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Abstract: Perisomatic GABAergic synapses onto hippocampal pyramidal cells arise from two
populations of basket cells with different neurochemical and functional properties. The
presence of the dystrophin-glycoprotein complex in their postsynaptic density (PSD)
distinguishes perisomatic synapses from GABAergic synapses on dendrites and the
axon-initial segment. Targeted deletion of neuroligin 2 (NL2), a transmembrane protein
interacting with presynaptic neurexin, has been reported to disrupt postsynaptic
clustering of GABAA receptors (GABAAR) and their anchoring protein, gephyrin, at
perisomatic synapses. In contrast, targeted deletion of Gabra2 disrupts perisomatic
clustering of gephyrin, but not of α1-GABAAR, NL2, or dystrophin/dystroglycan.
Unexpectedly, conditional deletion of Dag1, encoding dystroglycan, selectively
prevents formation of perisomatic GABAergic synapses from basket cells expressing
cholecystokinin. Collectively, these observations suggest that multiple mechanisms
regulate formation and molecular composition of the GABAergic PSD at perisomatic
synapses. Here, we further explored this issue by investigating the effect of targeted
deletion of Gabra1 and NL2 on the dystrophin-glycoprotein complex and on
perisomatic synapse formation, using immunofluorescence analysis with a battery of
GABAergic pre- and postsynaptic markers. We show that absence of 1-GABAAR
increases GABAergic synapses containing the α2 subunit, without affecting the
clustering of dystrophin and NL2; in contrast, absence of NL2 produces highly variable
effects postsynaptically, not restricted to perisomatic synapses and being more severe
for the GABAAR subunits and gephyrin than dystrophin. Altogether, the results confirm
the importance of NL2 as organizer of the GABAergic PSD and unravel distinct roles
for α1- and α2-GABAARs in the formation of GABAergic circuits in close interaction
with the dystrophin-glycoprotein complex.
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Reply to reviewers: 
 
We are grateful to the Editors and Reviewers for their careful evaluation of our work and their insightful 
comments, which have greatly helped to improve our work. We have revised our manuscript accordingly 
(all changes are in red in the revised manuscript). Here, we provide a point-to-point answer to the 
reviewer’s comments. 
 
COMMENTS TO THE AUTHOR: 
 
Reviewer #1: The study of the Differential role of GABAA receptors and 
Neuroligin 2 for perisomantic GABAergic synapse formation in the hippocampus 
by Panzanelli et al. is of considerable interest. However, in my opinion 
there are some points that the authors should address for the improvement of 
the manuscript before publication  
Reply: Thank you for this positive comment. 
 
1) Regarding the abstract I just have a suggestion for the authors to 
consider. 
Almost two thirds of the abstract is introductory and in my opinion it should 
be more focused in actual research data including quantitative analyses where 
possible. 
Reply: we feel that it is necessary to explain in some detail the complex background of our study. For 
space restrictions, it is not possible to insert quantitative data in the abstract. Nevertheless, we have 
made a few changes in the text to improve the clarity of the abstract. 
 
2) In the methods section a precise definition should be included regarding 
what the authors consider a cluster in relation with immunostained punctate 
structures. 
Reply: this has been added (page 9). 
 
3) In the "antibody characterization" and "image analysis" paragraphs of the 
methods section, the use of antibodies to the γ2 GABAA receptor subunit is 
reported. However, antibodies to γ2 subunit are not included in table 1 and 
no results regarding distribution of γ2 subunit are presented in the 
manuscript. 
Reply: we apologize for the mistake. All mentions of the γ2 subunit have been removed. 
 
4) An important issue is related to the fact that it is not sufficiently 
clear which parts of the analysis were performed in 2D in single plane-  or Z 
stack projection-images, or in 3D. This should be clarified.  
Reply: all data analyses have been performed in single images. 
 
In the last paragraph of the methods section the authors state that 
".............on the AIS, cluster density per unit length was assessed in 3D 
reconstructions from stacks of .........". Results derived from analysis of 
puncta in apposition to AISs are however not reported in the results. 
Reply: we apologize for the confusion. The AIS has not been analysed in this study and the mention of 
the AIS has been removed. 
  
For the observations performed in 3D (for instance the correlation between 
cluster size and fluorescence intensity), the authors should discuss the 
methodological limitations regarding cluster identification in the Z axis, in 
relation to cluster size and voxel anisotropy, derived from the relatively 
large (500-800nm) spacing between confocal planes.  
Reply: For the reasons mentioned by the reviewer, we have performed all data analyses in single 
images. 
 
This is particularly relevant to clarify the apparent discrepancy regarding 
α2 subunit cluster size: According to table 2, α2 subunit cluster size has no 
statistically significant differences between WT and α1-KO mice both in 
stratum pyramidale and stratum radiatum when puncta size was apparently 

Authors Click here to download Authors' Response to Reviewers'
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estimated in 2D confocal images. However, that was not the case when α2 
subunit cluster size was inferred by the analysis of the slope of size-
intensity correlation. In my opinion, this is an important issue that deserve 
a more clear description of the methodology used and some potential caution 
for results interpretation  and  discussion. 
Reply: The reasons for analysing the correlation between cluster size and intensity have been presented 
in the Results section. We have now added a paragraph in the Discussion (Page 15) to address all these 
issues. 
 
5) Finally, to better evaluate the effects of inter-animal variability on the 
results it would be useful to present the data regarding the α1-KO mice as 
for NL2-KO mice, perhaps including α1-KO mice data in table 3. 
Reply: we did not follow this suggestion, because the data in Table 2 include the SEM, which is rather 
small for data from alpha1-ko mice. 
 
 
Reviewer #2:  
This is an excellent study demonstrating the molecular diversity and assembly 
of GABAergic synapse in the hippocampus. The authors used multichannel 
immunofluorescence characterisation of synapse distribution and size in the 
CA1 of mice with deletion of the alpha1 subunit of the GABA-A receptor 
(Gabra1) or neuroligin2 (NL2). The conclusion is that the deletion of Gabra1 
increases the immunofluorescence for Gabra2 in synapses in all tested layers. 
In contrast, the deletion of NL2, which is present in all GABAergic synapses 
of pyramidal cells, causes widespread and individual mouse specific changes, 
particularly of gephyrin and the alpha2 subunit. The results show distinct 
roles of the alpha1 and alpha2 GABA-A receptor subunits, the key role of the 
alpha1 in synapse formation and a highly variable effect of the absence of 
NL2 in hippocampal circuits. 
 
The results are well illustrated and the conclusions well-supported by 
evidence, and the paper is very well written contributing greatly to the 
molecular anatomy and development of GABaergic synapses. I have a few minor 
suggestions for consideration by the authors: 
Reply: we appreciate the appraisal of the reviewer. 
 
1. Specificity of antibodies are said to be characterised for 
immunohistochemistry in some cases by Western blotting (unfixed proteins of a 
certain size range) and immunohistochemistry. The authors, being pioneers in 
antibody development and characterisation, know that the latter cannot show 
antibody specificity in a tissue containing tens of thousands of molecular 
entities of various size ranges. Immunohistochemistry can only show patterns, 
which may or may not be similar to those obtained with other antibodies, 
which were tested on KO animals. This is stated in some cases and in others 
probably no such data exist. I suggest that for educational purposes, when KO 
animal comparison is not available, use specific information such as used for 
antibody to VGAT. 
Reply: we have amended the description of antibody specificity as suggested. 
 
2. The quantitative analysis is as good as possible with these methods, 
but a threshold of 0.1 micron square for lower threshold of cluster (synapse) 
detection means that small synapses are excluded. In genetically altered mice 
synapses may become larger or smaller in area and/or contain more or less 
fluorescence without true size change, but increased fluorescence at this 
resolution may increase detection, which means that the proportion excluded 
may be different leading to conclusions of change in synapse density when in 
fact only the real or apparent sizes changed. I suggest that this is more 
clearly discussed when interpreting synapses density and size changes. 
Reply: we have added a paragraph in the discussion to address all these issues (page 15). 
 



3 
 

3. The vast majority, but an unknown proportion, of synapses are on 
pyramidal cells and the rest on interneurons, which are very heterogeneous of 
synapse size and composition. The results are interpreted as changes in 
pyramidal cell synapses, but a cautionary note is needed that the 
contribution of GABAergic synapse changes on interneurons remain to be 
assessed. 
Reply: We agree and have added a cautionary note in the discussion (bottom of page 15). 
 
4. VGLUT3 does not appear to be present in all large CB1 clusters. Is 
this real or apparent? Previous suggestions in the rat (Somogyi et al., 2004 
Eur J Neurosci) predicted that VIP and VGLUT3 expressing CCK basket cells may 
form two populations. Some comment is needed, particularly as this paper 
treats CCK basket cells as one population. 
Reply: This issue is now specified in the Results (page 11). 
 
5. It would be more clear to put in the heading of table3 (% of control). 
Reply: changed as suggested. 
 
 
 
Reviewer #3: The mechanisms that regulate GABAAR synapse formation are still 
essentially unknown. Here, the authors use immunohistochemical labeling and 
image analyses to describe GABAergic clusters in the hippocampus of α1- or 
NL2-KO mice to assess synapse formation. 
 
Comments: There are several points in the manuscript that are confusing and 
need a thorough editing. 
Reply: we apologize for the confusing points, which have now all been clarified or corrected. 
 
1. The title, abstract, and main text refer to "synapse formation" although 
synapses defined by pre- and postsynaptic components have not been directly 
analyzed in this study.  
Reply: We agree with the reviewer that we did not directly assess synapse formation in this study. 
However, since we analysed pre- and post-synaptic components of GABAergic synapses in adult tissue 
of mutant mice (which might fail to form synapses), we indirectly take a measure of synapse formation. 
Therefore, we have not changed the wording in the title, abstract and main text. 
 
 In the abstract, it is claimed that the absence of NL2 impacts more α2 (as 
compare to α1). This is not obvious when looking at the data displayed 
table3. See also point 8. 
Reply: we apologize for this mistake, which is now corrected. 
 
M&M 
2. In the M&M sections, the characterization of commercially available 
antibodies can be found on the provider websites; reference numbers are 
sufficient. Remove information about γ2 subunit (antibody characterization 
and image analysis subchapters), this subunit is not analyzed in this MS. 
Describe the antifreeze solution. 
Reply: we have kept the section on antibody characterization. As mentioned by reviewer 1, this is a 
critical issue and it might be helpful for the reader to have the information made available in the text. The 
composition of the antifreeze solution has been added. 
 
3.  Image analysis subchapter: I do not understand the description of 
analyses on AIS, there is no analysis on this structure in the MS.  
Stacks of 10-12 confocal sections are acquired and cluster density per 
surface area is assessed in single confocal images. How the confocal images 
are chosen? How many brain sections per animal? How many ROI per brain 
sections? 
Reply: Sorry for the confusion. The AIS has not been analysed in this study and this part is now removed 
from the M&M. 
Results 
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4. It would be interesting to give more informative subchapter headings in 
the result section (instead of a1- or NL2-KO mice). 
Reply: done as suggested. 
 
α1-KO analyses: 
5. It must be guessed that stratum radiatum contain dendrites and pyramidal 
cell layers contain cell bodies, help the reader please. 
Reply: done. 
 
6. In the text, it is said that analyses on α1-KO mice were performed in five 
mice per genotypes, in table 2 legend, N=6 mice per genotype. 
Reply: corrected. 
 
7. An increase of VGAT terminals in parallel with increased gephyrin staining 
is described (but not shown) suggesting a net increase in synapse density in 
a1-KO mice compared to WT. This should be confirmed by quantification of 
apposed clusters. 
Reply: This is an excellent suggestion, readily feasible when analysing primary neuron cultures. In 
images from brain sections, we attempted but failed to reliably quantify apposition of VGAT-terminals to 
gephyrin clusters in the PCL (where VGAT terminals are very densely packed). 
 
NL2-KO analyses: 
8. In the text, "….a severe reduction of α2 subunit clusters in the PCL in 
three mice, moderate in 2 mice…… For the α1 subunit, the reduction in the 
density of clusters was severe in only one mouse, moderate in six mice …." 
However, in table 3, data for α2 are: 11, 43, 57, 79, 81, 98, 108 and for α1: 
17, 31, 36, 41, 55, 65, 73, 116, 145. I conclude (i) that 11, 43, 57 are 
considered as a severe reduction and 79, 81 are moderate for α2 and (ii) that 
11 is a severe reduction for a1 while 31, 36, 41, 55, 65 73 are moderate. 
Please clarify this point. 
Reply: we apologize for the confusion. We have now clarified the issue and corrected the text. 
 
8. Analyses on 2-3 month-old NL2-KO mice reveal a strong divergence in the 
reduction of postsynaptic markers irrespective of their sex. In rodents, 2 
months is the end of "adolescence" (Semple B.D. et al., Progress in 
neurobiology, 2013) while they are considered as adults at 3 months. Knowing 
that neuroligins are strongly linked to development, this study should 
correlate findings with the development stage of mice or at least be 
performed on a more restricted period. 
Reply: this is a very interesting and valuable suggestion. However, we have systematically compared 
mutants with wildtype littermates of exactly the same age. The variability is thus not age-dependent. 
 
Figures and tables 
9. This MS is a follow-up to the paper from Fruh et al (J. Neurosci., 2016). 
In the previous paper the density (clusters/1000 μm2) of several markers was 
higher: α2 150 vs 70±2 in this MS; NL2 250 vs 109±5, gephyrin 250 vs 64±2 
etc… However, the apparent size of clusters seems identical in the 2 reports. 
Please explain this large difference. 
Reply: the difference stems from the fact that we have analysed single images with a pixel size of 70 x 70 
nm in this study, whereas in Fruh et al (2016), we used stacks of three images with a lower magnification 
(pixel size, 120 nm x 120 nm). 
 
10. Fig. 1 E on the Y axis:  If "WT a2 intensity" stand for E' F and F' 
please remove WT. Add units on X and Y axis. On the to, it must be E, RAD WT, 
E': RAD α1-KO,  F: PCL WT, F': PCL α1-KO 
Reply: the figure has been corrected. 
 
10. Table 3: they are statistical methods to analyze distribution and 
variance, this should be applied to these data. See also point 8. 
Reply: as the reviewer pointed out, the alpha1 and alpha2 subunits are equally affected in NL2-KO mice.  
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Abstract 

Perisomatic GABAergic synapses onto hippocampal pyramidal cells arise from two 

populations of basket cells with different neurochemical and functional properties. The 

presence of the dystrophin-glycoprotein complex in their postsynaptic density (PSD) 

distinguishes perisomatic synapses from GABAergic synapses on dendrites and the axon-

initial segment. Targeted deletion of neuroligin 2 (NL2), a transmembrane protein interacting 

with presynaptic neurexin, has been reported to disrupt postsynaptic clustering of GABAA 

receptors (GABAAR) and their anchoring protein, gephyrin, at perisomatic synapses. In 

contrast, targeted deletion of Gabra2 disrupts perisomatic clustering of gephyrin, but not of 

1-GABAAR, NL2, or dystrophin/dystroglycan. Unexpectedly, conditional deletion of Dag1, 

encoding dystroglycan, selectively prevents formation of perisomatic GABAergic synapses 

from basket cells expressing cholecystokinin. Collectively, these observations suggest that 

multiple mechanisms regulate formation and molecular composition of the GABAergic PSD 

at perisomatic synapses. Here, we further explored this issue by investigating the effect of 

targeted deletion of Gabra1 and NL2 on the dystrophin-glycoprotein complex and on 

perisomatic synapse formation, using immunofluorescence analysis with a battery of 

GABAergic pre- and postsynaptic markers. We show that absence of 1-GABAAR increases 

GABAergic synapses containing the 2 subunit, without affecting the clustering of dystrophin 

and NL2; in contrast, absence of NL2 produces highly variable effects postsynaptically, not 

restricted to perisomatic synapses and being more severe for the GABAAR subunits and 

gephyrin than dystrophin. Altogether, the results confirm the importance of NL2 as organizer 

of the GABAergic PSD and unravel distinct roles for 1- and 2-GABAARs in the formation of 

GABAergic circuits in close interaction with the dystrophin-glycoprotein complex. 

 

Key words: dystrophin glycoprotein complex; gephyrin; vesicular GABA transporter; 

cholecystokinin; parvalbumin 
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Introduction 

Pyramidal cells, the principal neurons of the cerebral cortex and hippocampus, receive 

segregated GABAergic inputs on dendrites, the soma and the axon initial segment (AIS), 

arising from distinct populations of interneurons and exerting differential effects on their 

function and firing properties. Although it is well established that proteins of GABAergic 

postsynaptic densities (PSD), especially GABAA receptors (GABAAR), are molecularly 

heterogeneous across cell types and synapses in different cellular compartments, the 

mechanisms underlying the formation and regulation of distinct GABAergic PSD are poorly 

understood. In pyramidal cells, the dystrophin-glycoprotein complex (DGC) is largely 

restricted to perisomatic synapses formed by basket cell terminals (Knuesel et al. 1999). It is 

not present in synapses of the AIS or on distal dendrites (Panzanelli et al. 2011). The DGC is 

composed of - and -dystroglycan, dystrophin, and variants of dystrobrevin and 

syntrophins. It is involved in cell adhesion, extracellular signaling and intracellular signaling to 

regulate the clustering of regulatory proteins and anchoring to the actin cytoskeleton (Waite 

et al. 2009). In neurons, -dystroglycan interacts with neurexin isoforms (presynaptically), 

while dystrophin might interact indirectly with neuroligin 2 (NL2), a postsynaptic adhesion 

protein at GABAergic synapses, via SynArfGEF and S-SCAM (reviewed in (Tyagarajan and 

Fritschy 2014)). The contrast between the widespread distribution of NL2 across most 

GABAergic synapses and the DGC selectively in perisomatic synapses raised the possibility 

for a specific function of this interaction in basket cell synapses. In support for this possibility, 

the morphological analysis of neuroligin2-knockout (NL2-KO) mice revealed a selective loss 

of GABAAR and gephyrin in the pyramidal cell layer of CA1 (Poulopoulos et al. 2009). 

However, it was not tested whether the localization of the DGC was affected. 

Further support for a specific role of the DGC at perisomatic synapses arose from our own 

study in mice with a targeted deletion of Gabra2 (2-KO), which demonstrated a striking 

difference in the postsynaptic clustering of the GABAAR 1 subunit and NL2 in perisomatic 

and dendritic synapses of CA1 pyramidal cells (Panzanelli et al. 2011). In brief, we showed 
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that 1-GABAAR and NL2 remain clustered postsynaptically, along with dystrophin and 

dystroglycan in perisomatic synapses of 2-KO mice, while being largely absent from 

dendritic synapses. As this subcellular difference correlated precisely with the presence of 

the DGC, we inferred the existence of synapse-specific anchoring of GABAARs at 

postsynaptic sites and suggested that the DGC might contribute to stabilize 1-GABAAR and 

NL2, but not gephyrin, in perisomatic PSD (Fritschy et al. 2012). Further, these results 

suggested a preferential interaction between 2-GABAAR and gephyrin compared to 1-

GABAAR, in line with the difference in binding affinity of these two subunits to gephyrin. 

Nevertheless, it remains unclear why GABAAR and gephyrin clustering is more severely 

affected in perisomatic than dendritic GABAergic synapses in NL2-KO mice. Furthermore, 

the formation of distinct molecular complexes within single GABAergic synapses, segregated 

according to the GABAAR subtype when the DGC is present, remains purely speculative. 

A further complication arises from our recent observation that dystroglycan is required not so 

much for stabilizing GABAARs and NL2 postsynaptically, but rather, and selectively, for the 

formation of GABAergic synapses from CCK-positive basket cells, recognized by their high 

content of cannabinoid type 1 receptors (CB1) and the type 3 vesicular glutamate transporter 

(VGLUT3)(Früh et al. 2016). Therefore, it is necessary to investigate molecular heterogeneity 

of synapses in a broader context, involving also presynaptic afferents. The relevance of 

these issues is underscored by the fact that genetic alterations of the DGC (affecting either 

dystrophin or dystroglycan) are accompanied by intellectual disabilities (Waite et al. 2012) 

and that mutations of NL2 are found in some forms of autism-spectrum disorder (Baudouin 

2014). In addition, perisomatic GABAergic synapses formed by the two main subpopulations 

of basket cells (CCK-basket cells versus parvalbumin basket cells) have fundamentally 

different roles in the regulation of network activity in the hippocampus (Klausberger et al. 

2005). 

In the present study, we aimed at further characterizing the molecular heterogeneity of 

perisomatic and dendritic synapses in CA1 pyramidal cells and testing the hypothesis of a 
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preferential interaction of the DGC with 1-GABAAR and NL2. Using mice lacking either the 

GABAAR 1 subunit (1-KO) or NL2 (NL2-KO), we investigated how the constitutive absence 

of these proteins impacts on perisomatic synapse formation and postsynaptic clustering of 

GABAAR, gephyrin, NL2, and the DGC. 
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Materials and Methods 

Animals 

Experiments were conducted in accordance with Swiss law on animal experimentation and 

the European Parliament Directive of 22 September 2010 on the protection of animals used 

for scientific purposes (2010/63/EU) and were approved by the cantonal veterinary office of 

Zurich. For morphological analysis, 1-KO and NL2-KO mice maintained on a heterozygote 

background and bred at the Laboratory Animal Services Center (LASC) of the University of 

Zurich were used.  The mice were obtained from Dr. Greg Homanics (1-KO) and Dr. Nils 

Brose (NL2-KO) and have been extensively characterized previously (Kralic et al. 2006; 

Schneider Gasser et al. 2007; Poulopoulos et al. 2009). All genotyping was performed by 

PCR analysis of tail/ear biopsies.  

Tissue preparation 

For regional distribution and high resolution analysis of synaptic proteins, adult mice of both 

sexes (2-3 months-old) were deeply anesthetized with pentobarbital (Nembutal, 50 mg/kg, 

i.p.) and perfused transcardially with ice-cold artificial cerebrospinal fluid, as described 

(Notter et al. 2014). The mice were then decapited and the brain taken out on ice. A block 

containing the entire hippocampal formation was fixed by immersion in 4% paraformaldehyde 

in 0.15 M Na-phosphate buffer, pH 7.4 at 4°C for 90 min. After fixation, the tissue was 

cryoprotected in 30% buffered sucrose, frozen, and sectioned at 40 m with a sliding 

microtome. Free-floating sections were stored in anti-freeze solution (50 mM Na-phosphate 

buffer, pH 7.4, containing 15% glucose, 30% ethylene glycol and 200 mg/L sodium azide) at 

-20ºC until use.  

Immunofluorescence staining and confocal laser scanning microscopy 

High sensitivity detection of synaptic proteins was achieved in these mildly-fixed tissue 

sections processed for triple immunofluorescence staining, as described (Panzanelli et al. 

2009; Schneider Gasser et al. 2006), using various combinations of primary antibodies 

raised in different species (Table 1). All secondary antibodies were raised in goat and 
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conjugated to Alexa488 (Molecular Probes), Cy3 (Jackson Immunoresearch, West Grove, 

PA), or Dylight 647 (Molecular Probes).  

Images from the CA1 pyramidal layer (PCL) and stratum radiatum (RAD) were acquired by 

confocal laser scanning microscopy (LSM 700 and LSM 710 Zen, Carl Zeiss AG) using 

sequential acquisition of separate wavelength channels to avoid fluorescence crosstalk. 

Stacks of 10-12 confocal sections (1024 x 1024 pixels; 70-120 nm/pixel) spaced 500-800 nm 

were acquired with a Panfluor oil-immersion  40x  objective (numerical aperture 1.4) with the 

pinhole set at 1 Airy unit. With these parameters, the resolution of the images was 

approximately 300 nm in the x-y plane and 500-800 nm in the z-axis. For display, images 

were processed with ImageJ or Imaris software (Bitplane, Switzerland).  

 

Antibody characterization  

Guinea pig primary polyclonal antibodies against synthetic peptide sequences derived from 

the GABAAR 1 and2 subunits cDNAs were raised in house (Fritschy and Mohler 1995). 

The following peptides sequences were used: 1 subunit residues 1-16 and 2 subunit 

residues 1-9. All antibodies were raised in guinea pigs. They were characterized extensively 

by biochemistry (Western blotting, immunoprecipitation) and by immunohistochemistry using 

tissue from 1- and 2-KO mice (Benke et al. 1996; Benke et al. 1991; Fritschy and Mohler 

1995; Kralic et al. 2006; Lagier et al. 2007; Panzanelli et al. 2011; Gunther et al. 1995). 

The mouse monoclonal mAb7a against gephyrin was raised using affinity-purified rat glycine 

receptors. It’s specificity was demonstrated by immuno-electron microscopy, where gephyrin 

immunoreactivity was selectively detected postsynaptically in symmetric synapses; it  is 

widely used to detect gephyrin in inhibitory synapses, as well as recombinant gephyrin 

expressed in neurons (Lardi-Studler et al. 2007; Sassoè-Pognetto and Fritschy 2000).  

The affinity-purified rabbit polyclonal antibody against VGAT was raised using a rat synthetic 

peptide 75-87 (AEPPVEGDIHYQR). Its specificity for the mammalian VGAT was 

demonstrated by Western blotting and immunohistochemistry (selective detection of 
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GABAergic terminals in CNS sections and primary neuron cultures) (Brünig et al. 2002; 

Dumoulin et al. 1999).  

The guinea pig polyclonal serum against VGLUT3 was raised using a synthetic peptide from 

rat VGLUT3 protein. Its specificity was determined by comparison with the staining pattern 

obtained with other VGLUT3 antisera (Fremeau et al. 2002); preadsorption with the 

immunogen peptide eliminates all immunostaining. 

The rabbit polyclonal antiserum against cannabinoid receptor 1 (CB1-R) was raised using a 

synthetic peptide from rat cannabinoid receptor 1 (residues 401-473). Its specificity was 

demonstrated by Western blotting and immunohistochemistry (Morini et al. 2015).  

The monoclonal C-terminal anti-dystrophin antibody (NCL-Dys1) recognizes all dystrophin 

isoforms (Knuesel et al. 2000). It reacts strongly with the rod domain (between residues 

1181-1388) of human dystrophin. Its specificity in immunofluorescence experiments was 

demonstrated by loss of staining in mdx mice (a mutant strain lacking full-length dystrophyin) 

(Knuesel et al. 2000). 

The rabbit polyclonal antibody against NL2 (gift from P. Scheiffele, University of Basel) was 

raised using a synthetic peptide antigen: N-(C)-RGGGVGADPAEALRPACP-C, 

corresponding to amino acids 750–767 in the cytoplasmic domain of mouse NL2 (splice 

variant A) (Budreck and Scheiffele 2007). Its specificity is confirmed by the complete loss of 

immunostaining in tissue from NL2-KO mice. 

The mouse monoclonal antibody against parvalbumin was raised from purified bovine 

parvalbumin. Its specificity was demonstrated by western blotting and immunohistochemistry, 

(Celio 1990), as well as in parvalbumin-KO mice.  

 

Image analysis 

Quantification of the number of clusters positive for the GABAAR 1, 2 and 2 subunits, 

gephyrin, NL2, dystrophin, CB1, VGLUT3 and VGAT in the CA1 area was performed in 

single 8-bit high-resolution confocal images using the software Image J (NIH), obtained from 

3-6 mice per genotype and staining combination. Clusters were identified with a custom-
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made macro, based on intensity relative to background and size (minimal area, 0.07 m2, 

corresponding to 7-11 adjacent pixels at the magnification used). The outlines of clusters 

were binarized and used as a mask for measuring the total fluorescence intensity of each 

cluster in addition to its area. The analysis of single and double labeled clusters (identified by 

superposition of two single channel-binarized images) was performed separately in the PCL 

and RAD. Owing to the variability of the results some combinations were repeated up to 6 

times, using 2-4 mice per genotype in each experiment. Six images, each containing one 

region of interest, were acquired from at least three sections per mouse. The data are 

reported as mean ± SEM (N=number of mice). Statistical analyses were done with the 

software Prism (Version 4; GraphPad, San Diego, CA). Differences in numerical density of 

clusters across genotypes were performed using unpaired t-test and Mann-Whitney test; 

changes in cluster size were tested using cumulative distribution analysis and the 

Kolmogorov-Smirnov test; linear correlation analysis was performed to compare the staining 

intensity of postsynaptic clusters across genotypes. 
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Results 

Adaptation of GABAergic synapses in 1-KO mice 

To determine whether the targeted inactivation of Gabra1, which is abundantly expressed in 

both pyramidal cells and a subset of interneurons in the CA1 region of the hippocampus, had 

an effect on the postsynaptic clustering of other proteins, we examined 

immunohistochemically the distribution of GABAergic postsynaptic markers in hippocampal 

formation of adult mice. Our previous results in 2-KO mice had revealed a layer-specific 

reduction of GABAergic postsynaptic markers in CA1, except in perisomatic synapses 

containing the DGC  (Panzanelli et al. 2011). For this reason, we analyzed separately the 

pyramidal cell layer (PCL), strongly enriched in DGC and the CA1 stratum radiatum (RAD), 

which contains mainly the apical dendrites of pyramidal cells, largely devoid of the DGC and 

innervated by other types of interneurons.  

Triple immunofluorescence staining for NL2, the 2 subunit and gephyrin revealed that 1-

subunit ablation causes an increase in the density of 2 subunit and gephyrin clusters in both 

RAD and PCL, whereas clusters positive for NL2 appeared unaltered (Fig.1A-B’’’). These 

descriptive results were confirmed by quantitative analysis in five mice per genotype. The 

density of 2 subunit and gephyrin clusters was increased by about 30% in the PCL and 

RAD (PCL: 2 t4=7.983, p=0.0013, geph t4=6.802, p=0.0024; RAD: 2 t4=5.042, p=0.0073, 

geph t4=18.67, p<0.0001; unpaired t-test; Table 2). The size of the 2 subunit clusters (as 

determined by cumulative probability distribution analysis) was also increased (Fig.1C-D’) in 

RAD and PCL of 1-KO mice, but not that of gephyrin or NL2 clusters. In 

immunofluorescence analyses, the apparent size of a small structure, close to the resolution 

of the objective, is strongly influenced by its intensity, reflecting the density of antibody 

binding sites (epitopes) present in it. Therefore, we tested whether the correlation between 

the size and fluorescence intensity (calculated as the mean intensity of all voxels in the 

cluster on an 8-bit scale) was different in wildtype and 1-KO mice. For each marker, we 

observed a linear correlation between cluster size and intensity; however, the slope of this 
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correlation was higher in 1-KO mice for the 2 subunit and NL2, while being unaltered for 

gephyrin (Fig.1E-F’; Table 2). Again, this change was similar in RAD and PCL, indicating that 

synaptic remodeling taking place in the absence of the 1-subunit occurs independently of 

the presence or absence of the DGC. 

The most parsimonious explanation of these results in 1-KO mice is that the2 subunit 

substitutes for the 1 subunit in synapses that normally contain both 1- and 2-GABAAR, 

thereby explaining their increased concentration, and that the 2 subunit also becomes 

present in synapses that normally contain only the 1 subunit (possibly with low levels of 

gephyrin). Interestingly, the local density of gephyrin molecules appears to be stable across 

all these synapses, whereas NL2 is increased in the absence of 1-GABAAR. 

To confirm this hypothesis and determine whether the increase in 2 subunit and gephyrin 

clusters was due to an increase of presynaptic terminals, we used a double staining with 

gephyrin and VGAT (not shown). The results confirmed the increase of gephyrin cluster 

density and revealed a modest (20%) increase of VGAT terminals, which was significant only 

in the PCL (VGAT: t4=3.624, p=0.0223; unpaired t-test; Table 2) and suggested a net 

increase in synapse density compared to wildtype mice.  

Since the effects of 1 subunit inactivation were very similar in the PCL and RAD, we 

determined whether the presence of dystrophin was changed in 1-KO mice, along with CB1 

and VGLUT3, presynaptic markers of two partially overlapping populations of CCK-basket 

cells (Omiya et al. 2015; Somogyi et al. 2004). Triple immunofluorescence staining was 

performed for dystrophin, CB1 and VGLUT3 (Fig. 2). Quantitative analysis in six mice per 

genotype revealed that Gabra1 inactivation had no effect on dystrophin cluster density, or on 

the density of CB1- and VGLUT3-positive terminals (dystrophin: t4=0.754, p=0.4927; CB1: 

t4=1.089, p=0.3373; VGLUT3: t4=0.1917, p=0.8573; unpaired t-test; Table 2). As expected 

VGLUT3- and CB1-immunoreactivity were largely overlapping, although terminals positive for 

only one of the markers were also seen (Fig. 2A-B), suggesting additional heterogeneity of 

basket cell terminals (Somogyi et al. 2004). 
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Taken together, we conclude that targeted deletion of Gabra1 causes moderate adaptations 

of GABAergic synapses in CA1 pyramidal cells. In the PCL, the absence of 1-GABAAR 

induces an increase in the density of synapses containing the 2 subunit and gephyrin. 

These synapses likely originate from PV-basket cells, in view of the unchanged density of 

VGLUT3-/CB1-positive terminals. Further, in both the PCL and RAD, the 2 subunit 

substitutes for the missing 1 subunit, as noted above. These postsynaptic densities contain 

a higher density of NL2, but not gephyrin, molecules. Since PV is distributed throughout 

GABAergic axons and not restricted to the terminal boutons, we did not use this marker to 

quantify the density of synapses made by PV-positive interneurons.  

 

Variable phenotypic effects on GABAergic synapses in NL2-KO mice 

To determine how the loss of NL2affects the molecular organization and distribution of 

GABAergic synapses, we examined immunohistochemically the distribution of presynaptic 

and postsynaptic proteins in hippocampal formation of adult mice. In contrast with previous 

reports (Poulopoulos et al. 2009), the loss of NL2 had an effect on PSD protein clustering not 

only in the PCL but also in RAD. In addition, our analysis unraveled an unsuspected inter- 

and intra-animal variability in the severity of the effect, ranging from no detectable effect to 

severe loss for each of the postsynaptic proteins tested in NL2-KO. As the methods were the 

same as for analyzing 1-KO (or previously 2-KO) mice, this variability was apparently 

unique to NL2-KO mice. To illustrate this point, we tabulated the percentage change in the 

numerical density of 1 and 2 subunit, gephyrin, and dystrophin clusters in individual NL2-

KO mice from four distinct litters compared to wildtype siblings analyzed at the same time 

and processed under identical conditions (Table 3). Although these four markers were not 

analyzed in all mice, it was remarkable to observe a strong divergence in the reduction of 

these postsynaptic markers within any given mutant mouse, irrespective of their sex. Overall, 

the trend was towards a severe reduction of 2 subunit clusters in the PCL in one mutant 

mouse, moderate in three mice and absent in three mice. In the RAD, 2 out of 5 mutant mice 

had a moderate reduction and three were unchanged.  For the 1 subunit, the reduction in 



13 
 

the density of clusters was severe in four mutant mice, moderate in three mice, and 

unchanged in two mice in the PCL. In the RAD, 4 out of 6 mutant mice had a moderate 

reduction and one mouse was unchanged. Gephyrin clustering was the most severely 

affected, ranging from 8-85% of control in the PCL and 6-78% in the RAD. Remarkably, 

however, mice with a severe loss of gephyrin clusters were not always the same as for the 

2 subunit. Dystrophin clustering in the PCL was analyzed in five mutant mice from two 

distinct litters. One had a severe reduction, one a moderate reduction and three were 

unchanged. These differential effects are illustrated in Figure 3 for gephyrin and the 1 

subunit in the mice labeled KO1 and KO2 in Table 3, whereas the 2 subunit and dystrophin, 

co-stained along with VGAT, are illustrated for mouse KO1 in Figure 4. Despite this 

variability, statistical analysis pooling all mutants and controls revealed a significant reduction 

of the 2 subunit cluster density only in PCL.  

These results were puzzling, as they might indicate technical issues with tissue preparation 

or staining. However, this was unlikely, because the technical procedure was exactly the 

same, and performed by the same person (PP) as for the analysis of 1-KO mice. In 

addition, the quality of sections and staining was very good in all mice selected for analysis, 

as illustrated (Fig. 3-4). To explore this issue further and determine whether the loss of a 

single NL2 allele would have an effect, we quantified the distribution of postsynaptic markers 

in the CA1 region of NL2+/0 mice. The results showed that these heterozygotes were similar 

to their wildtype siblings (Table 4), with a similar degree of variability.  

Next, we analyzed the effect of NL2 gene inactivation on the expression and distribution of 

markers of presynaptic terminals. VGAT was co-stained with postsynaptic markers (2 

subunit, dystrophin; Fig. 4), whereas CB1 and VGLUT3 were co-stained with dystrophin (Fig. 

5). Quantitative analysis of the three GABAergic presynaptic markers analyzed revealed no 

effect of NL2 deletion (Table 5) on GABAergic synapse formation. Strikingly, comparison with 

Table 2 shows that the overall density of VGAT-positive terminals in NL2-KO mice and their 

wildtype littermates was only about 50% of that observed in the 1-KO mice – originally 
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generated with a mixture of three strains (129/Sv/SvJ, C57BL/6J,FVB/N) (Kralic et al. 2002) 

– denoting strong strain differences in the density of GABAergic terminals in CA1.  

Taken together, these results indicate that deletion of NL2 exerts highly variable effects on 

the postsynaptic clustering of GABAAR subunits, gephyrin and, to a lesser extent, dystrophin, 

without affecting the differentiation of presynaptic terminals or the formation of synaptic 

junctions. We could not confirm the selective loss of perisomatic postsynaptic markers 

reported previously and found no evidence for a preferential association of NL2 with 1-

GABAAR. Rather, NL2 gene inactivation had the largest observable effect on postsynaptic 

clustering of gephyrin and the 2 subunit. 
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Discussion 

The results demonstrate that targeted deletion of Gabra1 causes an increase in the density 

of GABAergic markers in the PCL and RAD, in conjunction with an increase in presynaptic 

terminals from interneurons other than the CCK-basket cells. This finding confirms previous 

reports of increased 2 subunit expression in 1-KO mice (Kralic et al. 2006; Zeller et al. 

2008; Schneider Gasser et al. 2007), but stands in striking contrast to the results from 2-KO 

mice, which revealed reduced frequency of mIPSCs and disruption of gephyrin postsynaptic 

clustering, without change in the density of GABAergic presynaptic terminals. Therefore, the 

constitutive absence of these two  subunit variants induces remarkably divergent effects on 

GABAergic synapse formation and molecular composition. In part, these differences might 

reflect differential properties of the 1 and 2 subunits with regard to their ability to regulate 

the formation of GABAergic synapses, as reported in heterologous expression systems 

(Brown et al. 2016). 

In this study, we used three parameters to assess the distribution of proteins in GABAergic 

PSDs and presynaptic terminals: 1) density of clusters (representing the high local 

concentration of proteins in the PSD and in terminals); clusters were detected based on a 

local variation in fluorescence intensity occurring in 7-11 adjacent pixels; 2) area of clusters, 

corresponding to the number of adjacent pixels in a cluster; 3) size/fluorescence intensity 

correlation. The latter parameter typically revealed a linear correlation between the two 

parameters, as expected for structures that are typically smaller than the resolution of light 

microscopy. Nevertheless, for each given antibody and region analyzed, we observed 

differences in the slope of this correlation, which most likely reflect differences in packing 

density of epitopes within individual clusters. Although the results are interpreted as changes 

occurring primarily in pyramidal cells (which are densely packed in the PCL), it is not 

excluded that GABAergic synapses on various subtypes of interneurons present in the PCL 

and RAD are differentially affected in mutant mice, but this factor could not be analyzed 

separately in this study. 
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The increased density of 2 subunit and gephyrin clusters observed in adult 1-KO mice 

likely represents a compensatory adaptation to the constitutive absence of a major GABAAR 

subtype. The increase is larger than that seen for VGAT terminals, which suggests that the 

2 subunit replaces the 1 subunit in some synapses and that existing terminals might form 

additional release sites. We have shown previously that such compensation occurs in 

multiple interneuron types in the CA1 (Schneider Gasser et al. 2007).  As we have no direct 

evidence of the cellular localization of the supernumerary 2 subunit and gephyrin clusters 

seen in the current study, it is conceivable that at least some of them are formed onto 

interneurons.  

This compensation somewhat obscures the molecular reorganization occurring in various 

types of GABAergic synapses in the absence of 1-GABAARs, which we aimed to clarify in 

this study. Nevertheless, we can derive several conclusions from our results:  

First,  formation of postsynaptic clusters of dystrophin (as marker of the DGC) occurs 

independently of the expression or presence of the 1 subunit, confirming previous 

speculations that GABAAR are dispensable for the selective localization of the DGC in 

GABAergic PSDs (Brünig et al. 2002). 

Second, we interpret the increased slope of the intensity/size correlation of 2 subunit 

clusters in 1-KO mice as evidence that the2 subunit replaces the 1 subunit in synapses 

where they normally are co-expressed. This increase in the number of 2 subunit proteins 

per synapse suggests that the size of GABAergic PSD is fixed and that PSDs can 

accommodate variable densities of 2-GABAAR and NL2 molecules, whereas the average 

density of gephyrin molecules appears invariable. If correct, this hypothesis implies that the 

packing density of 2-GABAARs in the PSD can be higher than that of 1-GABAARs, 

possibly reflecting differences in mobility and/or binding to anchoring molecules. 

Third, initial quantitative electron microscopy analyses had suggested a segregation of 1- 

and 2-GABAA receptors in perisomatic synapses from PV- and CCK-basket cells (Nyiri et 

al. 2001), respectively. Application of more sensitive methods, both in light and electron 
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microscopy, could not confirm this observation (Panzanelli et al. 2011; Kasugai et al. 2010), 

and a recent report suggests that both subunits are present in the majority of GABAergic 

synapses, with a unimodal distribution across subcellular location (Kerti-Szigeti and Nusser 

2016). This report raises the fundamental issue whether the two subunits are present within 

the same pentameric complex, or whether synapses contain distinct 1- and 2-GABAARs, 

each containing two molecules of the same variant. The former possibility would explain the 

increased intensity/size correlation of 2 subunit clusters discussed in the previous 

paragraph, but would imply that all GABAergic synapses have identical pharmacological and 

kinetics properties, which is highly unlikely. The latter possibility appears more plausible for 

this reason and because the possibility to insert variable amounts of two distinct receptor 

subtypes offers more room for functional plasticity. 

Fourth, immunoelectron microscopy analysis demonstrated that terminals from CCK basket 

cells expressing VGLUT3 form specialized, invaginating synapses on the soma of pyramidal 

cells, highly enriched with cannabinoid signaling molecules, possibly activated upon 

glutamate release and binding to mGluRs (Omiya et al. 2015). Preservation of VGLUT3/CB1-

positive terminals, along with dystrophin clusters, strongly suggests that these synapses are 

not affected (or increased) in 1-KO mice (besides a change in the subunit composition of 

GABAAR). Using immunofluorescence, we could not confirm a preferential localization of 

dystrophin apposed to VGLUT3-positive terminals, but the resolution of confocal microscopy 

might be insufficient to draw definitive conclusions. We have shown recently that genetic 

inactivation of dystroglycan has little effect on clustering of GABAergic PSD proteins, but 

prevents the formation (and maintenance) of synaptic terminals from CCK-basket cells and 

results in reduced GABAergic transmission in CA1 pyramidal cells(Früh et al. 2016). It is 

unknown whether the DGC contributes to the formation of invaginated synapses or to the 

postsynaptic anchoring of endocannabinoid synthesizing molecules.  

Phenotypic variability of NL2-KO mice 
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The highly variable and divergent effects of NL2-gene inactivation observed here are 

unexpected and require careful consideration. The most immediate explanation is of 

technical nature and suggests that immunohistochemical detection of the proteins of interest 

was impaired for methodological reasons. However, this possibility is unlikely given that such 

problems did not arise with the analysis of 1-KO and NL2-heterozygote mice, processed in 

parallel and under exactly the same conditions. Further, if the mutation should affect 

immunohistochemical protein detection, the effect would be restricted to postsynaptic 

proteins, since we had no such variability in the staining of presynaptic markers. After having 

analyzed nine mutants in four distinct experiments, along with seven heterozygous mutants, 

we concluded that the variability was most likely to have a biological foundation. 

Irrespective of this variability, we obtained no clear evidence for a preferential loss of 

GABAergic postsynaptic markers in the PCL compared to the RAD, unlike published results. 

One possible reason for this discrepancy is genetic drift between our colony of NL2-mutant 

mice and the original colony in the laboratory of Dr. Nils Brose at the Max-Planck Institute for 

Experimental Medicine in Göttingen (Germany). For this reason, we obtained from them a 

second lot of animals, which turned out to be identical to the first lot, making this hypothesis 

improbable. An alternative explanation might be the increased sensitivity of our 

immunohistochemical procedure, which was designed to optimize the preservation of tissue 

following a mild fixation, as shown ultrastructurally (Notter et al. 2014). Another possibility 

might be related to the age of the animals at the time of analysis. However, this factor did not 

account for the variability observed, since the four sets of mutant mice shown in Table 3 

were analyzed together with their wildtype littermates. 

Therefore, targeted inactivation of NL2 alters postsynaptic clustering of gephyrin, GABAAR 

and dystrophin. The inner- and inter-individual variability might be taken as evidence that the 

mechanisms underlying clustering of PSD proteins are not irreversibly impaired, but become 

dysfunctional and/or instable. It would be of interest to perform single-molecule tracking 

experiments in neuronal cultures of NL2-KO mice to determine whether kinetic parameters 

such as synaptic retention time and mean square displacement are impaired. A current 
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model postulates interaction between NL2 and collybistin isoforms containing the SH3 

domain for initiating the formation of a postsynaptic cluster (Soykan et al. 2014; Poulopoulos 

et al. 2009). Our results indicate that alternative mechanisms exist to compensate for the 

absence of NL2, notably a possible compensation by another neuroligin isoform 

(Varoqueaux et al. 2006; Hoon et al. 2011). Alterations in the splicing machinery of collybistin 

favoring retention of the SH3 domains might occur in NL2-KO mice. 

Importantly, despite its indirect interaction with the DGC via S-SCAM and SynArfGEF binding 

to dystrophin (Sumita et al. 2007; Fukaya et al. 2011), NL2 does not appear to play a role in 

synapse formation, in striking contrast with our results that -dystroglycan is required for 

formation and maintenance of synapses from CCK-basket cells (Früh et al. 2016). This 

finding further underlines the specificity of the dystroglycan-CCK-terminal trans-synaptic 

interaction and points towards distinct presynaptic binding partners of dystroglycan and NL2 

in this context. 

Taken together, the results confirm the pre-eminent role of NL2 as organizer of the 

GABAergic PSD; they provide no evidence for a preferential interaction with the DGC and/or 

1-GABAAR (which we postulated to explain why NL2 and 1 subunit clustering is preserved 

in synapses containing the DGC of 2-KO mice). In contrast, 1-GABAAR contribute to 

regulate GABAergic synapse formation but are dispensable for clustering of postsynaptic 

proteins of the GABAergic PSD. 
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Tables 

 

Table 1: List of primary antibodies 

Target protein Species Dilution Source; Catalog 

GABAAR  

1 subunit 

Rabbit, 

Guinea pig 

1:20000 Self-made 

GABAAR  

2 subunit 

Guinea pig 1:1000 Self-made 

Gephyrin  Mouse 1:700 Synaptic Systems; 

mAb7a; 147011 

VGAT Rabbit 1:3000 Synaptic Systems; 

131003 

VGLUT3 Guinea pig 1:2000 Millipore, AB5421 

CB1 Rabbit 1:3000 Synaptic System; 

258 003 

Dystrophin  

Rod Domain 

Mouse 1:100 Novocastra NCL-Dys 

1 

Neuroligin-2 Rabbit 1:10000 Received from Dr. P. 

Scheiffele 

Parvalbumin Mouse 1:5000 Swant 235 
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Table 2 

Quantification of presynaptic and postsynaptic clustering in CA1 of 1-KO mice 

1-KO PCL RAD 

 Cluster density 

(1000 m2) 

Cluster size 

(m2) 

Slope (95% CI) 
of size-intensity 

correlation  

Cluster density 

(1000 m2) 

Cluster size 

(m2) 

Slope (95% CI) 
of size-intensity 

correlation 

 WT KO WT KO WT KO WT KO WT KO WT KO 

2  70±2 

 

93±2** 

 

0.3± 

0.004 

0.4± 

0.005 

120-

121 

135-

137 

65±2 

 

84±4** 

 

0.3± 

0.003 

0.3± 

0.003 

115-

116 

133-

134 

NL2         109±5 

 

102±6 

 

0.3± 

0.003 

0.3± 

0.004 

121-

123 

137-

139 

92±5 

 

105±7 

 

0.3± 

0.002 

0.3± 

0.003 

118-

119 

135-

136 

Gephyrin      64±2 

 

90±3** 

 

0.2± 

0.003 

0.2± 

0.004 

98-

100 

94-96 76±2 

 

114±1**** 

 

0.2± 

0.002 

0.2± 

0.002 

119-

120 

115-

116 

VGAT 254±12 

 

299±3* 

 

0.3± 

0.005 

0.3± 

0.003 

  263±17 

 

290±4 

 

0.3± 

0.003 

0.3± 

0.003 

  

Dystr     

                 

118±12 

 

109±4 

 

0.3± 

0.005 

0.4± 

0.005 

142-

143 

148-

149 

      

VGLUT3   50±8 

 

49±5 

 

0.9± 

0.01 

1± 

0.01 

        

CB1        51±8  62±5 

 

n.d. n.d.         

 

The values were determined in images from double and triple immunofluorescence staining 

with various combinations of markers. They are given as mean ± SEM for the stratum 

pyramidale (PCL) and stratum radiatum (RAD) of CA1 in wildtype (WT) and 1-KO mice. 

Values indicated in bold are significantly different between genotypes (*P<0.05; **P<0.01; 

****P<0.0001; N=5 mice/genotype). n.d., not determined 
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Table 3 

Variability in the density of clusters formed by postsynaptic markers in the CA1 area 

of NL2-KO mice (in % of wildtype littermates) 

 

PCL RAD 

  geph 1 2 dystr geph 1 2

 KO1 14 31 43 38 26 88 47 

 KO2 85 55 98 108 78 48 109 

KO3 8 41 108 136 8 33 43 

KO4 10 17 11   6 53 82 

KO5 41 116 81   14 63 79 

KO6 61 36     55 50  

KO7 80 145     76   

KO8   73 79 92    

KO9   65 57 68    

 

Results are given for animals investigated in separate experiments (each color indicate a 

given experiment), obtained for the 1 and 2 subunit, gephyrin, and dystrophin. The 

numbers are the ratio (%) of cluster density in each NL2-KO mice relative to the mean 

density of wildtype littermates processed in the same experiment. 
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Table 4  

Quantification of postynaptic cluster density in CA1 of NL2+/0 mice 

 

 

 

 

 

 

 

 

 

The numerical density of clusters per 1000 m2 is given as mean ± SEM in the stratum 

pyramidale (PCL) and stratum radiatum (RAD). No significant difference was observed 

between genotypes for any of the four markers (unpaired t-test). 

 

Table 5  

Quantification of presynaptic terminal density in CA1 of NL2-KO mice 

 

 

 

 

 

 

 

 

 

The numerical density of clusters per 1000 m2 is given as mean ± SEM in the stratum 

pyramidale (PCL) and stratum radiatum (RAD). No significant difference was observed 

between genotypes for any of the markers (ANOVA). 

 

 

NL2+/0 PCL RAD 

 WT Het WT Het 

Geph  

N=7 

55±14 

 

73±24 

 

58±18 

 

62±21 

 

2      

N=5 

124±13 

 

133±11 

 

86±12 

 

80±13 

 

Dystr     

N=3 

92±18 

 

101±4 

 

  

1 

N=7 

95±23 

 

88±21 

 

173±50 

 

180±48 

 

NL2-KO PCL RAD 

 WT KO Het WT KO Het 

VGAT 121±13 

N=6 

144±24 

N=5 

100±6 

N=3 

172±14 

N=6 

150±31 

N=5 

109±23 

N=3 

VGLUT3 49±8 

N=5 

61±7 

N=4 

54±5 

N=5 

   

CB1 64±4 

N=5 

76±8 

N=4 

80±5 

N=5 
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Figure legends 

Figure 1 

Differential alterations in postsynaptic marker distribution in CA1 neurons of 1-KO mice, as 

analyzed in perisomatic synapses of CA1 pyramidal cell layer. A-A''') Images from triple 

immunofluorescence for NL2 (green), 2 subunit (red), and gephyrin (blue) in wildtype mice, 

demonstrating the co-localization of these three proteins, as shown in a merged and in color-

separated images. B-B’”) Selective preservation of NL2 (green) which contrasts with the 

increase of 2 subunit (red), and gephyrin (blue) clustering. C-D’) Quantification of 2 

subunit and gephyrin cluster size, displayed by cumulative distribution analysis in stratum 

radiatum (RAD; C, D) and pyramidal cell layer (PCL; C’, D’). An increase of α2 subunit 

cluster size was evident in both regions of mutant mice. E-F’) Scatter plots of GABAAR 2 

subunit cluster intensity versus size in RAD (E-E’) and PCL (F-F’); the line indicates the slope 

of the correlation, which is increased in mutants for both regions (see Table 2).  

 

Figure 2 

Increased dystrophin clustering in perisomatic synapses of CA1 pyramidal cells in 1-KO 

mice. A-B’”) Triple immunofluorescence for dystrophin (green), CB1 (red), and VGLUT3 

(blue), illustrating the unaltered density of dystrophin clusters at presumptive perisomatic 

postsynaptic sites in 1-KO mice as well as of CB1- and VGLUT3-positive terminals arising 

from CCK basket cells, as shown in a merged and in color-separated images.  
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Figure 3 

Phenotypic variability of gephyrin (green) and 1 subunit (red) clustering in the CA1 area of 

NL2-KO mice, as illustrated by double immunofluorescence staining in one wildtype mouse 

(A-A”) and two NL2-KO littermates (B-C’’). The mouse NL2KO1 exhibits severe loss of 

gephyrin clustering and moderate loss of 1 subunit clustering in the pyramidal cell layer 

while the mouse NL2KO2 shows no change in gephyrin clustering and a loss of 1 subunit 

clustering comparable to NL2KO1.  

 

Figure 4 

Images from triple immunofluorescence staining illustrating an example of moderately 

decreased 2 subunit clustering (red) along with preserved dystrophin clustering (green) and 

distribution of VGAT-positive terminals (blue) in the CA1 pyramidal cells layer of a NL2-KO 

mouse. (A-A’”, wildtype; B-B’”, NL2-KO).  

 

Figure 5 

Images from triple immunofluorescence staining depicting the unaltered density of clusters 

immunopositive for dystrophin (green), CB1 (red) and VGLUT3 (blue) in the CA1 area of a 

NL-2-KO mouse compared to a wildtype littermate. (A-A’”, wildtype; B-B’”, NL2-KO). 
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