive products. 

Rhyolites and trachytes with moderate Na-alkaline affinity are the most recurring rock types, while 

latites and basalts subordinately occur, all being included in the M. Venda formation (De Vecchi et 

al., 1976a; 1976b; De Pieri et al., 1983; Zantedeschi, 1994; Cucato et al., 2011; Bartoli et al., 2015) 

(Figure 1). This last differentiation was primarily connected to processes of low-pressure fractional 
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crystallization of mantle-derived basic melts, which took place in multiple shallow magma 

chambers formed due to block-faulting tectonics, with modest crustal contamination (Milani et al., 

1999). 

 

 

2. QUARRYING ACTIVITY 

 

Euganean trachyte – denomination actually comprising trachytes s.s., quartz-trachytes and less 

common rhyolites and trachyandesites – is a subvolcanic rock with porphyritic texture and a grey 

color, often ranging to brown and yellow shades (Figure 2a). It is characterized by excellent 

durability and technical properties, in particular high resistance to mechanical abrasion and 

chemical alteration (Calvino, 1969; Zantedeschi & Zanco, 1993; Valluzzi et al., 2005; Graue et al., 

2011; Graue, 2013).  

Trachyte outcrops have been widely exploited in the course of time, making the Euganean Hills the 

most important district in Italy for the extraction of this material. Indeed, trachyte also occurs in 

other Italian regions (Sardinia, Lazio, Tuscany, Campania), in some cases with a notable tradition of 

use and exploitation (Calvino, 1966; Williams-Thorpe & Thorpe, 1989; De Gennaro et al., 2000; 

Frulio et al., 2004; Langella et al., 2009), but to a much lesser extent if compared to the commercial 

relevance of the Euganean district.  

Trachyte quarrying in this region is lost to history and started with the first populations settled in the 

Prehistory, but dramatically increased during the Roman times. The ancient extraction methods 

involved the use of wedges, inserted into holes in the rock or natural fractures; metallic wedges 

were hammered inwards, whereas wooden wedges were soaked with water, causing their swelling 

(Buonopane, 1987; Vergani, 1994). The resulting rock splitting was made easier by columnar, 

tabular or prismatic jointing that trachyte often displays (Figure 2b). Quarrying methods remained 

almost unchanged all through the centuries, until introduction of explosives and blasting 
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technology, experimented already in the 18
th

 century but more frequently from the end of the 19
th

 

century onwards. Quarrying continued to be particularly intense at least until the 1960s, then a 

series of legislative measures (in 1971 and then in 2001) led to a gradual drop in extraction 

activities, in order to prevent further damage that millennia of excavation caused to the local 

landscape (Figure 2c). Among the approximately 100 open pits in this area for the extraction of 

trachyte – 75 of which giving dimension stones (Calvino, 1966) – only four are still active to date 

(one on M. Merlo and the others on M. Rovarolla). 

Most quarries were developed on the edges of hills, which were more easily accessible and closer to 

residential zones and former settlements. The northwestern hills (M. Altore, M. Comun and M. 

Rovarolla, near the village Zovon di Vo’) have the highest concentration of quarries, but historically 

the most exploited localities seem to have been those of Monselice, M. Oliveto and M. Merlo, 

according to the archaeometric literature (Previato et al., 2014).  

 

 

3. ARCHAEOMETRIC BACKGROUND 

 

3.1. Historical Outline 

 

The diverse use of Euganean trachyte in cultural heritage of northern and central Italy has an age-

old tradition (Figure 3), with its first traces dating back to Prehistory (Neolithic, 5
th

 millennium 

BCE). A higher number of records, however, has been attested from Protohistory and pre-Roman 

period, within the territories controlled by the Venetic civilization as well as the Etruscans, thanks 

to mutual trades of raw and finished materials; crafting of querns has been principally reported, but 

trachyte was also used in buildings, necropolises, for funerary and votive cippi and steles (Cattani et 

al., 1997, Antonelli et al., 2004; Bianchin Citton & De Vecchi, 2009), even as temper in pottery 

production (Calogero & Lazzarini, 1984; Maritan, 2004; Maritan et al., 2006). 
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Subsequently, Roman domination led to a considerable widespread usage of Euganean trachyte 

(Lazzaro, 1992; Zara, 2016), which was frequently transported by ship along the numerous 

waterways of the Venetian Plain, the Po river, and in the Adriatic Sea (Renzulli et al., 1999; 2002b); 

this system was often preferred to small-load transports by animal-drawn carts and sleds. Beside the 

manufacture of mortars and querns (Cattani et al., 1997; Renzulli et al., 2002a; Antonelli et al., 

2004; Antonelli & Lazzarini, 2010; 2012; Santi & Renzulli, 2006), the Romans widely used 

trachyte for flagstones in paving urban and extra-urban roads – e.g., Via Flaminia, Via Aemilia, Via 

Annia – as well as for bridges, aqueducts, harbor structures, and milestones (Renzulli et al., 1999; 

2002b; Capedri et al., 2000; 2003; Grossi & Zanco, 2003; Santi & Renzulli, 2006; Grossi, 2007; 

Maritan et al., 2013; Previato et al., 2014). Moreover, the stone was used in private buildings and 

monuments, especially with structural function, and in funerary contexts, for sarcophagi, 

tombstones, cippi, urns and steles (Capedri et al., 2003; Capedri & Venturelli, 2003; Previato et al., 

2014). According to these findings, the network of trachyte circulation from the Euganean Hills, 

and therefore from the cities of Patavium (Padova) and Ateste (Este), extended at distances above 

250 km, over a broad, almost quadrilateral area traced by the Roman settlements of Mediolanum 

(Milano)-Ticinum (Pavia), Bressanone, Tergeste (Trieste)-Aquileia and Ancona-Urbs Salvia 

(Urbisaglia) (Figure 3). The Romans often adjusted the selection of the quarries based on their 

position with respect to transport routes.  

Use and trade of Euganean trachyte continued also through the Middle Ages and Renaissance, with 

the extraction of huge volumes of stone, in addition to the reuse of material from Roman artefacts 

(Renzulli et al., 1999; Capedri et al., 2000; Capedri & Venturelli, 2005; Marocchi et al., 2009). 

Especially with the rise of Serenissima Repubblica di Venezia (697–1797), stone construction was 

given a substantial boost, and trachyte was largely employed in public buildings, churches, 

monasteries, monumental gates, defensive walls, and private residences, as well as for paving 

squares and streets. The most striking examples can be admired in Venezia and Padova (Negri, 

1966; Lazzarini et al., 2008), but stone trades often went as far as the Po Valley and beyond 
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(Capedri et al., 2000). Diverse applications in urban environments continued in the 19
th

 and 20
th

 

century as well (Negri, 1966; Borghi et al., 2015; Lugli et al., 2016). 

Today, spread of Euganean trachyte and its use in construction are not limited to northern and 

central Italy, but also involve central and eastern Europe (e.g., Germany, Austria, Switzerland, 

Croatia, Netherlands, Russia). Trachyte is mostly used for cladding and paving, but also for 

restoration of historical architecture, in Italy and abroad, as in the case of excellence of Cologne 

Cathedral (Graue et al., 2011). Less noble applications comprise street furniture, breakwaters, 

cladding of structures for industrial treatment of acids and, in the form of aggregate, road 

foundations and temper in brick production.  

 

3.2. The Provenance Problem 

 

Identifying the provenance quarry of stones used in archaeological or historical objects is a common 

task in archaeometry. This may involve tracing the ancient trades and circulation routes of raw 

materials and finished artifacts, reveal historical development of quarrying activities and location of 

the main sources of stone supply, and guide the choice of proper materials for restoration. 

In the case of trachyte of the Euganean Hills, determining the provenance is even more challenging, 

since this involves a large number of quarries within a single extraction basin, which are very close, 

in some cases only a few hundred meters apart. This entails the need for carrying out provenance 

studies at high spatial resolution, in order to cast new light on the following issues: territorial 

organization of settlements; their areas of political influence; ownership and competition of 

quarries; localization of extraction and production sites; access to the main trade routes; connection 

to destination centers and preferred ways of material transport; construction relative chronology 

within single sites where materials from different quarries were used (e.g., Capedri et al., 2000); use 

of stone from specific quarries for specific applications.  
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An additional reason why archaeometry of Euganean trachyte is often essential to historical studies 

is that written sources about quarrying activities are available only from the 13
th

 century, 

sporadically though, becoming more frequent and reliable from the end of the 17
th

 century, due to 

fiscal policy of the Serenissima (Vergani, 1994); moreover, the intense exploitation has prevented 

ancient traces of excavation to be preserved and ancient semi-finished products or artifacts have 

been found only occasionally on site, for example in the quarries of M. Merlo and M. Oliveto. 

From an archaeometric point of view, Euganean trachyte can be easily discriminated from volcanic 

rocks of other important Italian quarry districts exploited in the antiquity, such as the leucite 

phonolite and tephritic phonolite of the Vulsini Mounts and Vico volcano in Umbria-Lazio, the 

basaltic trachyandesite and phonolitic tephrite of Somma-Vesuvius in Campania and the hawaiite 

and mugearite of the Etna volcano in Sicily. This can be achieved by considering the Na-alkaline 

affinity of Euganean trachyte and distribution of incompatible trace elements (Santi & Renzulli, 

2006), besides petrographic features.  

Concerning the differences within the Euganean district itself, a first detailed census of some 

varieties of Euganean trachyte based on their petrographic and geochemical characteristics was 

made by Schiavinato (1944). Later on, several datasets reporting bulk-rock chemical compositions 

(e.g., Calvino, 1969; De Vecchi et al., 1976; De Pieri et al., 1983) and chemistry of phenocrysts (De 

Pieri et al., 1977; 1978; De Pieri & Molin, 1980; De Pieri & Gregnanin, 1982) were published, 

although generally referred to few selected sites, until a collection of parameters useful for 

discriminating Euganean quarries was proposed by Zantedeschi & Zanco (1993). However, the first 

comprehensive database, which encompasses a higher number of quarry sites and currently 

represents the reference for archaeometric provenance studies of Euganean trachyte, is that set up 

by Capedri et al. (2000). Those authors proposed a distinction among the most important trachyte 

quarries based on textural features, modal composition, bulk chemical composition, and magnetic 

susceptibility. Despite its accuracy and comprehensiveness, the database has several limitations, 

discussed later in this paper. Since detailed petrographic characterization turned out to be still 
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essential, in a recent study Germinario et al. (2016) explored the effectiveness of quantitative 

petrographic parameters as provenance markers. 

In the present paper, new petrographic and geochemical tracers for discriminating and recognizing 

trachyte quarry localities in the Euganean district are illustrated, building an updated database 

containing quantitative data about mineralogy, textural features of phenocrysts and groundmass, 

bulk-rock chemistry and major- and trace-element composition of phenocrysts. The data were 

treated by means of a robust multivariate statistical approach. The aim is to provide a complete 

reference support for future provenance studies of Euganean trachyte in archaeometry, by an 

alternative and more reliable approach than what is currently available in the literature.  

 

 

4. SAMPLING AND EXPERIMENTAL SETUP 

 

A set of 86 trachyte samples (Table I) were collected covering the entire area of the Euganean Hills, 

in 40 different outcrops and quarries, most of them inactive and abandoned, localized on 20 

different hills (Figure 1). The number of samples from each quarry was chosen depending on its 

size, presence of other extraction sites in the same quarry locality (i.e., hill) and lithological 

variability observed in the field. Most of these quarries, where exploitation has been most important 

or intense, were already sampled by Capedri et al. (2000). All of the analyses aimed at petrographic 

and geochemical characterization were done on thin sections with a thickness of 45 µm, unless 

indicated otherwise. 

Petrographic investigations were done with a polarized-light optical microscope and a CamScan 

MX2500 scanning electron microscope (SEM) equipped with a LaB6 cathode, an EDAX energy-

dispersive X-ray spectroscopy (EDS) system and an electron backscattered diffraction (EBSD) 

detector, at the Department of Geosciences, University of Padova. In addition to standard 

observations and phase identification, high-resolution X-ray elemental maps were acquired on 
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selected regions of the rock groundmass, having an area of 0.05 to 1.20 mm
2
, depending on the 

grain size. Operating conditions were 20 kV acceleration voltage and 150 nA beam current and, 

during map acquisition, a grid of 512 x 400 pixels was scanned using a dwell time of 150 ms per 

pixel and a time constant of 2.5 µs, applying standard ZAF corrections. The resulting maps were 

processed by digital image analysis (DIA) through ImageJ and Multispec softwares, as described in 

Germinario et al. (2016), in order to extract the relative abundances of mineral phases and the 

following textural features of crystals in the groundmass: area, perimeter, Feret diameter, circularity 

and aspect ratio. 

X-ray elemental maps were also acquired by micro X-ray fluorescence (µ-XRF), but on smoothed 

stone tiles and large areas of 20 cm
2
, using an EDAX Eagle III XPL bench-top spectrometer, at the 

Department of Earth Sciences, University of Torino. Operating conditions were 40 kV acceleration 

voltage and 1 mA beam current and, during map acquisition, a grid of 512 x 400 pixels was scanned 

using a dwell time of 200 ms per pixel, a time constant of 2.5 µs, a spot size of 30 µm and a 

resolution (step size) of 103.5 µm. The resulting maps were processed by DIA as noted above. 

Considering the size of the area investigated and the resolution used, mineralogical and textural 

information was given about phenocrysts and relative abundance of groundmass was calculated, 

providing the porphyritic index (P.I.). Further details on this method are described in Germinario et 

al. (2016). 

Bulk-rock chemical analyses for major and trace elements were done by X-ray fluorescence (XRF) 

on glass beads – prepared with calcined samples diluted with Li2B4O7 flux in a 1:10 ratio – using a 

Philips PW2400 spectrometer operating in WD (wavelength dispersive) mode, at the Department of 

Geosciences, University of Padova. Loss on ignition (LOI) was also determined separately before 

the XRF analyses. 

Finally, the chemical composition of phenocrysts was measured in situ on crystals of anorthoclase, 

plagioclase, sanidine, biotite, augite, kaersutite, Ti-magnetite, and apatite.  
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The major-element composition was determined by a Cameca Camebax SX 50 electron probe 

microanalyzer (EPMA), operating in WD mode, using a 15 kV acceleration voltage and a 10 nA 

beam current, at the Institute for Geosciences and Earth Resources of CNR (CNR-IGG, Padova).  

The major- and trace-element composition of the same phenocrysts was also determined by laser 

ablation inductively-coupled plasma mass spectrometry (LA-ICPMS), using a Thermo Scientific 

Element XR double-focusing magnetic-sector spectrometer coupled to a GeoLas 193 nm Ar-F 

excimer laser, at the Micro Analysis Facility of the Bruneau Centre for Research and Innovation, 

Memorial University of Newfoundland. The laser energy density used for all the analyses was 3 

J/cm
2
 with a pulse frequency of 8 Hz and a spot size of 40 µm. For each analysis, the background 

was measured for 30 s, followed by 60 s of laser ablation, and wash out was monitored for 30 s after 

each ablation, analyzing 2 to 5 spots for each phase on each sample. NIST 610 glass reference 

material was used as primary calibrant, and analyzed every 10 measurements on the samples; USGS 

BCR-2G basalt glass reference material and Slyudyanka apatite were also analyzed with the same 

frequency as secondary standards. Element concentrations were calculated with Iolite v2.5 software 

package (Paton et al. 2011), based on the NIST 610 signal and the concentrations of selected major 

elements previously determined by EPMA and used as internal standards
1
: 

27
Al for anorthoclase, 

plagioclase, sanidine and biotite, 
43

Ca for augite, kaersutite and apatite, 
57

Fe for magnetite. 

All the quantitative information obtained with the techniques above was subjected to univariate, 

bivariate, and multivariate statistical analysis, in particular principal component analysis (PCA) and 

discriminant analysis, using Statgraphics Centurion XVI software package, in order to identify the 

most distinctive petrographic and geochemical parameters among the trachyte quarries. 

 

                                                
1
 For each mineral phase in each sample, a single EPMA analysis was used as internal standard, considered as mean 

value for data reduction of the 2 to 5 corresponding spots analyzed by LA-ICPMS. This was considered reliable for the 

following reasons: exploratory EPMA analyses showed negligible chemical variability of a given mineral phase within 

the same sample; the crystals analyzed displayed no or very slight zoning under the optical microscope and with 

cathodoluminescence, or chemical zoning involved elements not used as internal standard; in addition, a set of 

representative LA-ICPMS analyses was reduced again using as internal standard, for a given phase, the farthest from 

the average EPMA composition, producing in some cases sensible differences in element concentrations, but 

maintaining the same relative ratios and basically not affecting sample classification. 
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5. PETROGRAPHIC TRACERS 

 

5.1. General Characterization 

 

Based on the results of the analyses by optical microscopy, SEM, and EPMA, a general 

petrographic description will first be provided.  

Euganean trachyte is a holocrystalline to hypocrystalline rock with porphyritic texture, often 

glomeroporphyritic or cumuloporphyritic due to the occurrence of feldspar polycrystalline 

aggregates, frequently displaying consertal or radiate intergrowths.  

The distribution of feldspars consists of anorthoclase, plagioclase, and sanidine, in diverse 

combinations and proportions. Anorthoclase can be pure end member or calcic, plagioclase has a 

prevalent oligoclase-andesine composition, while sanidine is mainly pure end member or sodic. 

Feldspar phenocrysts may be characterized by intracrystalline pores and minute inclusions of glass 

and feldspar microlites, sometimes zonally arranged, giving a spongy-like appearance; another 

common feature is overgrowth texture, e.g., plagioclase mantled by an alkali-feldspar corona, or 

anorthoclase by sanidine. Among mafic minerals, biotite is ubiquitous, often showing Fe-Ti oxide-

rich reaction rims and resorbed edges. Clinopyroxene with augite and Fe-augite composition and 

amphibole with kaersutite composition are sometimes present. In trachytes from several quarries, 

large crystals of quartz and cristobalite, and occasionally tridymite (verified by SEM-EBSD), also 

occur. Magnetite, ilmenite, apatite and zircon are the other most recurring accessory minerals, with 

the first having a Ti-magnetite composition, at times closer to ulvöspinel. Exceptionally, titanite, 

epidote, calcite, dolomite, monazite and pyrite are present, while siderite – displaying distinctive 

overgrowths with rhythmic Mg/Ca enrichments – occurs only in the Zovon area (i.e., M. Altore, M. 

Comun and M. Rovarolla). 
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Black-greyish xenoliths are common, having a porphyritic, granitoid or weakly schistose texture 

with usually a trachyandesitic, gabbroic or cornubianitic composition respectively, rich in mafic 

minerals and magnetite (Sassi et al., 2004; Lazzarini et al., 2008), and are likely derived from the 

basement rocks through which trachyte intruded. Pervasive oxidation surfaces, constituted by 

brownish-yellowish migration fronts of Fe oxides and hydroxides, are sometimes visible as well, 

whereas the content in clay minerals from post-crystallization alteration is generally rather low or 

negligible. 

The groundmass of Euganean trachyte has a microcrystalline to cryptocrystalline grain size, with a 

composition mainly given by prismatic alkali-feldspar microlites, frequently with fine-grained 

anhedral SiO2 minerals (cristobalite and quartz, occasionally tridymite) and glass-bearing domains 

filling intercrystalline spaces. The texture is usually felty, with microlites being randomly arranged, 

although preferred orientations are observable also, i.e., trachytic texture, which is hyalopilitic or 

pilotaxitic depending on whether intercrystalline glass is present or not. 

Further details and data useful for provenance determination of Euganean trachyte will be given in 

the next paragraphs, excluding from the discussion the petrographic outliers detected (in particular 

the single sample from M. della Madonna). 

 

5.2. Modal Composition 

 

Data about mineralogy and phenocrysts-groundmass ratio obtained by DIA of µ-XRF maps are 

presented in Table II, while Figure 4 includes some illustrative phase maps obtained after X-ray 

map processing
2
. 

A first discriminant parameter among quarries is represented by quantitative ratios of the different 

feldspar phases in each trachyte variety. PCA performed on the concentrations of anorthoclase, 

                                                
2
 Only some slight variability in mineral ratios, or absence/presence of minor mineral phases (e.g., plagioclase and 

augite in Monselice), have been observed in other historical samples of known provenance (unpublished data), so that 

the data of modal composition of this paper can be considered valid, or at least vey indicative, for ancient quarry faces 

too. 
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plagioclase, and sanidine, clearly identifies four main groups (Figure 5a). The first one includes 

trachytes from the Zovon area, Rocca Pendice and quarry 20 of Monselice, which have high 

amounts of anorthoclase, from 21 to 29%, and minor quantities of plagioclase (missing in Rocca 

Pendice and Monselice) and sanidine (missing in Zovon). The second group comprises trachytes 

from M. Rusta, M. Grande, M. San Daniele, quarry 2 of M. Alto and quarry 21 of Monselice: they 

all have the highest concentration of sanidine, up to 17%, the lowest concentration on average of 

plagioclase (totally absent in M. Rusta, M. Grande and Monselice) and often subordinate amounts 

of anorthoclase. The third group includes only trachytes from M. Bello and M. Lonzina, with the 

highest quantity of plagioclase, about 20%, the other feldspars being absent or very low. All the 

other localities are grouped in a fourth large cluster, characterized by negligible amounts of sanidine 

and an anorthoclase-plagioclase ratio mostly comprised from 1:1 to 3:1. 

A second parameter for distinguishing quarries is P.I., which is proportional to the total sum of the 

feldspar fraction. Trachytes from the Zovon area, quarry 20 of Monselice, Rocca Pendice, M. Bello, 

M. Lozzo, M. Rosso and M. Merlo are characterized by a P.I. higher than 25%, with groundmass 

percentage being particularly low (down to about 65%) for the first three localities. On the contrary, 

the lowest values of P.I., down to 10-15%, are related to M. Cero, M. Murale and M. Trevisan, 

together with some samples from M. Oliveto and quarry 2 of M. Alto, whereas trachytes from all 

the other localities are scattered among intermediate values. 

Other mineralogical features are less effective as discriminant markers, but some complementary 

indications can be derived from the concentration of mafic minerals and SiO2 phases. Total 

abundance of biotite, augite, and kaersutite is the lowest (under about 1%) in Monselice, M. Rusta, 

M. Grande, M. San Daniele, M. Oliveto and quarry 2 of M. Alto, and the highest (from 2 to over 

3%) in M. Rosso, M. Bello, M. Cero, M. Merlo, M. Lonzina, M. Lozzo and quarry 1 of M. Alto; the 

simple presence/absence of augite and kaersutite can provide additional clues for discrimination. 

Concentration of quartz and cristobalite is noticeably high (from 2 to over 5%) only in trachytes 

from M. Bello, M. San Daniele and single quarries of M. Rusta, M. Oliveto and M. Grande. 
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5.3. Texture 

 

The most interesting textural feature for quarry clustering derived from the µ-XRF imaging is size 

of feldspars and feldspar glomeroporphyries, and grain size distribution (Table III, and qualitatively 

inferable from Figure 4). PCA of the data of feldspar area indicates that trachytes from the Zovon 

area, Monselice and Rocca Pendice are clearly grouped by their coarse grain size (Figure 5b): the 

coarsest feldspars exceed 10 mm in diameter, reaching a maximum value of 16 mm, with the 

highest frequency of crystals above 10 mm
2
 in area, and up to 70 mm

2
. On the other hand, fine-

grained trachytes from M. Murale, M. San Daniele, M. Cero, M. Oliveto and quarry 2 of M. Alto 

are characterized by nearly all of the feldspar phenocrysts (over 90%) finer than 5 mm
2
, often with 

no crystals in the size classes above 10 mm
2
 (Figure 6) and with maximum diameter usually of 5-7 

mm. Samples from the other localities range as in Figure 6, mostly in mid grain size classes. 

Another discriminant parameter involving grain size distribution can be qualitatively provided 

through simple optical microscopic observations. Indeed, trachytes from M. Merlo and M. Lozzo 

have a seriate distribution, and so have those from M. Bello and M. Rosso, together with few 

samples from M. Oliveto, although to a lesser extent; in contrast, rocks from all the other quarries 

display an evident hiatal grain size distribution
3
 (Figure 7). 

 

5.4. Groundmass 

 

Additional elements for separating and distinguishing the different quarries are composition and 

texture of the groundmass, studied through SEM-EDS mapping, DIA and optical microscopy 

                                                
3
 Texture is said to be seriate if crystals of the main mineral phases are distributed within a continuous range of sizes, 

whereas hiatal texture involves crystals showing few, noticeably different sizes. In this paper, texture with intermediate 

characteristics is defined as weakly seriate, e.g., in trachytes from M. Bello and M. Rosso: their grain size is distributed 

in a continuous range only from the fine to the medium size classes (usually up to about 10 mm2 in area and 5 mm in 

diameter, according to the µ-XRF results), while one or more hiatuses break the series from the medium to the coarse 

classes, so that coarse phenocrysts display only few different sizes. 
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(Table IV). Only a few features turned out to be rather variable within the same sample, i.e., more 

strictly dependent on the specific mapped portion of the groundmass, such as presence and 

abundance of glass, iron oxides, other accessory minerals, or microphenocrysts.  

On the other hand, the abundance of quartz and cristobalite in the groundmass can be used for 

identifying a few large quarry clusters. Trachytes from M. Rosso, M. Bello, quarry 2 of M. Alto and 

quarry 16 of M. Comun are characterized by the highest percentages of the SiO2 phases, exceeding 

20%, while the other quarries of the Zovon area are associated with values from 15 to 20%. At the 

other extreme are M. Lispida, M. Lozzo, Monselice, M. Cero and M. Murale, which display 

increasingly lower concentrations, from 10 to nearly 0%. The other localities are scattered over an 

intermediate or undefined/broad interval. 

Another informative mineralogical parameter is the presence and abundance of plagioclase or Ca 

enriched alkali-feldspars in the rock matrix. Concentration of Ca-rich feldspars ranges from 7 to 

13% in quarry 1 of M. Alto, M. Lozzo, M. Murale, M. San Daniele, M. Trevisan and M. Merlo. 

Slightly lower percentages can be detected for Monselice, M. Rosso and M. Lonzina, whereas for 

M. Lispida, M. Bello and M. Cero values approach 0%. Ca-rich feldspars are absent in the 

groundmass of trachytes from all the other localities. 

With regard to the groundmass texture, relative arrangement of crystals and grain size can be best 

analyzed qualitatively under the optical microscope (Figure 7). Since the matrix is almost entirely 

constituted of alkali-feldspars, the correct separation of single microlites in mutual contact and with 

the same composition is virtually impossible from X-ray chemical maps. 

The groundmass texture is felty in most quarries, while a trachytic texture can be seen in Monselice, 

M. Cero, M. Murale and M. Trevisan. A mixed felty-trachytic texture can be observed in M. 

Grande, as well as in few samples from Monselice, M. Oliveto and M. Trevisan, in these last cases 

being linked to weak isorientation of microlites in domains surrounding the phenocrysts. 

As for grain size, a rough distinction among microcrystalline, cryptocrystalline and intermediate 

matrix is presented in Table IV, where it is worth noting that, on a qualitative basis, the finest-
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grained groundmass is that of trachytes from M. Oliveto, M. Lonzina and M. Lispida; conversely, 

the coarsest grain size is typical of M. Merlo, M. Lozzo, Monselice, and quarry 1 of M. Alto. These 

considerations are partly validated by quantitative data about grain size of the SiO2 phases; indeed, 

mean area of the intercrystalline particles of quartz and cristobalite is proportional to pore-free 

intercrystalline spaces and, indirectly, to microlite size. This approximation matches in several 

cases microscopic observations, with the positive correlation between quartz/cristobalite grain size 

– calculated by SEM-EDS imaging – and related groundmass grain size – observed under the 

optical microscope.  

 

5.5. Step-by-Step Provenance Recognition  

 

Provenance recognition of Euganean trachyte based on petrography can be accomplished multiple 

ways, taking into account the parameters described above. Here, a simplified and synthetic 

procedure, considering one at a time the main petrographic criteria, is suggested and schematically 

represented in Figure 8. It is possible to start with simple qualitative features easily detectable under 

the optical microscope, describing grain size distribution and groundmass texture. Image analysis – 

not necessarily on X-ray maps – is strongly recommended in support of microscopic observations, 

while going deeper into characterization. In case high uncertainty of provenance attribution of a 

particular sample arises, the minor petrographic tracers specified in the previous paragraphs will 

help. 

However, contrary to what has been previously stated in the literature, petrographic features alone 

are not infallible for determining trachyte provenance, especially if a high degree of precision is 

required, qualitative parameters are mainly considered or a reference collection of quarry samples 

of known provenance is not available. Indeed, different quarry localities, even far away, can share 

very similar petrographic features. In addition, within the same quarry or locality, some samples can 

Page 16 of 50

John Wiley & Sons

Geoarchaeology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BORGHI
Evidenziato



For Peer Review

17 

 

display a misleading variability in mineralogical and textural characteristics. This is the case, as an 

instance, of M. Alto, M. Oliveto and Monselice.  

 

5.6. Comparison with Literature Data 

 

The petrographic markers discussed so far have proven to be the most effective for provenancing 

purposes. Other criteria suggested in the former literature (Zantedeschi & Zanco, 1993; Capedri et 

al., 2000) turned out not to have the same reliability.  

Rock color is not a useful parameter: besides being rather similar for most trachytes, it can be 

heavily affected by weathering and Fe oxides/hydroxides migration, the extent of which is 

independent on the quarry considered.  

Determination of modal composition and phenocrysts-groundmass ratio has been previously done 

by either visual assessment or point counting on thin section, revealing significant inaccuracy 

especially with regard to correct identification of the different mineral phases and calculation of 

their quantitative relationships. 

Magnetic susceptibility is another parameter suggested as an indirect indicator of mineralogical 

composition, in particular the abundance of Fe oxides, which however is never uniquely distinctive. 

Finally, texture has been previously studied in a qualitative way mostly. Specific features such as 

feldspar microstructures (e.g., overgrown coronas, internal zoning) and shape are not unequivocally 

typical of the different quarries, as also confirmed by data of circularity and aspect ratio of 

phenocrysts acquired by DIA in the present study. Even former determinations of grain size in the 

literature, performed by naked eye on hand specimens, are less precise and representative than those 

done by DIA.   

The framework of the petrographic analysis proposed here aims at reducing subjectivity and 

inaccuracy linked to qualitative methods, providing more strict and precise elements for quarry 

recognition and introducing new criteria. 
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6. GEOCHEMICAL TRACERS 

 

6.1. General Characterization 

 

According to the total alkali-silica (TAS) classification (Le Maitre, 2002), most samples of 

Euganean trachyte can be defined as trachyte s.s., based on XRF data of bulk chemical composition. 

Some of the samples plot in the field of rhyolite, i.e., almost the totality of trachyte samples from 

M. Rusta and few others from M. Oliveto, M. Alto, M. Grande and M. della Madonna; others more 

from these localities and M. San Daniele plot very close to the boundary between the two fields 

(Figure 9). Combining the data of the modal composition determined on phenocrysts and 

groundmass by µ-XRF and SEM-EDS, and considering the “q” factor (total quartz percentage 

normalized to the sum of quartz and feldspars), only few samples (from M. Bello, quarry 2 of M. 

Alto and quarry 36 of M. Rusta) display a value higher than 20%, and then can be classified as 

trachydacite. 

In the following paragraphs, information and plots useful for recognizing provenance quarry of 

Euganean trachyte will be provided. Few samples (including those previously identified as outliers 

on petrographic basis, e.g., from M. della Madonna and M. Murale) were recognized as outliers 

through univariate and multivariate statistical methods applied to their bulk chemical composition, 

and excluded from the calculations. 

 

6.2. Bulk-Rock Composition 

 

Bulk-rock chemical composition calculated by XRF is reported for all the samples in 

Supplementary Table 2. These data were used to build binary plots and, among all the possible 
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combinations, select the pairs of major and trace elements showing the best separations among the 

Euganean quarry localities; the selection was supported by an explorative PCA done on all the 

chemical elements analyzed (Supplementary Figure 1), then refined by bivariate statistical analysis. 

The most informative binary plot is V/Nb, in which the quarry localities of Monselice, M. Rosso, 

M. Trevisan and M. Merlo (quarry 21 and 23) cluster separately, while the couples M. Bello-M. 

Lonzina and Zovon area-Rocca Pendice form two mixed clusters (Figure 10); other useful binary 

plots are TiO2/Zr, TiO2/K2O, Na2O/Zr, Rb/Zr, Al2O3/Sr and Ce/Nd (Figure 11). Few sites can be 

easily distinguished in multiple binary plots, others cannot be isolated at all, i.e., M. Cero, M. 

Lispida and quarry 22 of M. Merlo, while the Zovon area and Rocca Pendice cannot be uniquely 

differentiated from each other. In general, clustering is often not very satisfactory, and attribution of 

correct provenance may be affected by great uncertainty. This may further increase when analyzing 

small and altered archaeological objects, instead of fresh quarry samples. For these reasons, in order 

to minimize possible errors, it is suggested not to rely on single plots and clusters only, but to check 

the disposition of a study sample using all of the diagrams proposed, and verify which group of 

reference quarry samples provides the best fit. An alternative could be accomplished by doing a 

statistical discriminant analysis, using all the data in Supplementary Table 2 in order to classify 

trachytes from the different quarry localities based on their composition and known provenance, 

and verifying which locality is attributed by default to the study sample based on multivariate 

chemical correlations. 

 

6.3. Mineral-Scale Composition 

 

Major-element chemistry of phenocrysts in Euganean trachyte determined by EPMA does not 

provide useful hints for provenancing after a bivariate and multivariate statistical analysis, since 

major-element composition of a given phase is rather homogeneous among all the samples, as 
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indicated by the generally low values of the standard deviations from the mean concentrations in 

Table V. 

The same does not apply to LA-ICPMS results and to major elements when combined with trace 

elements. All the data obtained from each analyzed spot are included in Supplementary Table 3, 

subdivided by mineral phase, together with average values measured on 610 and BCR-2G 

standards.  

Initially, the LA-ICPMS data were processed normalizing all the concentrations of rare earth 

elements (REE) and incompatible elements to CI chondrites and primitive mantle compositions 

(Sun & McDonough, 1989; McDonough & Sun, 1995). The resulting REE patterns and spider 

diagrams show negligible variations among the samples and very similar trends for each mineral 

phase. 

The next step was identifying the most informative elements to be used in simple scatterplots for 

separating quarry localities. A statistical discriminant analysis was performed and all the samples 

were classified a priori according to their known provenance, then the best discriminating 

multivariate correlations were selected, i.e., linear combinations of major- and trace-element 

concentrations. These functions were eventually used to build the binary and ternary plots presented 

below. Traditional binary plots based on concentration values of single elements, similarly to what 

was done for the XRF data, are also provided in Supplementary Table 4; they can be useful in case 

of anomalous concentrations obtained for particular elements, which would compromise the 

efficacy of multivariate correlations. 

Biotite is by far the most informative phase, especially considering correlations among Li, Sc, TiO2, 

V, MnO and Co, used for the plots in Figure 12, in which a large number of quarry localities cluster 

separately in a rather well-defined fashion: M. Lispida, M. Lonzina, M. Merlo, M. Rusta, M. San 

Daniele, M. Trevisan, Monselice and quarry 2 of M. Alto. In addition, the couples Bello-M. Rosso 

and M. Cero-M. Murale are included in two different mixed clusters; the last two localities can be 

distinguished in a Co/Zr plot (Supplementary Table 4). The other sites are scattered over broader 
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intervals of elemental concentration, although their dispersion in the ternary plots is more limited 

(e.g., for M. Oliveto) and might serve as an indicative guide to try provenance attribution; in this 

case, however, relying also on other mineral phases is more effective.  

When the trachyte to be studied also contains other mafic minerals, one can try to exploit the 

concentrations of Li, Na2O, V, Zr in the case of pyroxenes, and Sc, V, Sr, Hf, Th for amphiboles 

(Figure 13). The relevant discriminant plots are particularly effective, as all the localities in which 

these mafic minerals were observed on thin section are well separated. Concerning augite, M. 

Lonzina, M. Lozzo, M. Merlo, M. Rosso, Zovon, quarry 31 of M. Oliveto and quarry 32 of Rocca 

Pendice. Concerning kaersutite, M. Lozzo, M. Merlo, M. Oliveto, M. Trevisan, Monselice and 

quarry 1 of M. Alto. Complementary traditional binary plots are reported in Supplementary Table 4. 

Among the accessory minerals, apatite composition does not show any systematic variation related 

to provenance quarry, whereas magnetite chemistry represents a valid support for aiding quarry 

attribution when the results obtained on mafic minerals are still questionable. As shown in Figure 

13, several quarry sites cluster separately in a plot based on linear combinations of MgO, V, MnO 

and Co concentrations, although with some ambiguous groups and overlapping. Nevertheless, the 

advantage of considering magnetite is that – contrary to augite or kaersutite – it is ubiquitous in 

Euganean trachyte, and provides better separations for M. Bello, M. Oliveto, M. Rosso and Zovon. 

Again, additional supporting plots can be consulted in Supplementary Table 4. 

Finally, and somewhat surprisingly, feldspars turned out to be source of only a limited amount of 

information for provenancing, and discriminant analysis was more complex, requiring and 

involving a larger number of elements to produce some sort of quarry clustering (Figure 14). 

Indeed, analysis of feldspars should be generally unnecessary, or considered only in a final step, for 

further confirming previous findings or when provenance achieved with the other phases is still 

undetermined. Considering anorthoclase, combinations of Li, Sc, TiO2, Sr, La, Eu and Pb allow 

separating the quarry localities of M. Grande, M. Rosso, M. San Daniele, M. Trevisan, Rocca 

Pendice and Zovon, but with a partial overlapping. For sanidine, combinations of Li, TiO2, Rb, Sr, 
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Ce, Eu and Pb lead to distinguish quarry groups for M. Grande, M. Lozzo, M. San Daniele, Rocca 

Pendice and quarry 2 of M. Alto, while M. Bello and M. Rosso plot in the same field. Finally, 

plagioclase results to be suitable only for recognizing the localities of Zovon, M. Trevisan and 

quarry 2 of M. Alto, applying the concentrations of Li, Sc, TiO2, Sr, La and Eu. For all the 

feldspars, as for all the other mineral phases, additional binary plots, built with pairs of the chemical 

elements mentioned before, are provided in Supplementary Table 4.    

Globally, quarry clustering achieved at the mineral scale with LA-ICPMS data is definitely more 

precise and effective than that obtained on bulk rock with XRF, and this applies to nearly all the 

Euganean quarry localities, especially if analyses of different phases are cross-matched. As already 

suggested previously, however, it is advisable to plot concentrations on multiple discriminant 

diagrams, even when only a single phase is analyzed.  

 

6.4. Comparison with Literature Data 

 

As the LA-ICPMS data are introduced here for the first time referring to Euganean trachyte, the 

only possible comparison with previously published geochemical data involves the XRF results of 

this paper and those from the database by Capedri et al. (2000), the most complete collection of 

bulk-compositional data of Euganean trachyte so far. 

Maritan et al. (2013) already outlined a discrepancy between the concentrations of some elements 

(e.g., Ti, Th, Sr, Zr) reported in the reference database and those published later, determined by 

either XRF or ICP-MS, even by the same authors of the database (Renzulli et al., 2002b; Capedri et 

al., 2003; Capedri & Venturelli, 2003; 2005; Antonelli et al., 2004; Antonelli & Lazzarini, 2012). 

This is further confirmed here and illustrated in Figure 15 in the Sr/Th plot, the main discriminant 

diagram by Capedri et al. (2000), in which the mismatch between the samples of the reference 

database and those studied in this paper is evident. The same applies to the other reference binary 

plots. This seems to confirm the hypothesis of Maritan et al. (2013) that powder grain size in the 
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pellets prepared by Capedri et al. (2000) was not fine enough to prevent matrix, microabsorption 

and enhancement effects, leading to low data accuracy of the XRF analyses.  

Therefore, besides the fact that discrimination of Euganean trachyte based exclusively on bulk 

composition is not fully reliable, it is recommended to use the new discriminant binary plots here 

proposed, when only XRF data are available.  

 

 

7. CONCLUSIONS 

 

A new reference database of petrographic and geochemical data for trachyte of the Euganean Hills, 

based on samples from 40 different quarries, has been established in support of archaeometric 

studies aimed at understanding stone provenance in artifacts and structures of archaeological and 

historical significance. Proposing an alternative and more reliable approach than that presently 

available from the literature, this paper describes several provenance markers referred to 

mineralogy, texture, bulk-rock and mineral-scale chemistry of Euganean trachyte, providing mainly 

quantitative data and objective criteria for quarry recognition. 

This study discriminates among hills and quarry localities, but not among single quarries within the 

same locality. In fact, trachytes from different quarries but belonging to the same geological body 

are obviously extremely hard to distinguish. Moreover, such a high-resolution investigation, in this 

case, would be of scarce significance for archaeometric purposes.  

Standard petrographic observations of thin sections, and analysis of bulk chemical composition, the 

most traditional methodologies previously used, might both be applied to solve provenance 

problems of Euganean trachyte. However, in most cases, differences of petrographic features and 

bulk composition among different quarry sites are subtle, and provenancing may be accurate only 

combining the two techniques, although still not univocal. The use of quantitative petrographic 

parameters from image analysis of X-ray elemental maps – or even optical images – considerably 
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improves attribution reliability. On the other hand, success of a study based on XRF (or bulk ICP-

MS) can be compromised by insufficient compositional representativeness of samples, a major 

drawback when dealing with archaeological materials, the sampling of which may be restricted to 

very small portions, in some cases also having altered surfaces. 

Alternatively, in situ LA-ICPMS analysis at the mineral scale has proven to be a precise, accurate, 

and highly sensitive method for autonomously recognizing virtually all the Euganean quarry 

localities, using major- and trace-element composition of phenocrysts. Besides higher reliability of 

provenance attribution, the amount of material required for the analyses is very limited: at best, 

even few fine-grained crystals – for representativeness reasons – of a single diagnostic phase might 

be sufficient, and this is a great advantage in the study of cultural heritage, when non-destructive or 

micro-destructive techniques are mandatory. Moreover, although LA-ICPMS may work as a stand-

alone technique, one could choose to couple a petrographic examination, in this case a single thin 

section of suitable thickness (40-50 µm) would be needed (to avoid drilling through the sample 

during the LA-ICPMS analyses). 

In summary, although a standard petrographic study is fast and cost-effective, interpretation is 

complex and may lead to some degree of uncertainty in quarry identification. On the other hand, 

mineral-scale chemical analysis of major and trace elements is undoubtedly more expensive and 

requires greater effort in data processing, but provides univocal results and can be applied to 

considerably smaller samples.  

The improved precision of the novel methodology proposed here might call into question some of 

the provenance determinations made in the past, which might have introduced a misleading bias in 

the following provenance studies, with possible consequences on the global archaeometric record of 

Euganean trachyte.  
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FIGURE CAPTIONS 

 

Figure 1. Geological map of the Euganean Hills (modified after Piccoli et al., 1981). The named hills represent the 

sampled quarry localities, and each of the 40 sampled quarries is marked and localized with a reference progressive 

number (coordinates of each sampling point in Supplementary Table 1). “M.” in the proper name of the hills stands for 

“Monte” (mount). The peak of the highest hill, M. Venda (601 m a.m.s.l.), is indicated with a black triangle. 

 

Figure 2. a) Macroscopic appearance of Euganean trachyte (sample from M. Rovarolla); b) quarry face of M. Merlo in 

2009, displaying columnar and prismatic jointing (courtesy of Michelangelo Dalla Francesca); c) quarry of Monselice 

in late 19
th

-early 20
th

 century (Selmin, 2005): part of the Medieval architectonic complex on the hill has been lost due to 

excavation activity. 
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Figure 3. Historical use of Euganean trachyte: a) indication of the area of trachyte circulation in the Roman times 

(shaded) and principal extra-urban roads; b) Roman road with trachyte flagstones in Classe, the ancient port of 

Ravenna, 4–6
th

 c. CE (Maioli & Stoppioni, 1987); c) funerary stele of Oppi family, Padova, 1
st
 c. CE (courtesy of Musei 

Civici di Padova, Gabinetto Fotografico); d) Roman rotary querns, Padova (courtesy of Musei Civici di Padova, 

Gabinetto Fotografico); e) arcade of Palazzo della Ragione, Padova, 13–14
th

 c. CE; f) Basilica of Sant’Antonio of 

Padova, 13–14
th

 c. CE, with trachyte pillars and buttresses, and on the left the equestrian statue of Gattamelata by 

Donatello, 15th c. CE, with trachyte base; g) Basilica of San Marco, Venezia, 11th–17th c. CE, in Piazza San Marco, 

12
th

–19
th

 c. CE, paved with trachyte; h) Cologne Cathedral, 13–19
th

 c. CE, with replacing ashlars in Euganean trachyte. 

 

Figure 4. Phase maps of Euganean trachyte processed from X-ray maps acquired by µ-XRF, on a surface of 5.30x4.14 

cm of samples from: a) M. Altore, quarry 14, characterized by high concentration of anorthoclase, high P.I. and coarse 

grain size; b) M. San Daniele, quarry 39, with high amount of sanidine and fine grain size; c) M. Bello, quarry 3, 

displaying high content of plagioclase and medium-high P.I.; d) M. Cero, quarry 5, with an anorthoclase-plagioclase 

ratio of ~1:1, low P.I. and fine grain size. Mineral abbreviations as in Table II, colors not in the legend indicate minor 

phases. 

 

Figure 5. Results of PCA performed on µ-XRF data of trachyte quarries, with score and loading plots built on the 

following parameters: a) average concentration of feldspars (anorthoclase, plagioclase and sanidine), with PC1 and PC2 

covering 49% and 41% of total variance, respectively; b) frequency size classes of feldspars expressed as area, with 

PC1 and PC2 covering 83% and 10% of total variance, respectively. Quarry symbols as in Table I. 

 

Figure 6. Frequency histogram of size classes of feldspars expressed as area, determined by DIA of µ-XRF maps for 

each trachyte quarry. Quarries are indicated with locality name and ID number in parentheses. 

 

Figure 7. Thin-section photomicrographs of Euganean trachyte, with samples from: a) M. Merlo, quarry 22, showing a 

seriate grain size distribution (plane-polarized light); b) M. Rosso, quarry 34, displaying a weakly seriate grain size 

distribution (plane-polarized light); c) M. Oliveto, quarry 31, with a hiatal distribution (plane-polarized light); d) 

Monselice, quarry 20, having a microcrystalline groundmass with trachytic texture (crossed-polarized light); e) M. 

Rovarolla, quarry 12, with a microcrystalline felty groundmass (crossed-polarized light); f) M. Oliveto, quarry 30, 

characterized by a cryptocrystalline groundmass (crossed-polarized light). Anomalous colors are due to the 45 µm 

thickness of the sections. 

 

Figure 8. Practical flowchart-like scheme for recognizing quarry locality of provenance of Euganean trachyte, starting 

from one of the three kinds of grain size distribution. Only few, significant petrographic parameters are considered here, 

so that it is necessary to refer to the text and tables (Table II, III, IV) for precise attribution, quantitative data and to try 

discriminating analogous sites. Feldspars abbreviations according to Whitney & Evans (2010). 

 

Figure 9. Disposition of the samples of Euganean trachyte in the TAS (total alkali-silica) classification diagram (Le 

Maitre, 2002), based on bulk-rock chemical composition determined by XRF. 

 

Figure 10. V vs. Nb scatterplot from bulk-rock chemical composition determined by XRF for all the samples of 

Euganean trachyte. Quarry symbols as in Table I. 

 

Figure 11. Binary scatterplots from bulk-rock chemical composition determined by XRF for all the samples of 

Euganean trachyte. Quarry symbols as in Table I. 

 

Figure 12. Plots from chemical composition of biotite in Euganean trachyte determined by LA-ICPMS, with major 

elements expressed as oxide weight percent and trace elements as ppm, using the isotopes in Supplementary Table 3: 

top) scatterplots after statistical discriminant analysis, with variables calculated from multivariate combinations of 

element concentrations, indicated under each relevant graph; bottom) ternary plots, scaled up as indicated in the 

miniature. Quarry symbols as in Table I. 

 

Figure 13. Scatterplots from chemical composition of augite, kaersutite and Ti-magnetite in Euganean trachyte 

determined by LA-ICPMS, with major elements expressed as oxide weight percent and trace elements as ppm, using the 
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isotopes in Supplementary Table 3; variables are calculated from multivariate combinations of element concentrations, 

indicated under each relevant graph, after statistical discriminant analysis. Quarry symbols as in Table I. 

 

Figure 14. Scatterplots from chemical composition of feldspars in Euganean trachyte determined by LA-ICPMS, with 

trace elements expressed as ppm, using the isotopes in Supplementary Table 3; variables are calculated from 

multivariate combinations of element concentrations, indicated under each relevant graph, after statistical discriminant 

analysis. Quarry symbols as in Table I. 

 

Figure 15. Sr vs. Th scatterplot from bulk-rock chemical composition determined by XRF on Euganean trachyte – the 

main discriminant diagram by Capedri et al. (2000) – showing the mismatch among the samples from this work (large 

indicators) and the corresponding ones from the reference database (small indicators). Quarry symbols as in Table I. 

 

 

 

 

SUPPLEMENTARY MATERIAL CAPTIONS 

 

Supplementary Figure 1. Score and loading plot from PCA performed on bulk-rock chemical composition of 

Euganean trachyte determined by XRF for all the samples, with PC1 and PC2 covering 37% and 16% of total variance, 

respectively (quarry number and localization as in Figure 1, symbols as in Table I). All the measured elements were 

considered, since none of them showed anomalous concentrations, which might be detected after weathering, or 

crystallization of secondary phases; this was verified examining the compositional variation matrix and variance of each 

element, namely the “τ.i” value (Buxeda i Garrigós, 1999; Buxeda i Garrigós & Kilikoglou, 2003). 

 

Supplementary Table 1. Coordinates of the sampling point where each quarry sample of Euganean trachyte was 

collected. 

 

Supplementary Table 2. Bulk-rock chemical composition of Euganean trachyte determined by XRF for all the samples 

(quarry number and localization as in Figure 1); major elements are expressed as oxide weight percent, LOI as weight 

percent, trace elements as ppm and concentrations below detection limit indicated by “b.d.”. 

 

Supplementary Table 3. Chemical composition of the main mineral phases in Euganean trachyte determined by LA-

ICPMS; major elements are expressed as oxide weight percent, trace elements as ppm and concentrations below 

detection limit indicated by “b.d.” (for data about all the major elements see Table V). Different spot analyses on the 

same sample (quarry number and localization as in Figure 1) are indicated with progressive numbers and small letters, 

with outlier samples excluded. Each worksheet contains the results of different phases and average values of the 

reference materials.  

 

Supplementary Table 4. Complementary binary scatterplots for provenance recognition of Euganean trachyte, based 

on simple concentrations of major and trace elements of the main mineral phases determined by LA-ICPMS, using the 

isotopes in Supplementary Table 3. Each worksheet contains the most significant plots for different phases. Quarry 

symbols as in Table I. 
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Geological map of the Euganean Hills (modified after Piccoli et al., 1981). The named hills represent the 
sampled quarry localities, and each of the 40 sampled quarries is marked and localized with a reference 

progressive number (coordinates of each sampling point in Supplementary Table 1). “M.” in the proper name 

of the hills stands for “Monte” (mount). The peak of the highest hill, M. Venda (601 m a.m.s.l.), is indicated 
with a black triangle.  

Figure 1  
130x137mm (600 x 600 DPI)  
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a) Macroscopic appearance of Euganean trachyte (sample from M. Rovarolla); b) quarry face of M. Merlo in 
2009, displaying columnar and prismatic jointing (courtesy of Michelangelo Dalla Francesca); c) quarry of 

Monselice in late 19th-early 20th century (Selmin, 2005): part of the Medieval architectonic complex on the 

hill has been lost due to excavation activity.  
Figure 2  

122x87mm (300 x 300 DPI)  
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Historical use of Euganean trachyte: a) indication of the area of trachyte circulation in the Roman times 
(shaded) and principal extra-urban roads; b) Roman road with trachyte flagstones in Classe, the ancient 

port of Ravenna, 4–6th c. CE (Maioli & Stoppioni, 1987); c) funerary stele of Oppi family, Padova, 1st c. CE 

(courtesy of Musei Civici di Padova, Gabinetto Fotografico); d) Roman rotary querns, Padova (courtesy of 
Musei Civici di Padova, Gabinetto Fotografico); e) arcade of Palazzo della Ragione, Padova, 13–14th c. CE; f) 

Basilica of Sant’Antonio of Padova, 13–14th c. CE, with trachyte pillars and buttresses, and on the left the 
equestrian statue of Gattamelata by Donatello, 15th c. CE, with trachyte base; g) Basilica of San Marco, 

Venezia, 11th–17th c. CE, in Piazza San Marco, 12th–19th c. CE, paved with trachyte; h) Cologne Cathedral, 
13–19th c. CE, with replacing ashlars in Euganean trachyte.  

Figure 3  
979x1323mm (72 x 72 DPI)  
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Phase maps of Euganean trachyte processed from X-ray maps acquired by µ-XRF, on a surface of 5.30x4.14 
cm of samples from: a) M. Altore, quarry 14, characterized by high concentration of anorthoclase, high P.I. 
and coarse grain size; b) M. San Daniele, quarry 39, with high amount of sanidine and fine grain size; c) M. 

Bello, quarry 3, displaying high content of plagioclase and medium-high P.I.; d) M. Cero, quarry 5, with an 
anorthoclase-plagioclase ratio of ~1:1, low P.I. and fine grain size. Mineral abbreviations as in Table II, 

colors not in the legend indicate minor phases.  
Figure 4  

167x146mm (160 x 160 DPI)  
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Results of PCA performed on µ-XRF data of trachyte quarries, with score and loading plots built on the 
following parameters: a) average concentration of feldspars (anorthoclase, plagioclase and sanidine), with 
PC1 and PC2 covering 49% and 41% of total variance, respectively; b) frequency size classes of feldspars 

expressed as area, with PC1 and PC2 covering 83% and 10% of total variance, respectively. Quarry symbols 
as in Table I.  

Figure 5  
1368x479mm (72 x 72 DPI)  
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Frequency histogram of size classes of feldspars expressed as area, determined by DIA of µ-XRF maps for 
each trachyte quarry. Quarries are indicated with locality name and ID number in parentheses.  

Figure 6  

1579x451mm (72 x 72 DPI)  
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Thin-section photomicrographs of Euganean trachyte, with samples from: a) M. Merlo, quarry 22, showing a 
seriate grain size distribution (plane-polarized light); b) M. Rosso, quarry 34, displaying a weakly seriate 
grain size distribution (plane-polarized light); c) M. Oliveto, quarry 31, with a hiatal distribution (plane-
polarized light); d) Monselice, quarry 20, having a microcrystalline groundmass with trachytic texture 

(crossed-polarized light); e) M. Rovarolla, quarry 12, with a microcrystalline felty groundmass (crossed-
polarized light); f) M. Oliveto, quarry 30, characterized by a cryptocrystalline groundmass (crossed-polarized 

light). Anomalous colors are due to the 45 µm thickness of the sections.  
Figure 7  

180x191mm (300 x 300 DPI)  
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Practical flowchart-like scheme for recognizing quarry locality of provenance of Euganean trachyte, starting 
from one of the three kinds of grain size distribution. Only few, significant petrographic parameters are 

considered here, so that it is necessary to refer to the text and tables (Table II, III, IV) for precise 
attribution, quantitative data and to try discriminating analogous sites. Feldspars abbreviations according to 

Whitney & Evans (2010).  
Figure 8  

2271x848mm (72 x 72 DPI)  
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Disposition of the samples of Euganean trachyte in the TAS (total alkali-silica) classification diagram (Le 
Maitre, 2002), based on bulk-rock chemical composition determined by XRF.  

Figure 9  
1020x720mm (72 x 72 DPI)  
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V vs. Nb scatterplot from bulk-rock chemical composition determined by XRF for all the samples of 
Euganean trachyte. Quarry symbols as in Table I.  

Figure 10  

1020x571mm (72 x 72 DPI)  
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Binary scatterplots from bulk-rock chemical composition determined by XRF for all the samples of Euganean 
trachyte. Quarry symbols as in Table I.  

Figure 11  

1954x2398mm (72 x 72 DPI)  

 

 

Page 41 of 50

John Wiley & Sons

Geoarchaeology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Plots from chemical composition of biotite in Euganean trachyte determined by LA-ICPMS, with major 
elements expressed as oxide weight percent and trace elements as ppm, using the isotopes in 

Supplementary Table 3: top) scatterplots after statistical discriminant analysis, with variables calculated 

from multivariate combinations of element concentrations, indicated under each relevant graph; bottom) 
ternary plots, scaled up as indicated in the miniature. Quarry symbols as in Table I.  

Figure 12  
2094x1886mm (72 x 72 DPI)  
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Scatterplots from chemical composition of augite, kaersutite and Ti-magnetite in Euganean trachyte 
determined by LA-ICPMS, with major elements expressed as oxide weight percent and trace elements as 
ppm, using the isotopes in Supplementary Table 3; variables are calculated from multivariate combinations 

of element concentrations, indicated under each relevant graph, after statistical discriminant analysis. 
Quarry symbols as in Table I.  

Figure 13  
2095x1894mm (72 x 72 DPI)  
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Scatterplots from chemical composition of feldspars in Euganean trachyte determined by LA-ICPMS, with 
trace elements expressed as ppm, using the isotopes in Supplementary Table 3; variables are calculated 
from multivariate combinations of element concentrations, indicated under each relevant graph, after 

statistical discriminant analysis. Quarry symbols as in Table I.  
Figure 14  

1837x2533mm (72 x 72 DPI)  
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Sr vs. Th scatterplot from bulk-rock chemical composition determined by XRF on Euganean trachyte – the 
main discriminant diagram by Capedri et al. (2000) – showing the mismatch among the samples from this 
work (large indicators) and the corresponding ones from the reference database (small indicators). Quarry 

symbols as in Table I.  
Figure 15  

1029x818mm (72 x 72 DPI)  
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Table I. List of the sampled localities and all the 86 samples collected, with relevant quarry specified (identification 

numbers as in Figure 1; the coordinates of each sampling point are listed in Supplementary Table 1). Each locality is 

assigned with an identification symbol, used further ahead for plots. 

 

Quarry locality (Hill) Town Quarry ID Sample ID (Quarry) 

M. Alto  Torreglia 1; 2 ALT-01, 02 (1); ALT-03, 04 (2) 

M. Altore  Zovon di Vo’ 14; 15 LTR-06, 07, 08 (14); LTR-09, 10 (15) 

M. Bello  Treponti di Teolo 3; 4 BLL-01, 02 (3); BLL-03, 04 (4) 

M. Cero  Calaone di Baone 5 CER-01, 02, 03 (5) 

M. Comun  Zovon di Vo’ 16; 18 LTR-11 (16); LTR-15, 16 (18) 

M. della Madonna  Teolo 11 LTR-01 (11) 

M. Grande  Rovolon 6; 7 GRN-01 (6); GRN-02, 03 (7) 

M. Lispida  Battaglia Terme 9; 10 LSP-01 (9); LSP-02, 03 (10) 

M. Lonzina  Luvigliano di Torreglia 8 LNZ-01, 02 (8) 

M. Lozzo  Lozzo Atestino 19 LZZ-01, 02, 03 (19) 

M. Merlo  Montemerlo di Cervarese S. Croce 22; 23; 24 MRL-01, 02 (22); MRL-03, 04 (23); MRL-05, 06, 07 (24) 

M. Murale  Calaone di Baone 25; 26 MUR-01, 02 (25); MUR-03, 04, 05 (26) 

M. Oliveto  Montegrotto Terme 27; 28; 29; 30; 31 
OLV-01, 02 (27); OLV-03, 04 (28); OLV-05, 06, 07 (29); 

OLV-08 (30); OLV-09, 10, 11, 12 (31) 

M. Rosso  Monterosso di Abano Terme 34; 35 RSS-01, 02 (34); RSS-03, 04 (35) 

M. Rovarolla  Zovon di Vo’ 12; 13; 17 LTR-02, 03 (12); LTR-04, 05 (13); LTR-12, 13, 14 (17) 

M. Rusta  Fontanafredda di Cinto Euganeo 36; 37; 38 RST-01, 02 (36); RST-03, 04, 05 (37); RST-06, 07, 08 (38) 

M. San Daniele  Abano Terme 39 SND-01, 02 (39) 

M. Trevisan  Montegrotto Terme 40 TRV-01, 02 (40) 

Monselice  Monselice 20; 21 MNS-01, 02, 03 (20); MNS-04, 05 (21) 

Rocca Pendice  Castelnuovo di Teolo 32; 33 PND-01 (32); PND-02, 03 (33) 

 

• The quarry area of Zovon (M. Altore, M. Comun and M. Rovarolla) is assigned with the same identification symbol, for reasons of high 

petrographic and chemical homogeneity of the samples and according to Capedri et al. (2000). 

• The sample from M. della Madonna turned out to be a petrographic and chemical outlier and has no symbol. 
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Table II. Modal composition (percentage of mineral phases), groundmass percentage (GM) and porphyritic index (P.I.) 

determined by µ-XRF mapping and digital image analysis. For each quarry (number and localization as in Figure 1), 

values are averaged among different samples. 

 

• Abbreviations of minerals according to Whitney & Evans (2010): Ano = anorthoclase; Pl = plagioclase; Sa = sanidine; Bt = biotite; Aug = augite; 

Krs = kaersutite; Qz = quartz; Crs = cristobalite; Mag = magnetite; Ilm = ilmenite. 

• Σ Fsp = percentage sum of all feldspars. 

• “Others” include apatite, zircon, titanite, epidote, calcite, dolomite, pyrite and siderite. 

  

 

 

 

 

 

 

Quarry Locality  
Feldspars 

 
Mafic minerals 

 
Accessory minerals 

 GM  P.I. 

 
Ano Pl Sa Σ Fsp 

 
Bt Aug Krs 

 
Qz/Crs Ti-Mag Ilm Others 

  
1 M. Alto 

 
9.44 10.14 - 19.58 

 
2.05 - 0.38 

 
0.38 0.89 0.08 0.44 

 
76.20 

 
23.80 

2 M. Alto 
 

3.64 0.36 5.23 9.23 
 

0.37 - - 
 

1.56 0.27 0.13 0.05 
 

88.39 
 

11.61 

3 M. Bello 
 

- 19.33 4.85 24.18 
 

2.07 - - 
 

4.17 0.47 0.53 0.22 
 

68.35 
 

31.65 

4 M. Bello 
 

- 19.75 1.96 21.70 
 

3.09 - - 
 

2.11 0.12 0.29 0.20 
 

72.49 
 

27.51 

5 M. Cero 
 

6.26 4.85 - 11.11 
 

2.57 - - 
 

0.09 0.67 0.03 0.07 
 

85.45 
 

14.55 

6 M. Grande 
 

5.53 - 5.46 10.99 
 

0.50 - - 
 

3.71 0.63 0.04 0.03 
 

84.09 
 

15.91 

7 M. Grande 
 

6.88 - 12.91 19.79 
 

0.65 - - 
 

1.21 0.28 0.17 0.02 
 

77.88 
 

22.12 

8 M. Lonzina 
 

- 17.87 - 17.87 
 

2.24 0.18 - 
 

0.20 1.16 0.30 0.40 
 

77.65 
 

22.35 

9 M. Lispida 
 

11.23 4.50 - 15.73 
 

1.49 - - 
 

0.35 0.41 0.07 0.01 
 

81.94 
 

18.06 

10 M. Lispida 
 

12.14 3.75 - 15.88 
 

1.18 - - 
 

1.70 1.61 0.02 0.04 
 

79.56 
 

20.44 

11 M. della Madonna 
 

- 2.89 23.82 26.71 
 

0.91 - - 
 

4.57 0.38 0.29 0.02 
 

67.12 
 

32.88 

12 M. Rovarolla 
 

25.86 2.88 - 28.75 
 

1.60 0.02 - 
 

1.10 0.29 0.07 0.54 
 

67.62 
 

32.38 

13 M. Rovarolla 
 

26.99 4.09 - 31.08 
 

1.74 0.53 - 
 

0.19 0.40 0.08 0.95 
 

65.03 
 

34.97 

14 M. Altore 
 

28.44 2.81 - 31.25 
 

1.29 0.02 - 
 

0.30 0.62 0.09 0.58 
 

65.85 
 

34.15 

15 M. Altore 
 

24.83 3.81 - 28.64 
 

2.18 - - 
 

0.63 1.02 0.20 0.27 
 

67.07 
 

32.93 

16 M. Comun 
 

27.78 5.16 - 32.94 
 

1.57 - - 
 

1.17 0.22 0.24 0.05 
 

63.82 
 

36.18 

17 M. Rovarolla 
 

25.47 4.16 - 29.63 
 

1.58 0.62 - 
 

0.71 0.13 0.34 0.37 
 

66.62 
 

33.38 

18 M. Comun 
 

23.84 2.85 - 26.70 
 

1.31 - - 
 

0.89 0.40 0.16 0.04 
 

70.50 
 

29.50 

19 M. Lozzo 
 

16.57 8.51 0.43 25.52 
 

1.59 0.02 0.51 
 

1.80 1.39 0.50 0.21 
 

68.46 
 

31.54 

20 Monselice 
 

29.08 - 2.39 31.47 
 

0.25 - 0.15 
 

1.04 1.48 0.37 0.04 
 

65.19 
 

34.81 

21 Monselice 
 

12.76 - 9.43 22.19 
 

0.33 - 0.14 
 

0.03 0.74 0.31 0.11 
 

76.15 
 

23.85 

22 M. Merlo 
 

14.52 6.88 0.65 22.05 
 

2.15 0.04 0.03 
 

1.29 1.82 0.40 0.23 
 

71.99 
 

28.01 

23 M. Merlo 
 

15.93 4.46 6.01 26.41 
 

1.03 0.30 0.32 
 

0.23 0.75 0.31 0.05 
 

70.59 
 

29.41 

24 M. Merlo 
 

19.42 5.47 0.96 25.85 
 

1.11 0.69 0.37 
 

0.33 1.10 0.38 0.06 
 

70.09 
 

29.91 

25 M. Murale 
 

5.68 2.53 - 8.21  1.43 - -  0.91 0.62 0.11 0.43  88.30  11.70 

26 M. Murale  6.42 4.24 - 10.65  1.46 - -  0.02 0.42 0.08 0.05  87.31  12.69 

27 M. Oliveto 
 

10.00 2.04 0.80 12.83  0.79 - 0.02  0.71 1.09 0.12 0.14  84.31  15.69 

28 M. Oliveto 
 

12.52 2.82 0.27 15.60  1.17 - 0.02  1.79 0.50 0.18 0.12  80.62  19.38 

29 M. Oliveto 
 

13.52 3.49 0.66 17.68  0.97 - 0.03  4.36 0.31 0.20 0.20  76.24  23.76 

30 M. Oliveto 
 

15.99 5.06 - 21.05  1.19 - -  0.62 0.19 0.25 0.11  76.59  23.41 

31 M. Oliveto 
 

7.30 1.21 3.65 12.16  0.62 0.03 0.02  0.67 0.22 0.06 0.08  86.14  13.86 

32 Rocca Pendice 
 

21.17 - 0.19 21.36  1.75 1.14 -  0.16 0.57 0.15 0.09  74.77  25.23 

33 Rocca Pendice 
 

29.31 - 0.71 30.02  1.31 - -  0.13 0.86 0.12 0.14  67.43  32.57 

34 M. Rosso 
 

14.54 7.94 1.28 23.75  2.17 0.64 -  1.52 1.29 0.31 0.08  70.24  29.76 

35 M. Rosso 
 

16.22 6.58 1.18 23.98  2.39 1.23 -  0.86 0.99 0.41 0.07  70.07  29.93 

36 M. Rusta 
 

- - 13.64 13.64  0.71 - -  2.59 0.36 0.62 0.04  82.05  17.95 

37 M. Rusta 
 

2.00 - 16.59 18.59  0.48 - -  3.79 0.28 0.08 0.01  76.78  23.22 

38 M. Rusta 
 

4.14 - 10.31 14.45  0.56 - -  0.45 0.28 0.10 0.01  84.16  15.84 

39 M. San Daniele 
 

4.68 4.04 11.82 20.54  0.86 - -  2.14 0.42 0.18 0.09  75.78  24.22 

40 M. Trevisan 
 

1.56 5.50 - 7.06  0.64 - 0.89  0.65 0.53 0.04 0.38  89.80  10.20 
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Table III. Texture expressed by grain size distribution, observed under the microscope, and size of feldspars (anortho-

clase, plagioclase and sanidine considered together) and feldspar glomeroporphyries determined by µ-XRF mapping 

and digital image analysis. For each quarry (number and localization as in Figure 1), values are averaged among differ-

ent samples, except for maxima. 

 

Quarry Locality 
 Grain size dis-

tribution 

 Feldspars area (mm2) 
 

Feldspars Feret diameter (mm) 

 

 
Mean Max 

 

1–5 

(%) 

5–10 

(%) 

10–30 

(%) 

>30 

(%)  
Mean Max 

 

≤2 

(%) 

2–8 

(%) 

>8 

(%) 

1 M. Alto 
 

Hiatal  0.78 34.75 
 

80.00 15.56 3.33 1.11 
 

1.19 9.78 
 

83.36 16.09 0.55 

2 M. Alto 
 

Hiatal  0.29 9.13 
 

91.30 8.70 0.00 0.00 
 

0.73 6.58 
 

94.11 5.89 0.00 

3 M. Bello 
 

± Seriate  0.33 12.17 
 

83.00 12.00 5.00 0.00 
 

0.69 6.29 
 

93.96 6.04 0.00 

4 M. Bello 
 

± Seriate  0.57 20.57 
 

84.00 12.00 4.00 0.00 
 

0.96 7.40 
 

89.36 10.64 0.00 

5 M. Cero 
 

Hiatal  0.99 10.19 
 

93.24 5.41 1.35 0.00 
 

1.43 5.37 
 

76.92 23.08 0.00 

6 M. Grande 
 

Hiatal  0.52 20.99 
 

94.03 2.99 2.99 0.00 
 

0.89 7.56 
 

87.64 12.36 0.00 

7 M. Grande 
 

Hiatal  0.56 16.98 
 

82.61 9.78 7.61 0.00 
 

0.97 7.71 
 

89.41 10.59 0.00 

8 M. Lonzina 
 

Hiatal  0.98 41.55 
 

77.46 14.08 7.04 1.41 
 

1.15 11.68 
 

85.79 13.96 0.25 

9 M. Lispida 
 

Hiatal  0.74 24.19 
 

77.14 15.71 7.14 0.00 
 

1.17 6.98 
 

83.11 16.89 0.00 

10 M. Lispida 
 

Hiatal  0.81 13.99 
 

75.34 21.92 2.74 0.00 
 

1.22 6.64 
 

81.78 18.22 0.00 

11 M. della Madonna 
 

± Seriate  0.94 23.03 
 

75.44 17.54 7.02 0.00 
 

1.19 8.38 
 

83.00 16.67 0.33 

12 M. Rovarolla 
 

Hiatal  1.66 32.51 
 

62.11 20.00 16.84 1.05 
 

1.51 9.77 
 

77.04 22.16 0.79 

13 M. Rovarolla 
 

Hiatal  2.21 42.27 
 

65.00 18.00 13.00 4.00 
 

1.73 10.47 
 

71.90 26.14 1.96 

14 M. Altore 
 

Hiatal  2.34 70.42 
 

58.23 22.78 15.19 3.80 
 

1.73 15.90 
 

74.74 23.89 1.37 

15 M. Altore 
 

Hiatal  1.60 39.06 
 

64.77 18.18 13.64 3.41 
 

1.43 8.84 
 

80.98 17.99 1.03 

16 M. Comun 
 

Hiatal  1.63 44.60 
 

59.41 20.79 17.82 1.98 
 

1.47 10.69 
 

78.00 20.63 1.36 

17 M. Rovarolla 
 

Hiatal  1.87 42.61 
 

58.14 22.09 17.44 2.33 
 

1.54 11.92 
 

78.67 19.60 1.73 

18 M. Comun 
 

Hiatal  1.53 34.35 
 

69.23 15.38 10.99 4.40 
 

1.49 11.04 
 

77.51 20.11 2.38 

19 M. Lozzo 
 

Seriate  1.01 29.45 
 

81.45 12.90 5.65 0.00 
 

1.36 10.38 
 

81.33 18.31 0.36 

20 Monselice 
 

Hiatal  1.17 40.00 
 

60.24 18.07 18.07 3.61 
 

1.04 10.77 
 

85.56 13.73 0.71 

21 Monselice 
 

Hiatal  1.06 41.15 
 

67.86 23.81 5.95 2.38 
 

1.24 10.37 
 

82.67 16.67 0.67 

22 M. Merlo 
 

Seriate  0.42 15.37 
 

85.05 12.15 2.80 0.00 
 

0.86 6.15 
 

90.63 9.37 0.00 

23 M. Merlo 
 

Seriate  0.62 26.96 
 

83.90 8.47 7.63 0.00 
 

1.01 7.99 
 

87.96 12.04 0.00 

24 M. Merlo 
 

Seriate  0.76 34.94 
 

80.34 13.68 5.13 0.85 
 

1.19 9.69 
 

84.72 15.15 0.13 

25 M. Murale 
 

Hiatal  0.30 5.60 
 

97.22 2.78 0.00 0.00  0.86 6.23 
 

92.27 7.73 0.00 

26 M. Murale 
 

Hiatal  0.47 7.81  90.32 9.68 0.00 0.00  0.88 5.62 
 

89.66 10.34 0.00 

27 M. Oliveto 
 

Hiatal  0.40 10.21  96.49 2.73 0.78 0.00  0.88 6.95  91.21 8.79 0.00 

28 M. Oliveto 
 

Hiatal  0.40 13.86  85.39 11.80 2.81 0.00  0.84 7.46  92.71 7.29 0.00 

29 M. Oliveto 
 

Hiatal; ± Seriate  0.34 13.28  89.53 9.45 1.02 0.00  0.76 8.53  93.23 6.74 0.04 

30 M. Oliveto 
 

Hiatal  0.43 9.61  92.92 7.08 0.00 0.00  0.88 7.83  91.10 8.90 0.00 

31 M. Oliveto 
 

Hiatal; ± Seriate  0.46 7.22  93.74 6.26 0.00 0.00  0.91 5.51  90.38 9.62 0.00 

32 Rocca Pendice 
 

Hiatal  2.23 48.88  52.94 13.73 31.37 1.96  1.67 12.90  77.07 21.95 0.98 

33 Rocca Pendice 
 

Hiatal  1.60 44.86  50.67 20.00 26.67 2.67  1.35 12.74  83.04 15.21 1.75 

34 M. Rosso 
 

± Seriate  0.52 28.03  85.47 11.97 2.56 0.00  0.93 10.46  89.88 9.92 0.20 

35 M. Rosso 
 

± Seriate  0.52 23.55  94.81 2.96 2.22 0.00  1.01 10.83  88.68 11.22 0.10 

36 M. Rusta 
 

Hiatal  0.61 15.75  89.47 7.89 2.63 0.00  0.97 7.25  88.33 11.67 0.00 

37 M. Rusta 
 

Hiatal  1.23 33.79  78.83 15.55 5.09 0.53  1.51 10.16  76.14 23.41 0.45 

38 M. Rusta 
 

Hiatal  0.51 23.93 
 

84.06 14.49 1.45 0.00 
 

0.87 10.04 
 

89.62 10.21 0.16 

39 M. San Daniele 
 

Hiatal  0.56 8.89 
 

96.18 3.82 0.00 0.00 
 

1.15 5.15 
 

86.48 13.52 0.00 

40 M. Trevisan 
 

Hiatal  0.71 11.88 
 

88.10 9.52 2.38 0.00 
 

1.15 5.45 
 

85.78 14.22 0.00 

 

• Grain size distribution showing intermediate characteristics between hiatal and seriate is marked with “±” (i.e., weakly seriate). 

• Area distribution is represented through four classes (with limits at 5, 10, and 30mm2), Feret diameter distribution through three classes (with limits 

at 2 and 8 mm) and frequencies within each class are expressed as relative percentage. 
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Table IV. Groundmass properties: textural arrangement and size of microlites, observed under the microscope, modal 

composition/glass content expressed in percentage and grain size of SiO2 phases determined by µ-XRF mapping and 

digital image analysis. For each quarry (number and localization as in Figure 1), values are averaged among different 

samples, except for maxima. 

 

Quarry Locality 

 

Texture 

 

Grain 

size 

 Composition 
 

Qz/Crs grain size 

 

  

Afs Pl 
Qz/ 

Crs 

Ti-

Mag 
Ilm Glass Others 

 

Mean 

area 

(µm2) 
 

Mean 

diameter 

(µm) 

1 M. Alto 
 

Felty  M  72.64 13.27 12.76 0.86 0.07 - 0.39 
 

123.31 
 

15.72 

2 M. Alto 
 

Felty  M/C  78.37 - 20.62 0.60 0.23 - 0.18 
 

64.67 
 

10.47 

3 M. Bello 
 

Felty  C  74.64 0.38 24.35 0.46 0.14 - 0.03 
 

95.73 
 

15.16 

4 M. Bello 
 

Felty  C  69.32 1.24 27.39 0.41 0.28 1.27 0.08 
 

127.39 
 

15.90 

5 M. Cero 
 

Trachytic  M  95.01 0.54 3.46 0.77 - - 0.22 
 

79.97 
 

13.28 

6 M. Grande 
 

± Felty  M  81.67 - 16.18 0.43 0.03 1.67 0.01 
 

81.60 
 

12.90 

7 M. Grande 
 

± Felty  M  82.70 - 13.84 0.92 0.09 2.42 0.03 
 

102.77 
 

15.62 

8 M. Lonzina 
 

Felty  C  78.25 4.81 16.05 0.50 0.33 - 0.07 
 

26.46 
 

7.75 

9 M. Lispida 
 

Felty  C  85.59 1.46 7.11 0.99 0.19 4.65 0.01 
 

116.31 
 

11.30 

10 M. Lispida 
 

Felty  C/M  86.96 2.38 8.94 0.46 0.12 1.01 0.13 
 

132.00  15.84 

11 M. della Madonna 
 

Felty  M  80.27 - 14.43 0.49 0.17 4.35 0.29 
 

49.19  8.15 

12 M. Rovarolla 
 

Felty  M  80.71 - 17.96 0.95 0.19 - 0.20 
 

193.55  19.84 

13 M. Rovarolla 
 

Felty  M/C  82.22 - 15.13 0.99 0.29 - 1.38 
 

162.17 
 

18.12 

14 M. Altore 
 

Felty  M/C  82.09 - 16.13 1.00 0.20 0.29 0.29 
 

179.46 
 

20.05 

15 M. Altore 
 

Felty  M/C  80.48 - 17.19 0.80 0.22 1.18 0.13 
 

170.22 
 

19.01 

16 M. Comun 
 

Felty  M/C  76.85 - 21.56 0.74 0.24 0.50 0.12 
 

211.26 
 

19.99 

17 M. Rovarolla 
 

Felty  M/C  80.31 - 17.17 0.57 0.31 - 1.64 
 

252.77 
 

20.95 

18 M. Comun 
 

Felty  M/C  78.30 - 18.42 0.81 0.18 1.81 0.48 
 

184.53 
 

19.92 

19 M. Lozzo 
 

Felty  M  78.25 12.38 7.75 0.76 0.36 - 0.51 
 

295.86 
 

19.68 

20 Monselice 
 

Trachytic  M  87.47 5.14 4.62 0.66 - 1.21 0.90 
 

176.27 
 

18.35 

21 Monselice 
 

Trachytic  M  94.70 2.85 0.03 0.80 - 1.00 0.62 
 

42.53 
 

7.85 

22 M. Merlo 
 

Felty  M  74.95 7.36 7.30 0.68 0.34 8.75 0.64 
 

318.03 
 

21.39 

23 M. Merlo 
 

Felty  M  72.42 7.08 19.25 0.33 0.57 - 0.34 
 

176.79 
 

18.42 

24 M. Merlo 
 

Felty  M  77.03 9.40 12.25 0.61 0.40 - 0.31 
 

425.55 
 

27.02 

25 M. Murale 
 

Trachytic  M/C  82.80 11.05 3.39 0.66 0.24 1.73 0.13 
 

30.78 
 

7.39 

26 M. Murale 
 

Trachytic  M/C  87.41 8.18 2.81 0.47 - 1.13 0.01 
 

15.61 
 

6.19 

27 M. Oliveto 
 

± Felty  C  82.51 - 16.29 0.78 0.25 - 0.17 
 

60.44 
 

12.28 

28 M. Oliveto 
 

Felty  C  84.75 - 14.07 0.89 0.17 - 0.12 
 

76.59 
 

11.28 

29 M. Oliveto 
 

Felty  C/M  85.81 - 13.14 0.54 0.24 - 0.27 
 

104.72 
 

16.02 

30 M. Oliveto 
 

± Felty  C  89.61 - 7.17 0.86 0.23 1.98 0.14 
 

52.48 
 

10.86 

31 M. Oliveto 
 

Felty  C/M  85.27 - 14.08 0.36 0.14 - 0.16 
 

35.72 
 

9.13 

32 Rocca Pendice 
 

Felty  M/C  88.22 - 10.76 0.78 0.10 - 0.14 
 

106.64 
 

15.47 

33 Rocca Pendice 
 

Felty  M/C  81.82 - 14.98 0.56 0.20 2.16 0.27 
 

90.60 
 

12.38 

34 M. Rosso 
 

Felty  M  73.85 4.86 20.00 0.64 0.48 - 0.16 
 

127.84 
 

15.93 

35 M. Rosso 
 

Felty  M  70.50 4.20 24.15 0.59 0.37 - 0.19 
 

174.72 
 

17.15 

36 M. Rusta 
 

Felty  M/C  77.70 - 20.78 0.69 0.17 0.65 - 
 

86.59 
 

13.74 

37 M. Rusta 
 

Felty  M/C  84.49 - 14.22 0.62 0.45 0.19 0.03 
 

74.66 
 

13.75 

38 M. Rusta 
 

Felty  M/C  83.40 - 15.65 0.33 0.41 0.19 0.02 
 

41.36 
 

9.34 

39 M. San Daniele 
 

Felty  M/C  73.37 10.95 12.91 1.23 0.19 1.30 0.05 
 

50.56 
 

10.22 

40 M. Trevisan 
 

Trachytic  C/M  72.58 10.83 15.91 0.45 0.04 - 0.20 
 

129.11 
 

14.20 

 

• Texture showing intermediate characteristics between felty and trachytic is marked with “±”. 

• Grain size is marked with “M” and “C” standing for microcrystalline or cryptocrystalline, respectively. 

• Abbreviations of minerals according to Whitney & Evans (2010): Afs = alkali-feldspar; Pl = plagioclase; Qz = quartz; Crs = cristobalite; Mag = 

magnetite; Ilm = ilmenite. 

• Discrimination between alkali-feldspar and plagioclase is uncertain due to their compositions with variable K:Ca ratios. 
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Table V. Major-element chemical composition of the main mineral phases in Euganean trachyte determined by EPMA 

and averaged among all the samples with standard deviations (~500 crystals in total); concentrations are expressed as 

oxide weight percent. 

 

 
Anorthoclase Apatite Augite Biotite Kaersutite Plagioclase Sanidine Ti-magnetite 

Na2O 7.68 ± 0.54 0.30 ± 0.12 0.84 ± 0.26 0.73 ± 0.15 2.76 ± 0.12 7.40 ± 0.73 5.64 ± 0.69 0.03 ± 0.04 

MgO 0.01 ± 0.01 0.17 ± 0.11 13.62 ± 1.25 14.21 ± 1.27 12.59 ± 0.70 0.02 ± 0.02 0.01 ± 0.01 0.83 ± 0.77 

Al2O3 20.79 ± 0.87 0.01 ± 0.02 1.41 ± 0.45 13.84 ± 0.49 12.39 ± 0.61 24.33 ± 1.32 19.13 ± 0.30 1.10 ± 0.66 

SiO2 65.34 ± 1.24 0.29 ± 0.17 51.62 ± 0.68 36.43 ± 0.62 40.39 ± 0.62 60.72 ± 2.09 66.55 ± 0.61 0.75 ± 1.03 

P2O5 n/a   41.77 ± 0.78 n/a   n/a   n/a   n/a   n/a   n/a   

Cl2O n/a   1.12 ± 0.70 n/a   n/a   n/a   n/a   n/a   n/a   

K2O 3.81 ± 1.12 0.02 ± 0.03 0.01 ± 0.01 8.39 ± 0.42 1.05 ± 0.16 1.01 ± 0.29 8.08 ± 0.95 0.01 ± 0.02 

CaO 2.25 ± 0.83 53.33 ± 0.62 20.74 ± 0.77 0.03 ± 0.07 10.63 ± 0.29 6.22 ± 1.55 0.54 ± 0.17 0.19 ± 1.12 

TiO2 0.04 ± 0.03 0.01 ± 0.02 0.37 ± 0.14 6.25 ± 0.64 4.83 ± 0.58 0.04 ± 0.03 0.02 ± 0.02 10.83 ± 4.75 

Cr2O3 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 

MnO 0.01 ± 0.02 0.26 ± 0.09 1.00 ± 0.33 0.31 ± 0.16 0.26 ± 0.09 0.02 ± 0.02 0.01 ± 0.01 1.03 ± 0.71 

Fe2O3 0.29 ± 0.08 0.44 ± 0.29 11.04 ± 1.42 16.81 ± 2.27 14.56 ± 1.12 0.38 ± 0.07 0.20 ± 0.05 84.40 ± 6.60 
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