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ABSTRACT
In the field of assistive technology, large scale user studies
are hindered by the fact that potential participants are ge-
ographically sparse and longitudinal studies are often time
consuming. In this contribution, we rely on remote usage
data to perform large scale and long duration behavior anal-
ysis on users of iMove, a mobile app that supports the ori-
entation of people with visual impairments.

Exploratory analysis highlights popular functions, com-
mon configuration settings, and usage patterns among iMove
users. The study shows stark differences between users ac-
cessing the app through VoiceOver and other users, who
tend to use the app more scarcely and sporadically. Analy-
sis through clustering of VoiceOver iMove user interactions
discovers four distinct user groups: 1) users interested in sur-
rounding points of interest, 2) users keeping the app active
for long sessions while in movement, 3) users interacting in
short bursts to inquire about current location, and 4) users
querying in bursts about surrounding points of interest and
addresses.

Our analysis provides insights into iMove’s user base and
can inform decisions for tailoring the app to diverse user
groups, developing future improvements of the software, or
guiding the design process of similar assistive tools.

CCS Concepts
•Human-centered computing → Accessibility design
and evaluation methods; •Computing methodologies
→Cluster analysis; •Social and professional topics→
People with disabilities;

1. INTRODUCTION
Nonvisual understanding of the environment is far more

ineffective and inefficient as well as potentially dangerous
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than scanning the surroundings by sight [3]. In fact, ori-
entation, a person’s awareness of position and heading in
the environment [10, 23], is a challenge for people with se-
vere visual impairment and the main difficulties derive from
the inability to efficiently obtain a mental map of the sur-
rounding area while moving. To address this problem, many
researchers and developers of assistive technology, surveyed
in [10, 11], have explored technological approaches such as
laser canes, sonar devices, and GPS navigation tools.

The design of these technological solutions is typically
guided by supervised experiments with few participants, such
as formative studies (e.g. [26]), Wizard-of-Oz experiments
(e.g. [8]), and evaluation studies (e.g. [17]). These approaches
may be attractive for the advantages they offer. Researchers
can conduct experiments with prototype applications, or in
some cases, even prototypes without working software. They
can also conduct such experiments in controlled situations
and with users whose characteristics (e.g., form of disability,
age) are known in advance. However, these approaches are
also limited in many ways. First, it is not possible to explore
many real world scenarios. Second, these studies generally
involve participants that live in close proximity to the phys-
ical location where the experiment is conducted, leading to
the possibility of cultural bias. Third, these experiments are
susceptible to the Hawthorne effect [1], where users may act
differently when they know they are being watched. Finally,
and most important, these approaches are not scalable both
in terms of number of involved subjects and length of the
study as stressed in [10].

We are interested in advancing state-of-the-art technolo-
gies for supporting orientation and mobility of people with
visual impairment. For these applications, we want to study
the following questions. Which are the most frequently used
functionalities? What are the most common user interaction
patterns? Can users be grouped based on their interaction
patterns? How do users benefit from these applications?
Being able to answer these questions makes it possible not
only to improve existing applications but also to guide the
design of similar applications supporting outdoor mobility
(e.g., [15, 14]) as well as indoor navigation (e.g. [2] among
others).

To answer these questions, we analyze large scale usage
data remotely collected from iMove1, a GPS-based mobile
application that supports outdoor orientation of people with

1https://itunes.apple.com/us/app/imove/id593874954
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visual impairments. The app provides information about
nearby “landmarks” that help the user construct a mental
map of their environment.

Our analysis is conducted both with inferential and ex-
ploratory methods using statistical tools. We also employ
machine learning tools for unsupervised discovery of user
clusters based on common interaction patterns. To the best
of our knowledge, this is the first study adopting this method-
ology in the field of mobility of people with visual impair-
ments.

Specifically this paper presents three main contributions:

• First, the analysis highlights a number of usage proper-
ties of iMove, including commonly used functions and
preferences for applications settings. We examine the
differences both in application use and preferred set-
tings across screen-reader users and other users. We
also discover clusters of users based on common inter-
action patterns and identify features that are primarily
responsible for cluster formation. The proposed fea-
ture space is intuitive enough to interpret the meaning
of the clusters.

• Second, we describe our collected dataset and release
it for use by other researchers.

• Third, the analysis methodology proposed in this con-
tribution may be adapted to the study of other appli-
cations in the field of assistive technologies.

2. RELATED WORK
Understanding user behavior during interactions with a

software application is of paramount importance for evalu-
ating the application’s effectiveness, for guiding the iterative
design process, and for informing the design of similar appli-
cations. However, there are inherent challenges in conduct-
ing behavioral studies both over long periods and with large
samples of participants with disability. Thus, fewer contri-
butions in the field of assistive technologies adopt method-
ologies involving analysis of collected real-world usage data
and often, their participants’ demographics are known a pri-
ori or collected through questionnaires. To name a few, [4]
automatically collected user actions during web browsing to
assess the accessibility of web pages by visually impaired
users. Usage log analysis is also performed in [18] to evalu-
ate the localization error of a navigation assistance tool using
Video Light Communication (VLC) for guiding people with
visual impairments. In [12], log data from real-world tasks
over a long period were used to build predictive models in
distinguishing users by pointing performance. Last, in [22],
behavior anomalies perceived during user interaction with
a sensor-enabled smart home environment act as a diagnos-
tic tool for detecting mild cognitive impairments in senior
patients.

In the broader field of human computer interaction, where
the pool of participants tend to be much larger, it is more
feasible for the researchers to perform behavior analysis on
large scale datasets available to the research community (e.g.
[7, 9, 13, 20]). These analyses often combine data-driven ap-
proaches from many fields such as classification, clustering,
and time-series analysis from machine learning, sentiment
analysis from natural language processing, and community
detection from network analysis. The work of Wang et al.,

2016 [25] is the closest to our analysis. The authors ap-
plied natural language processing techniques to detect sim-
ilarity among Facebook social network users. Specifically,
they analyzed “clickstreams”, timed sequences of interac-
tions with website, and performed hierarchical clustering
on users’ clickstream to identify common user profiles (e.g.,
those who like others’ pages and those who update their
status often).

Prior work in cognitive science related to spacial represen-
tation and navigation in people with visual impairments [24,
23] discuss limitations in user studies which compare orien-
tation and mobility performance among sighted, early blind,
and late blind participants. Their discussion on adopted and
preferred navigation strategies among these users made us
wonder whether similarities in these strategies also lead to
similarities across user interaction with supportive orienta-
tion and navigation technologies. Motivated by this ques-
tion, we investigate approaches, similar to Wang et al. [25],
that automatically discover user clusters based on streams
of interactions with iMove. However, the link between these
clusters and underlying user-adopted navigation strategies is
beyond the scope of this paper.

3. iMove APP AND DATASET
iMove is an iOS application that is accessible through

VoiceOver screen reader and magnifier. The app informs
users about outdoor geo-referenced information such as cur-
rent address, nearby Points Of Interest (POIs), and geo-
notes i.e., user-defined notes associated to a geographical
location. Users can access this information either explicitly,
e.g., ask for current address in the root screen (Fig. 1(a))
and list of nearby POIs (Fig. 1(b)), or periodically while in
motion by turning on the “Notify me” toggle button in the
root screen. The frequency of such periodic updates can be
tuned both in terms of time and proximity (i.e., a minimum
temporal/spatial distance between two readings). Geo-notes
can be created and edited as audio recordings or text entries
(Fig. 1(c)) and they are organized into “routes” (Fig. 1(d)).

iMove is designed to be highly customizable: users can
specify the categories of POIs they are interested in, activate
automatic readings of surrounding information, and modify
settings related to system verbosity. Therefore, beyond user
visited screens, actions, and received notification, we also
collect data related to their settings modifications.

3.1 Remote Logging System
Since iMove version 2.0, released on December 8, 2015,

the application implements a remote logging system that
makes it possible to collect anonymous app usage informa-
tion. Logging is supported by a client library within iMove
communicating with a REST server and a non-relational
database back-end.

A detailed description of the released dataset is avail-
able online2. Data was collected in compliance with Euro-
pean regulations3 and user logs were recorded in anonymized
form. Thus, the dataset does not include location-related
information, e.g. POI, or user-generated content, e.g. geo-

2http://webmind.di.unimi.it/assetsim16/
3Directive 95/46/EC of the European Parliament and of the
Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the
free movement of such data, OJ L 281, 23.11.1995, 31-50.



(a) Root screen. (b) POI screen. (c) Edit text-note screen. (d) Route selection screen.

Figure 1: Main screens of the iMove application.

notes. To reconstruct user-interaction history, each log in-
cludes a unique pseudo-identifier associated with an anonymized
user.

Each log record has two main components. The first com-
ponent contains data about the user and the device on which
iMove is running: the user’s pseudo-identifier, the device
model, the system language, whether VoiceOver is enabled
or not, the application version (we collected data for build
versions 31 and 32) and log creation timestamps in the user’s
time zone, UTC, and the server time.

The second component contains the application usage data.
In iMove, we partition log entries into four different cate-
gories of usage data:

Screen logs capture user navigation between iMove screens.
Each screen log records the screen name and an“enter”
or “exit” label when a user enters or exits a screen.

Action logs record iMove function activation by a user such
as recording a new speech note.

Notification logs are generated when the application auto-
matically provides information to the user (e.g. when
the user gets close to a POI).

Preference logs are generated every time a user changes
iMove settings. A preference log lists the name of the
modified parameter, its old value, and its new value.

3.2 iMove Dataset Overview
The iMove dataset was collected during the December

2015 - April 2016 period and contains a total of 771, 975 log
records across 17, 624 unique user pseudo-identifiers (µ =
43.8, σ = 105.15) log records per user with range 1 - 7,299.
From the feedback we received by email and on the app-
store, we realized that a number of users, who we call “in-
cidental” users, installed the application without realizing
its functionality and its intended use for people with visual
impairments. For example, some users confused iMove with
iMovie, a popular application for video editing.

To filter out these users, we introduce the concept of “in-
teraction session” (or simply, session): a period of time dur-
ing which a user frequently interacts with the application
(e.g., navigates in the screens, performs actions or receives
system notifications). A session is extracted from app usage
data as a sequence of consecutive log entries such that: i)
the sequence begins with a “screenRootEnter” record, which
signals that the user opened the main screen of the applica-
tion, and ii) there is at least a 5 minutes gap between the
session starting log and the previous log. This constraint
captures the intuition that the user might temporarily exit
the app for a short time within an interaction session.

Based on the intuition that users who are uninterested
in iMove would not use it for more than one session, we
consider only users having two or more sessions. There are
a total of 4, 055 such users generating a total of 255, 004 logs
(µ = 62.89, σ = 211.51 logs/user with range 2-7,296).

4. ANALYSIS

4.1 iMove Use Properties Across All Users
We analyze log records from all 4, 055 users with the goal

of highlighting iMove use properties such as commonly used
functions and user preferred values for interaction param-
eters. Using both inferential and exploratory methods we
examine four categories of log records: preferences, screen
activity, actions, and notifications.

One interesting aspect of iMove is the support of user-
defined geo-notes, where users can either record a speech
note associated with a location or type it as text. While
both options are available, we expect that the former will
be the one adopted by the users since the purpose of the app
is to support mobility and it is has been observed that typing
in mobility is particularly challenging for people with visual
impairments [16]. Specifically, we formulate and examine
the following hypothesis:

H1: iMove users will favor speech over text for input
modality when creating geo-notes.



Results and Interpretation
Preference logs account for 3.41% of the total log records.
Figure 2 reports, for each preference setting, its default value
and how many times it has been set to a given value. We
observe that the parameter “keepUserInformed”, which tog-
gles all notifications, was changed far more frequently. This
interaction was expected by our intuition that users will fre-
quently toggle off when they do not want to be disturbed by
notifications. Anticipating such an interaction during the
design of iMove, we position the toggle button in the root
screen (see Figure 1(a)). Indeed, 22.2% of the users changed
this value twice or more, while 20.9% of the users changed
it more than once for at least one session.

We also explore log records for other parameters, whose
semantics are detailed online4, to assess the default val-
ues provided by iMove. This analysis cannot take into ac-
count only the values changed by the users. Since all logged
changes necessarily involve modification of default values,
the logged data does not inform us of how many users in-
tentionally choose to stick with the default value for a given
parameter. To estimate this, we compute, for each param-
eter, the percentage of users that changed the parameter
value at least once, among the users that actually visited
that parameter’s settings screen (values are reported in Fig-
ure 2).

For example, only 4% of the users who entered the “Set-
tings location” screen actually changed the value of the “lo-
cationSpatialThreshold”parameter. On the other hand, 22%
of the users who entered the System settings page changed
the“prevent screen lock”option that by default is set to false.
Similarly, 23% of the users changed the preference “sayCity”
and more than 16% of the users changed the “saySpeed”,
“sayHeading” and “sayCourse”. These are parameters whose
default values are candidates for change in future versions
of the app. More generally, we observe the four parameters
above are all related to the type of information provided to
the user when a location notification occurs. To avoid ver-
bosity in the application, we limited location notifications to
the name and number of the street by default. Apparently,
many users prefer to have more detailed information.

Screen, Notification, and Action logs account for
66.23%, 29.55%, and 0.76% of the total 255, 004 log records,
respectively. Figure 3 illustrates the distribution of these
records across the subsequent categories. We observe that
“Location”is the most common notification followed by“POI”
and the two geo-notes. Interestingly, the “NavigateToPOI”
function, suggested by many users and introduced with app
build 31, is the most frequent user action. Geo-notes no-
tifications (“SpeechNote” and “TextNote”) are less frequent
than “Location” and “POI” notifications, accounting for 3%
of the total notifications. This is due to the fact that 83%
of the users never created a geo-note. Among users creating
a geo-note, the percentage of geo-note notifications is 10%
of the total notifications.

Figure 4 shows the distributions of per-user screen, action,
and notification logs related to speech and text geo-notes
(box indicates quartiles, center-line indicates median, square
symbol indicates mean, whiskers indicate 1.5 inter-quartile
ranges, and crosses indicate outliers). In support of hypoth-
esis H1, there is a significant difference between the pairs of

4iMove parameter semantics is detailed in http://webmind.
di.unimi.it/assetsim16/#param semantics.

these graphs determined by Mann-Whitney U test. Specif-
ically, users visit the “NewSpeechNote” screen significantly
more times than the “NewTextNote” screen (p < 0.001) and
perform significantly more “SavedNewSpeechNote” actions
than “SavedNewTextNote” actions (p < 0.05). Not surpris-
ingly, users receive significanlty more “SpeechNote” notifica-
tions than “TextNote” notifications (p < 0.05).

4.2 Voiceover-Based User Comparison
As mentioned in Section 3.1 for each log record we col-

lect the VoiceOver field, which reports whether VoiceOver
was active when the record was generated. This field is par-
ticularly relevant for our analysis as it allows us to distin-
guish users that are likely to have severe visual impairments.
Therefore, we partitioned the iMove users into two groups:
VO-group users (VO-users) have at least one VoiceOver-
active record and NVO-group users (NVO-users), have no
VoiceOver-active records.

We formulate and examine the following hypotheses:

H2: VO-users will have different settings preferences than
NVO-users.

H3: VO-users will make more intense use of iMove as mea-
sured by the number of actions and notifications as well
as the span of days using the app.

Results and Interpretation
VO-group consists of 1, 025 users whereas NVO-group in-
cludes the rest 3, 030 users. We observe that while VO-group
includes a smaller percentage of the overall iMove users
(25.28%), the number of records generated by this group
accounts for more than half of the logs (56.34%) along with
a higher mean records per user (µ = 140.16, σ = 403.91)
than the NVO-group (µ = 36.74, σ = 45.05). We also ob-
serve a small positive correlation in our dataset between the
number of records for a user and the percentage of records
with activated VoiceOver for the same user.

Users in VO-group generated logs with a high mean per-
centage of active-VoiceOver records (1%−100%, µ = 95.26%,
σ = 16.6%). This suggests that, while by definition a user in
VO-group can only have one record with VoiceOver-active,
in practice users in VO-group have VoiceOver activated al-
most all the time during use of iMove. We suspect that users
in VO-group are mostly people with severe visual impair-
ments and a few users with low vision that sporadically ac-
tivate VoiceOver while users in NVO-group either use mag-
nifier in their interaction with the app or are non visually
impaired (“incidental” users, see Section 3.2).

Figure 5 illustrates side-by-side the distribution of thresh-
old preference from both groups. In support of hypothesis
H2, we find that users in VO-group set smaller temporal
and spatial threshold values determined by Mann-Whitney
U test (p<0.05). Even though different threshold parame-
ters have different semantics, smaller temporal values result
in more frequent notifications, while smaller spatial values
for “PoiProximity” and “GeoNoteProximity” indicate pref-
erence for notification only in close proximity to the target
place (POI or geo-note). These findings suggest that users
in VO-group prefer to receive information more frequently
than users in NVO-group and only in close proximity to the
target.

To examine hypothesis H3, we consider the number of no-
tifications and actions, as well as the period of iMove use
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per user in each group and compare their mean ranks with
Mann-Whitney U test. In support of hypothesis H3, we find
that users in VO-group receive significantly more notifica-
tions (p < 0.001) such as the “Location” notifications shown
in Figure 6(a)). Similarly, users in VO-group perform sig-
nificantly more actions (p < 0.001), for example Figure 6(b)
shows how the number of times a VO-user asks for direc-
tions to navigate to a POI is significantly higher than for a
NVO-user. Users in VO-group use the application for a sig-
nificantly longer period than the NVO-users (p < 0.0001),
where the period of use is measured as the span of days be-
tween the first and last time a user enters the iMove root
screen. On average, this duration is of 53.95 days for users
in VO-group and of 20.45 days for users in NVO-group (as
shown in Figure 6(c)).

4.3 User Clustering Based on istreams
While the exploratory and inferential analyses in the pre-

vious sections reveal interesting patterns, they do not take
into account the sequential relationship between the log en-
tries. In order to learn richer patterns of interaction, we use
unsupervised learning techniques on record streams, which
preserve the temporal structure of the data. We anticipate
that users naturally fall into clusters based on common in-
teraction patterns with iMove. The automatic discovery of
these clusters can help us identify: what are the major in-
teraction categories; which is the most prevalent interaction;
and what is the relationship between different types of in-
teractions. This clustering is performed on the 1, 025 users
residing in VO-group, who are likely to have severe visual
impairments and, as shown above, make intensive use of the
application.

Clustering Methodology
As discussed in related work, HCI researchers have adopted
prior work in machine learning, natural language processing
and network analysis, to better understand user behavior,
with the social network analysis in [25] being the closest to
our work. Our methodology builds upon previous methods
to understand and support assistive orientation of people
with visual impairment. One of the inherent challenges in
analyzing our data is that users can interact with the app ei-
ther by actively navigating the screens and using their func-
tions, captured by screen and action logs, or by physically
changing their location thus generating notifications logs.
We introduce the notion of sessions (defined in Section 3.2)
into our feature engineering (described below) to yield more
intuitive and high level descriptions for the discovered clus-
ters.

Specifically, we represent each user by the stream of inter-
actions (istream) with the app. We map users to a feature
space extracted from these streams, construct a similarity
graph by comparing users in this feature space, and identify
clusters of similar users by graph partitioning. Finally, we
interpret the meaning of the clusters by isolating primary
features that are responsible for forming the clusters. To
assist future researchers in adopting this methodology for
analysis of their data, we describe the above steps, imple-
mentation, assumptions, and the hyper-parameters used in
our clustering.

Obtaining user istream. We define an istream as a
sequence of interactions between the user and iMove, ex-
tracted from user’s log records ordered by timestamp. It
captures both the type of the log entry (i.e. screen, action,
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or notification) and the magnitude of time gaps between two
consecutive log entries. Precise time gap values are omitted
if the log entries belong to the same session (defined in Sec-
tion 3.2) and are represented by the symbol“|” if they denote
session boundaries. Figure 7 illustrates an example of this
approach for obtaining a discrete user istream.

Mapping users to an intuitive feature space. We
treat istreams as text sentences and adopt n-gram-based
text representation, a common practice in natural language
processing. We consider three classes of records: screen en-
ters, actions and notifications. Each of these three classes is
defined as a set of atomic strings, which are dented by As

(screen enters), Aa (actions), and An (notifications). For
example, the string “s-Root” ∈ As represents an entrance
in the root screen; “a-navigateToPOI” ∈ Aa represents the
action of getting the navigation instructions to a POI; and
“n-Location” ∈ An represents the location notification. We
define an istream as a sequence S = (s1s2...sm), where
s ∈ As ∪ Aa ∪ An ∪ {|} and m is the total length of the
istream. We define Fn as the set of all possible n-grams (n
consecutive elements) from all the users’ istream sequences:
Fn = n-gram(S1)∪ n-gram(S2)∪ ...∪ n-gram(S#users). For
each user istream we calculate the normalized frequencies of
the n-grams in Fn. We experimented with different values of
n in the n-gram and chose 5-grams for our analysis, though
4-grams and 3-grams reveal similar clusters. As discussed in
[25], intuitively, a larger value of n for the n-gram captures
longer subsequences that are unlikely to repeat as a pattern
in the istream. For the above calculations we use the NLTK
platform [5].

Constructing a similarity graph. We create a fully
connected graph where each node represents a user and each
edge between a pair of users represents the weight based on
their pairwise similarity score. To calculate the similarity
score between two users, we compute the cosine similarity
of their n-gram feature vectors using scikit-learn [21].

Clustering and identifying primary features. We
partition the graph into clusters of similar users with com-

munity detection using the Louvain method5 described in
[6]. To interpret cluster meaning, we isolate the primary
features responsible for a cluster by performing feature se-
lection based on Chi-square statistics (χ2) [27]. For each
cluster, we build a classifier that distinguishes users belong-
ing to that cluster from the remaining users. Then we select
the top k features with the highest discriminating power in
separating the two classes using the “SelectKBest” method
from scikit-learn [21].

Results and Interpretation
The clustering procedure generates 9 clusters with a modu-
larity of 0.47, where modularity [19] is a widely-used metric
to assess the quality of a graph’s partition into communities.
Loosely speaking, it measures the density of edges inside
clusters to edges outside clusters with values in the [−1, 1]
range, where a higher value indicates better clustering. Five
of the detected clusters contain a total of 6 outlier users
which we omit from the following discussion, hence focusing
on four clusters with many users. Figure 8 visualizes the
resulting clusters and the top 3 features with the highest
discriminating power per cluster.

The first cluster (C1) contains 370 users. From the 5 pri-
mary features: two indicate that short sessions, in which
the user simply opens the application without further in-
teraction, appear with lower normalized frequency for users
in C1 than those outside C1; one indicates that long ses-
sions with many consecutive location notifications appear
with low frequency as well; last, the remaining two primary
features indicate that sessions in which the user navigates
iMove screens with the list of POIs and their details have
higher frequency for users in C1 than the rest. We can infer
that users in this cluster often open the application to check
the list of nearby POIs and their details.

The second clusters (C2) contains 247 users. From the 5
top features characterizing this cluster, three indicate high

5Library: http://perso.crans.org/aynaud/communities
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Figure 7: Mapping interaction streams to n-grams.

frequency of location and POI notification sequences in a sin-
gle session for users in C2; and the remaining two primary
features indicate low frequency of “empty” sessions, e.g., “|
screenRootEnter | screenRootEnter |”. These features sug-
gest that C2 is a set of users running the application for long
sessions during which they frequently receive many location
and POI notifications.

The third cluster (C3) contains 198 users. In this case four
of the 5 primary feature denote high frequencies of short
“empty” sessions; and feature points to lower frequency of
consecutive location notifications within the same sessions
for users in C3 than outside C3. These features suggest that
C3 contains users that starts the application, do not wait
for any notifications, and then close the application. We
speculate C3 users often open iMove simply to read (though
VoiceOver) the current address.

The fourth cluster (C4) contains 154 users. All 5 primary
features have high frequencies of short sessions with some
location and POI notifications. Our interpretation is that
these users start iMove and listen to one or two notifications
without any further interactions.

To get a confirmation of the semantics we associate to
each cluster, and to further study these clusters, we analyze
user characteristics across clusters. We consider the average
session length per user, computed as the distance between
timestamps of the last and first records in each session. As
shown in Figure 9(a), users in C2 have longer sessions that
the other users. This supports our earlier interpretation
based on the primary features. Figure 9(b) shows that users
in C2 also have a higher number of sessions, followed by
users in C3 and C4. We can interpret this observation in
two ways. First, given the particular use of the app (keeping
iMove active while moving), users in C2 tend to use it more
frequently (e.g., every day, commuting to work). A second
interpretation is that more experienced users of iMove tend
to use it for longer sessions and hence belong to C2. Distin-
guishing these two cases requires additional analysis that we
leave as future work. Last, Figure 9(c) shows that C1 users

have a higher rate of records corresponding to POI details
screen enters. This is in support of the primary features
extracted for this cluster, identifying C1 as a user group
with higher frequency of sessions that explore POI-related
screens.

5. CONCLUSIONS AND FUTURE WORK
This paper presents an analysis of users interactions with

iMove, a mobile app that supports the orientation of people
with visual impairment. The initial dataset contains more
than 17, 000 users, many of which are “incidental” users, not
really interested in the functions of the app. To filter these
users out, we adopted a session-based heuristic that elimi-
nates 77% of the users and 67% of the log records.

The data analysis performed on about 4, 000 remaining
users, highlights a number of iMove use properties, includ-
ing commonly used functions and users’ preferred values for
settings parameters. In summary:

• While initial iMove settings favored sporadic and brief
notifications, we observed that users, in particular those
with severe visual impairments, prefer to have frequent
and detailed information about the current location,
which should include city, speed, heading and course.

• Applications similar to iMove are recommended to ac-
tivate the “prevent screen lock” option by default.

• iMove users favored speech over text for input when
creating notes associated to geographical locations.

• We observed that points of interest (POIs) were im-
portant in iMove functionality. Many users checked
the list of nearby POIs (the third most visited screen)
and the most popular action was navigating to a POI.

• VoiceOver users (VO-users) received more notifications,
made intensive use of core iMove functions, and used
the app for longer periods than other users. While
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Figure 9: Analysis of the four clusters.

iMove was designed with blind users in mind, the ob-
served differences with non-VoiceOver users, possibly
including people with low vision, raises concerns about
the app design in support of this population.

iMove was designed with a main user target in mind: peo-
ple with visual impairment that would keep the app active
along a route to get notifications. By clustering about 1, 000
iMove VO-users based on common interaction patterns, our
user target base was successfully identified from one of the
major clusters (C2), which contained 25% of the VO-users.
In addition, our clustering method was able to capture and
provide semantics for the remaining 75% of the VO-users
with three more clusters; indicating those users who inter-
act with the app in short sessions. We speculate that users
in those clusters avoid interacting with the app while mov-
ing, because they do not want to be distracted or do not feel
comfortable walking while holding their smartphone. Hence,
they use the app in short bursts when they feel comfortable.

The identification of additional user clusters, other than
C2, can help improve iMove by designing new interaction
patterns and functions that support these usage patterns.
For example, since many users (those in C1) often open the
app to check nearby POIs, it may be possible to option-
ally show the list of POIs in the first app screen. Similarly,
we speculate that users in C1 often open the app to check
current address and close it. To support these operations,
researchers could investigate different interaction modalities
like an accelerometer-based interface to determine when the
user wants to read the current address while the device is in
the user’s pocket.

This contribution highlights a number of possible future
works. First, the analysis was conducted from data collected
in a period of four months during which iMove has been
downloaded on average more than 4, 000 times each month.
We expect the number of users to grow linearly with time so
that in few months it will be possible to conduct the same

analysis on a larger set of users and adopt hierarchical clus-
tering that can potentially refine our higher-level clusters
into more descriptive sub-clusters. On the other hand, col-
lecting data for a longer period will enable better analysis
of a user’s learning curve and evolution of interactions over
time, possibly characterizing the behavior of novice users
with respect to experienced ones.

In the future it will also be possible to collect additional
types of log data. For example, while it is not possible to col-
lect users’ location or user-defined geo-notes due to privacy
concerns, it may be possible to collect additional context-
related information, like users’ speed and whether users are
walking or traveling on a bus/car.

From the point of view of users’ clustering, there are three
directions along which we intend to extend this contribu-
tion. First, we want to explore hierarchical clusters and di-
mensionality reduction approaches that can further improve
our clustering quality and preserve an interpretable feature
space. Second, we intend to investigate the link between
preferences for user settings and the automatically detected
user clusters. Third, we intend to experiment with cluster-
ing techniques for effectively identifying“incidental users” so
that it is possible to remove them more reliably.

We see the results, methods, and data provided in this pa-
per to improve existing applications, provide guidance, and
advance the state of art in the field of assistive orientation
and navigation – ultimately leading to a better experience
of independent mobility for people with visual impairment.

6. ACKNOWLEDGMENTS
Chieko Asakawa acknowledges support from Shimizu Cor-

poration. Sergio Mascetti was partially supported by grant
“Fondo Supporto alla Ricerca 2015”under the project“Assis-
tive Technologies on Mobile Devices”. Authors are grateful
to Valeria Alampi who assisted in the iMove development.



7. REFERENCES
[1] J. G. Adair. The hawthorne effect: A reconsideration

of the methodological artifact. Journal of applied
psychology, 69(2):334, 1984.

[2] D. Ahmetovic, C. Gleason, K. M. Kitani, H. Takagi,
and C. Asakawa. Navcog: turn-by-turn smartphone
navigation assistant for people with visual
impairments or blindness. In Proceedings of the 13th
Web for All Conference. ACM, 2016.

[3] A. Arditi, J. D. Holtzman, and S. M. Kosslyn. Mental
imagery and sensory experience in congenital
blindness. Neuropsychologia, 26(1):1–12, 1988.

[4] J. P. Bigham, A. C. Cavender, J. T. Brudvik, J. O.
Wobbrock, and R. E. Ladner. Webinsitu: a
comparative analysis of blind and sighted browsing
behavior. In Proceedings of the 9th international ACM
SIGACCESS conference on Computers and
accessibility, pages 51–58. ACM, 2007.

[5] S. Bird, E. Klein, and E. Loper. Natural language
processing with Python. ” O’Reilly Media, Inc.”, 2009.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.
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