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a b s t r a c t

Independent mobility involves a number of challenges for people with visual impairment or blindness. In par-

ticular, in many countries the majority of traffic lights are still not equipped with acoustic signals. Recognizing

traffic lights through the analysis of images acquired by a mobile device camera is a viable solution already

experimented in scientific literature. However, there is a major issue: the recognition techniques should be

robust under different illumination conditions.

This contribution addresses the above problem with an effective solution: besides image processing and

recognition, it proposes a robust setup for image capture that makes it possible to acquire clearly visible traffic

light images regardless of daylight variability due to time and weather. The proposed recognition technique

that adopts this approach is reliable (full precision and high recall), robust (works in different illumination

conditions) and efficient (it can run several times a second on commercial smartphones). The experimental

evaluation conducted with visual impaired subjects shows that the technique is also practical in supporting

road crossing.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Most mobile devices are accessible to people with visual im-

airment or blindness (VIB)1. This makes it possible to use these

evices as platforms for the development of assistive technologies.

ndeed, applications specifically designed for people with VIB are

lready available in online stores. For example, iMove supports inde-

endent mobility in urban environment by “reading aloud” the cur-

ent address and nearby points of interest2. Other solutions proposed

n the scientific literature adopt computer vision techniques to ex-

ract contextual information from the images acquired through the

evice camera. In particular, this paper focuses on the problem of rec-

gnizing traffic lights with the aim of supporting a user with VIB in

afely crossing a road.
∗ Corresponding author at: Università degli Studi di Milano, Deptartment of Com-

uter Science, Milan, Italy. Fax:+39 02 503 16276.

E-mail address: sergio.mascetti@unimi.it (S. Mascetti).
1 In case the reader is unfamiliar with accessibility tools for people with VIB, a short

ntroduction video is available at http://goo.gl/mEI6Uz.
2 At the time of writing, iMove is available for free download from AppStore: https:

/itunes.apple.com/en/app/imove/id593874954?mt=8.
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A number of solutions have been proposed in the scientific lit-

rature to recognize traffic lights. Existing solutions have a common

roblem: they use images acquired through the device camera with

utomatic exposure. With this approach, in conditions of low ambi-

nt light (e.g., at night) traffic lights result overexposed (see Fig. 1)

hile in conditions of high ambient light (e.g., direct sunlight) traffic

ights are underexposed (see Fig. 2).

This paper presents TL-recognizer, a traffic light recognition sys-

em that solves the above problem with a robust image acquisition

ethod, designed to enhance the subsequent recognition process.

xperimental results show that TL-recognizer is reliable (full preci-

ion and high recall) and robust (works in different illumination con-

itions). TL-recognizer has also been optimized for efficiency, as it can

un several times a second on commercial smartphones. The evalua-

ion conducted on subjects with VIB confirms that TL-recognizer is a

ractical solution.

This paper is organized as follows: Section 2 discusses the related

ork and defines the objectives of this contribution. The basic ac-

uisition and recognition technique is presented in Section 3, while

mprovements are described in Section 4. Section 5 reports the re-

ults of the extensive experimental evaluation and finally Section 6

oncludes the paper.
n mobile devices for pedestrians with visual impairment, Computer
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Fig. 1. Pedestrian traffic light is overexposed.

Fig. 2. Pedestrian traffic light is underexposed.
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2. Detecting traffic lights for people with VIB

Independent mobility is a challenge for people with sight impair-

ments, in particular for what concerns crossing a road at a traffic light.

A solution to this problem consists in the use of acoustic traffic lights.

There are many different models of acoustic traffic lights. For exam-

ple, in Italy, there are acoustic traffic lights that produce sound on

demand by pushing a button placed on the pole. The sound signals

to the person with VIB when the light is green. In Germany, there

are models that always produce a sound when the light is green (no

button has to be pushed) and they adapt the intensity of the sound

according to the background noise.

Nonetheless, as reported by many associations for blind and visu-

ally impaired persons, in most industrial countries (e.g., Italy, Austria,

France, Germany, etc.), acoustic traffic lights are not ubiquitous; they

are present in some urban areas but may be absent in small towns.

Furthermore, acoustic traffic lights are not always working properly

because damages often take a long time to be reported and fixed. The

situation can be even worse in developing countries.

2.1. Related work

One of the first contributions on traffic light recognition was pre-

sented by Kim et al. [1]. This solution is aimed at assisting drivers with

color deficiency. Images are acquired through a digital video camera

and processed by a notebook. The main limitation of this solution is

that it works correctly only when there is a uniform background (e.g.,

the sky). Consequently this solution cannot be applied to the purpose

of detecting pedestrian traffic lights, because they are located in ur-

ban environments where the background contains, for example, shop

lights and trees.

Several other solutions proposed in the literature are specifically

designed for smart vehicles [2–6]. These techniques cannot be di-

rectly used to guide people with VIB because they are specifically op-

timized for circular or elliptical lights, while pedestrian traffic lights

have different shapes.

Differently, other solutions, while designed for smart vehicles, are

not specialized for circular or elliptical traffic lights and hence can be

adapted to recognize pedestrian traffic lights. The solution by Wang
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o

Vision and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2
t al. [7] aims at recognizing traffic lights in a complex urban envi-

onment. The proposed technique first computes color segmentation

n the HSI color space, then identifies candidate regions and finally

ses a template-matching function to validate a traffic light. The so-

ution by Cai et al. [8] is aimed at recognizing ‘arrow-shaped’ traffic

ights. In this solution, the dark regions of the images are singled out.

hen, the regions that are either to small or too big are discarded.

ubsequently, a color filter for green, red and yellow is applied to the

andidate regions. Eventually, the arrow is recognized through Gabor

ransform and 2D independent component analysis. The solution by

lmagambetov et al. [9] discusses a technique aimed at guarantee-

ng recognition of traffic lights from large distances (this is clearly an

mportant feature for smart vehicles) and tackles the problem of rec-

gnizing ‘arrow-shaped’ traffic lights through a template-matching

echnique. The solution proposed by Charette and Nashashibi [10] de-

ects, with a template-matching technique, the optical unit, the signal

ead as well as the traffic light pole.

Other solutions have been specifically proposed to support detec-

ion of pedestrian traffic lights with the aim of supporting users with

IB. Ivanchenko et al. [11] present a recognition algorithm for smart-

hones designed for traffic lights in U.S.. The status of the traffic light

s represented by the white shape of a pedestrian together with a cir-

ular light that can become red, yellow or green. In the first step, the

lgorithm uses smartphone sensors to determine the position of the

martphone with respect to the horizon and it analyzes only the up-

er part of the image. Secondly, it detects the circular light and the

hape of the pedestrian. This algorithm also searches for a pedestrian

alk to validate the result.

Roters et al. in [12] investigate an algorithm consisting in three

tages: identification, video analysis and time-based verification. In the

dentification stage, the algorithm recognizes the traffic light in front

f the pedestrian. The video analysis stage tracks the candidate traffic

ight in different frames of the video. Finally, during the time-based

erification stage, the results of the identification stage are double-

hecked with those of the video analysis. Our contribution focuses on

he first stage only; the other two forms of reasoning are important

n the final application, and in fact the proposed architecture imple-

ents them in the TL-logic module (see Section 2.3). This contribu-

ion improves the identification stage by proposing a technique that

s rotation invariant and that also takes into account the shape of the

edestrian traffic light.

Most of the techniques mentioned above have a common prob-

em: the images are processed after their acquisition with the aim of

uaranteeing robust recognition under different lighting conditions.

he problem has been explicitly highlighted by Diaz-Cabrera et al.

5] that proposes a method for smart vehicles for detecting and de-

ermining the distance of Italian suspended vehicle traffic lights. The

pproach uses normalized RGB color space to obtain a consistent ac-

uracy in different illumination conditions. However, experimental

esults are still unsatisfactory in bright days or at night.

A follow-up publication by Diaz-Cabrera et al. [6] argues that it is

mpossible to reconstruct information with high precision from over-

xposed or underexposed images like the ones in Figs. 1 and 2. Thus,

he authors propose dynamic exposure adjustment based on sky pix-

ls segmentation and luminosity evaluation. The paper also proposes

n enhanced fuzzy-based color clustering and improves the previous

olution with a faster, parallelized detection and a higher accuracy

etection and distance computation. In our approach we also pro-

ose a dynamic method for exposure adjustment based on external

uminosity that makes it possible to acquire suitable images in all il-

umination conditions at the desired distances. Differently from Diaz-

abrera et al. [6], our approach also uses shape matching to identify

edestrian traffic lights. Also, due to the fact that the device is held

y the user, we leverage accelerometers and gyroscopes to compute

he device’s position in space and correctly detect and measure the

istances between the user and the pedestrian traffic light.
n mobile devices for pedestrians with visual impairment, Computer
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It is not possible to fairly compare the solution proposed in this

ontribution with previous ones, based on quantitative experimental

esults. Indeed, many existing contributions only present qualitative

valuations and, among those presenting quantitative results, very

ew are based on a publicly available dataset of images. Also, the few

ublic datasets contain images that had not been acquired with the

roposed solution for dynamic exposure adjustment and, in most of

he cases, they do not include accelerometer measurements for each

rame. Hence, it is only possible to compare the experimental results

resented in this contribution with other ones obtained with differ-

nt datasets of images, which leads to possibly biased outcomes. An-

ther important difference is that, in some existing solutions, preci-

ion and recall are computed on streams of images, rather than on

ingle images, hence applying a sort of “high level reasoning” to ag-

regate results from different successive frames. Roters et al. [12] ex-

erimentally show that the analysis of video yields better results (in

erm of precision and recall) than the analysis of single frames. Still,

he solution by Roters et al. has a precision of 1 and a recall of about

.5, while our solution has a precision of 1 and a recall of 0.81 (see

ection 5). Conversely, the solution by Almagambetov et al. [9] has a

igher detection rate (up to 100% for certain illumination conditions),

ut it incurs into false positives and precision is as low as 0.8, which

s unacceptable for the application considered in this contribution.

Finally, a set of papers address the problem of traffic light detec-

ion with a solution based on machine learning [13,14]. A comparison

etween recognition of traffic lights though analytic image process-

ng and learning-based processing was proposed by De Charette and

ashashibi [15]. The authors conclude that analytic image processing

uarantees better performances in terms of precision and recall. For

his reason, our contribution focuses on this approach.

.2. User story description

Many people with VIB learn (typically with the help of an Orien-

ation and Mobility professional) the routes that they will be under-

aking daily, for example to go to work, school or church [16]. It is

ess common that a person with VIB independently attempts trips to

ew locations. The recognition technique described in this contribu-

ion enables the development of a mobile application that supports

eople in both cases, as described in the following two user stories

hat have been designed with the support of a blind person, with a

ser-centered design approach.

User story 1. A person with VIB that is moving along a known path

eeps track of his/her approximate position and heading with re-

pect to many points of reference that can be perceived through touch

e.g., with the white cane), hearing or possibly through any residual

ight. Upon reaching a road crossing with a traffic light, the person

akes his/her mobile device and runs the application that automat-

cally starts acquiring images from the camera. Then, he/she points

he camera towards the traffic light. The person knows the direction

both horizontal and vertical), that he/she learned while practicing

n the route. It should be observed that the camera field of view is

enerally larger than about π /4 on both dimensions3, even if the per-

on points with an error of about π /8, the traffic light will still be in

he field of view.

As soon as the application detects the traffic light, it gives a feed-

ack (e.g., a vibration) and reads the current color or provides an

nstruction (like “stop” or “go”) with a text-to-speech message or

hrough a vibration pattern. To guarantee a safe crossing, if the ap-

lication first detects a green light, it still instructs the person not to

ross: the traffic light needs first to turn red and then, when it turns

reen again, the user is instructed to cross. Note that this is the same

pproach used in many acoustic traffic lights.
3 The exact value depends on the specific device.

h

b

Please cite this article as: S. Mascetti et al., Robust traffic lights detection o
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User story 2. A person with VIB that is walking along an unknown

oute incurs into two additional problems. First, he/she might be un-

ware whether the road intersection has traffic lights. Second, he/she

ight be unaware of where to point the device camera to frame the

raffic light. To support the user in solving these two problems, the

pplication, by using the accelerometer, instructs the person on how

o point the camera along the vertical direction. Indeed, since traffic

ights are above the horizon, the device should be held with an angle

uch that the lower border of the captured image is approximately

n the horizon. This guarantees that the upper edge of the image is

bove a traffic light, if any are present.

To “find” the traffic light along the horizontal direction, the per-

on can rely on the fact that traffic lights are oriented towards the

irection where the pedestrian is coming from. So the person has an

pproximate knowledge of the angular range where he/she should

oint the camera. Then, starting from one edge of this range, the per-

on can scan towards the other range while the application processes

he images. By using the device gyroscopes it is possible to detect if

he user is rotating too fast and, in this case, to inform him/her. This

uarantees that a traffic light is detected with high likelihood, if one

s actually present.

.3. System modules

This paper focuses on the TL-recognizer module that computes the

osition and color of a pedestrian traffic light in a given image. For the

etection of traffic lights TL-recognizer relies on data sources available

n off-the-shelf smartphones: video camera, accelerometer and gy-

oscope. The first captures image frames that can then be analyzed

ith computer vision techniques. Accelerometer and gyroscope, on

he other hand, can be used to extract the orientation of the device

ith respect to the ground plane. As shown in the following, this in-

ormation has an important role in the proposed technique.

In addition to processing frames, an application that supports peo-

le with VIB in road crossing should implement at least two other

unctionalities, which are designed as other two modules: TL-logic

nd TL-Navigation (see Fig. 3).

The TL-logic module is in charge of combining different results of

L-recognizer and computing messages to guide the user. Example 1

hows a simple form of reasoning.

xample 1. One run of TL-recognizer detects a red traffic light in a

ertain position. TL-logic computes a ‘wait’ message to instruct the

ser not to cross. After the recognition, TL-logic uses accelerometer

nd gyroscope data to estimate how the device is being moved and

ence where the traffic light is expected to be in the next frame. In-

eed, the following run of TL-recognizer identifies a green traffic light

n the expected position. Consequently TL-logic can conclude that the

raffic light has now turned green and therefore generates a ‘cross’

essage for the user.

The TL-Navigation is in charge of conveying the messages to the

ser through audio, haptic (vibration) and graphical information. The

ain challenge in using audio information is that it should not divert

he user’s attention from the surrounding audio scenario, which is es-

ential to acquire indispensable information (e.g., an approaching car,

person walking by, etc.). Indeed, as remarked by Ullman et al., blind

eople run into difficulty when guided by verbose speech messages

17]. In the field of pedestrian crossings, the problem of guiding peo-

le with VIB has been specifically addressed by Mascetti et at. [18].

.4. The target to detect

This paper considers traffic lights currently used in Italy, which ad-

ere to European Standard 12368 [19]. This standard specifies a num-

er of physical properties of the traffic lights, including, for example,
n mobile devices for pedestrians with visual impairment, Computer

015.11.017
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TL-Logic TL-NavigatorTL-Recognizer

Fig. 3. Structure of the main application modules.

Table 1

Luminous intensities range in the reference axis according to European Standard 12368

[19].

Red Yellow Green

Min 100cd 200cd 400cd

Max class 1 400cd 800cd 1000cd

Max class 2 1100cd 2000cd 2500cd

Table 2

Chromaticities range according to European Standard 12368 [19].

Chromaticity boundaries Boundary

y = 0.290 Red

Red y = 0.980 − x Purple

y = 0.320 Yellow

y = 0.387 Red

Yellow y = 0.980 − x White

y = 0.727x + 0.054 Green

y = 0.726 − 0.726x Yellow

Green x = 0.625y − 0.041 White

y = 0.400 Blue

Fig. 4. Example of ‘maximum rotation angle’.

Fig. 5. Signal head.

Fig. 6. (Active) optical unit.
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their size, luminous intensities and colors that have to be consistent

in all European countries.

Luminous intensities are specified in two classes, with a common

minimum and two maxima according to the class. Values are differ-

ent according to the color and are reported in Table 1.

Chromaticities are delimited in the CIE XYZ space according to the

values reported in Table 2.

In Italy, as in many other countries, differently shaped lights are

used to transfer messages to different classes of road users. For ex-

ample, the rounded light is used for drivers, while the “body-shaped”

light is used for pedestrians. Two different shapes are used in Italy

for pedestrians lights: one for green light, the other for yellow and

red lights (see Figs. 7–9). While the actual shape of the figure appear-

ing through the lens can vary from country to country (in some cases

even within the same country), the proposed solution can be easily

adapted to most existing standards by simply re-tuning the detection

parameters and by using different template images (see Section 3.5).

Also, if the proposed technique is used in countries with very partic-

ular light conditions (e.g., a bright sunny day in the desert) it could

be necessary to accordingly tune the acquisition parameters with the

methodology presented in the following.

Among other physical properties of the traffic light, its position

with respect to the observer is particularly relevant. Indeed, given

the application, only traffic lights with bounded distance from the ob-

server should be detected. For example, considering the width of ur-

ban roads, in the experiments the minimum and maximum horizon-

tal distances adopted are 2.5m and 20m, respectively. Analogously

the signal head should not be too high or too low with respect to the

observer. Hence the vertical distance is bounded. For example, in the
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o

Vision and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2
xperiments the minimum and maximum vertical distances adopted

re 0.5m and 4m, respectively. Finally, the user is interested only in

he traffic lights that ‘point’ towards him/her. Consider for example

ig. 4: the direction of the red traffic light (red circle) is roughly the

ame angle as the line passing through the traffic light and the user

black circle). Hence, that traffic light should be detected. Vice versa,

he green traffic light (green circle) is pointing away from the user

nd hence it should not be detected. The ‘maximum rotation dis-

ance’ is the parameter defining the angular distance between the

irection of the traffic light and the direction from the traffic light

owards the user. In the experiments a ‘maximum rotation distance’

f 45° is adopted. In a typical crossroad like the one in Fig. 4, this value

revents the identification of a diagonally opposite traffic light that,

enerally, shows an opposite color with respect to the one shown by

he traffic light the user is interested in.

Henceforth some of the terms defined in European Standard

2368 [19] are used. In particular, the signal head (see Fig. 5) is the

evice composed by different optical units (see Fig. 6), each one with

ts lens. For example, in Italy, there are three optical units in each sig-

al head. The background screen is the opaque and dark board placed
n mobile devices for pedestrians with visual impairment, Computer

015.11.017
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Fig. 7. Green AOU. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article).

Fig. 8. Yellow AOU. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article).

Fig. 9. Red AOU. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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round the optical units to increase the contrast. Also, the term ac-

ive optical unit (‘AOU’ in the following) refers to the optical unit that

s lighted in a given instant (as in Fig. 6). Finally, “optical unit color”

s the color of an optical unit when it is active. Examples of different

isual appearances of the AOU are shown in Figs. 5–9.

. Recognizing traffic lights

.1. Technique overview

The recognition process is organized in two main phases: ‘input-

cquisition’ and ‘image-processing’ (see Fig. 10). Input-acquisition is
Fig. 10. Organization of the

Please cite this article as: S. Mascetti et al., Robust traffic lights detection o
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omposed of two main steps: ‘image acquisition’ and ‘horizon com-

utation’. During image acquisition a frame is captured by the device

amera using specifically designed exposure parameters. This is pre-

ented in Section 3.2. The horizon computation step uses accelerom-

ter and gyroscope data to compute the equation of the horizon line

n the image reference system. The horizon computation is based on

roperty 1 (proofs of formal results are in Appendix A).

roperty 1. Let ρ and θ be the device pitch and roll angles respec-

ively, C = 〈Cx,Cy〉 is the center of the image and f is the focal distance

f the camera (in pixels). Then, the equation of the horizon line h in-

ide the acquired image is:

in(θ )x − cos(θ )y − sin(θ )(Cx + tan(ρ) sin(θ ) f )

cos(θ )(Cy + tan(ρ) cos(θ ) f ) = 0 (1)

The image-processing phase is aimed at identifying the AOUs

hat appear in the image. The overall computation is presented in

lgorithm 1 and can be logically divided into three steps: extraction

f candidate AOUs, pruning of candidate AOUs and validation of AOUs

see Sections 3.3–3.5, respectively).

Algorithm 1: Image processing (non optimized version).

Input: image i; horizon line equation h; range filters fg, fy and

fr; template images tg, ty and tr; threshold value T ∈ (0, 1).

Output: a set R of active optical units. Each element of R is a

pair 〈o, c〉 where o is the AOU contour and c the color.

Constants: g, y and r represent the three optical unit colors (i.e.,

green, yellow and red).

Method:

1: R ← ∅ {algorithm result}

2: for all (color c ∈ {g, y, r}) do

3: {Extraction of candidate AOU}

4: i′ ← apply fc to i {i′ is a binary image}

5: O ← extract the set of contours from i′
6: for all (contour o ∈ O) do

7: {Pruning of candidate AOU}

8: o′ ← rotate o by the inverse of the inclination of h

9: if (o′ does not satisfy “distance” or “width” properties) the

10: continue {prune o}

11: end if

12: {Validation}

13: p ← image patch, extract from i, corresponding to the

MBR of o′
14: p ← resize p to have the same size of tc

15: α is the result of normalized cross correlation between tc

and p

16: if (α > T ) then add 〈o, c〉 to R

17: end for

18: end for

The image-processing algorithm takes in input the results of the

cquisition phase: an image i (encoded in the HSV color space) and

he horizon line equation h. There are other system parameters that

orm the algorithm input: three range filters fg, fy and fr, one for each
recognition process.

n mobile devices for pedestrians with visual impairment, Computer
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Table 3

Intensity and chromaticity of four sample traffic lights.

Traffic light number AOU color Lux x y

Green 2671 0.0875 0.6075

1 Yellow 1138 0.5839 0.4155

Red 740 0.7068 0.293

Green 491 0.2785 0.495

2 Yellow 1199 0.5676 0.4471

Red 723 0.6568 0.3425

Green 754 0.2193 0.5025

3 Yellow 1502 0.5755 0.4129

Red 955 0.6854 0.3142

Green 1941 0.0727 0.5091

4 Yellow 2065 0.587 0.4121

Red 1082 0.7048 0.2951

Table 4

EV parameters.

Light intensity M ISO Aperture Shutter speed

Very high 120 < M 100 F8.0 1/160

High 60 < M ≤ 120 100 F8.0 1/200

Mid 5 < M ≤ 60 100 F8.0 1/250

Low M ≤ 5 100 F8.0 1/500
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html
5 https://developer.android.com/reference/android/hardware/camera2/

package-summary.html
optical unit color; three template images tg, ty and tr, each one repre-

senting the three lenses and, finally, a threshold value T ∈ (0, 1) used

in the validation step. The output of the algorithm is a set of identified

AOUs, each one represented by its color and its contour in the input

image.

3.2. Image acquisition

The exposure of the image to be acquired is a key point. Light con-

ditions during day and night are extremely variable, while luminance

coming from traffic lights is pretty stable. Since smartphone camera

automatic exposure balances the mean luminance of every point in

the entire image, its use can result in underexposed or overexposed

AOUs (see Figs. 1 and 2). For this reason, the proposed solution

disables the automatic exposure feature of the mobile device and

sets a fixed exposition value (EV) chosen among a small group of

EVs pre-computed to encompass the luminance variations. These

variations are mainly due to traffic light class (see Section 2.4), and

acquisition noise due to distance, misalignment, veiling glare, pixel

saturation etc.

Before selecting candidate EV values, the intensity and chromatic-

ity of light coming from a set of traffic lights were empirically verified.

Table 3 reports the values measured for four of them, as an example

of the high variability.

Although the standard for traffic light luminous intensity is clearly

defined, variability in the real world (i.e., in the streets) can be very

high, both in terms of illuminance and chromaticity. The reasons are

many: class (see Section 2.4), technology of light bulbs, dirt on the

lens, aging, etc.

To identify the correct EV, a series of pictures were taken at differ-

ent times of the day and distances, starting from the theoretical EV

computed from the European Standard luminous intensity [19] on a

± 5 stops bracketing, with step 1. From this set of shots, a subset of

EVs were selected to cover the major part of the variance of correctly

exposed lenses, in four light conditions.

The four light conditions are: very high light intensity (e.g., a

sunny day at noon), high light intensity (e.g., a partially cloudy day

at noon, or a clear day when the Sun is not high in the sky), mid light

intensity (e.g., a cloudy day, or a clear day at dawn or dusk), low light

intensity (e.g., night). Note that, for our purposes, light condition is

highly influenced by the time of day and by weather conditions (e.g.,

sunny, cloudy, etc...), while other meteorological conditions (like rain)

do not affect light intensity. To automatically identify the light condi-

tion, the following approach is adopted: before starting recognition,

a picture is taken with fixed camera parameters (ISO 100, aperture

F8.0, shutter speed 1/125). Then, value M is computed as the mean,

for each pixel, of the V channel. This value characterizes the light con-

dition. Table 4 shows how light conditions are specified as well as the

camera parameters that yield best shots in each of them. It may ap-
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o

Vision and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2
ear counterintuitive but at night time the exposition is shorter; this

educes the optical veiling glare on the edges of the body shaped lens.

Image acquisition with fixed EV was implemented on both

ndroid 4.x and Android 5.x. With Android 4.x it is possible to

et the values for ISO, shutter speed and aperture through the

amera.Parameters object4. It should be observed that, while

he Camera.Parameters object is defined for all Android APIs up

o level 21 (excluded), not all of its methods produce effects on all

evices. Indeed, on most devices the methods to manually set ISO,

hutter speed and aperture do not produce any effect and do not dis-

ble auto exposure. To the best of our knowledge, the only device that

ully supports these APIs is the ‘Samsung Galaxy Camera’, which was

sed to collect the images used in the experiments (see Section 5).

Android 5.x offers a totally renewed set of APIs to access the cam-

ra and its parameters. The package containing the classes is called

amera2 5. These classes offer several new APIs to control camera

arameters and, based on our experience, these APIs are actually sup-

orted by most devices, including Nexus 5, which was used for the

xperiments.

A final comment on gamut spaces. The high variability in terms of

oth European standard ranges and actual measured chromaticities

f the AOUs (see Table 3) turned out to be wider than the average

mage variance due to possible changes of gamut space in the acqui-

ition device. Thus, varying the parameter settings (see Section 5) is

ufficient to compensate this variance.

Fig. 11 shows details of four pictures, each one representing a

reen AOU in a different illumination condition. The pictures were

aken with the camera parameters described above. From left to right,

he four light intensities are: very high, high, mid, and low. These re-

ults are examples of the stable acquisition (see Figs. 1 and 2 for a

isual comparison with automatic exposure).

.3. Extraction of candidate active optical units

After image acquisition, for each optical unit color c (i.e., green,

ellow and red), TL-recognizer identifies a set of image portions, each

ne representing a candidate AOU. To achieve this, the proposed tech-

ique first applies a range filter and then groups contiguous pixels.

his approach relies on the fact that AOUs have high luminosity val-

es and are surrounded by regions with low luminosity values (i.e.,

he optical unit background).

The range filter is defined over the HSV image representation and

s used to identify the pixels with high luminosity values (see Line

in Algorithm 1). A different filter is defined for each optical unit

olor c. The result of the application of the range filter is a binary

mage whose white pixels are segmented into blocks of contiguous

ixels (see Line 5). This is obtained through the technique proposed

y Suzuki and Abe [20]. The result is a list of contours, each one com-

osed of a set of points.

xample 2. Consider the portion of image shown in Fig. 12a. Fig. 12b

hows the application of the range filter for the yellow optical unit
n mobile devices for pedestrians with visual impairment, Computer

015.11.017
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Fig. 11. Details of four pictures taken in different illumination conditions.

Fig. 12. Extraction of candidates AOUs. (a) Portion of original image, (b) filter on H, (c) filter on S, (d) filter on V, (e) conjunction of filter results, (f) extracted contours.
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olor on the H channel. Fig. 12c and 12 d shows the same filter for

he S and V channels, respectively. Details on the filter ranges are

rovided in Section 5. Fig. 12e shows the logical conjunction of the

revious three figures, i.e., the result of the range filter. Finally, Fig. 12f

hows the contours extracted from the image.

.4. Pruning of candidate active optical units

After extracting the contours from the source image, the algo-

ithm removes the contours whose geometrical properties are not

ompatible with those of an AOU. This pruning phase helps prevent

alse positives and it also improves computational efficiency, as it re-

uces the number of times the validation process needs to be run.

runing is based on two properties: “distance” and “width”.

The “distance” property is based on the idea that the optical units

o be recognized should not be too far or too close from the user (see

ection 2.4). To capture this intuition, each contour is assumed to be

n AOU (whose size is known). Then, its distance along the horizon-

al and vertical axes from the device camera is computed. These dis-

ances are then compared with threshold values and the contour is

iscarded if the AOU is too close or too far away along any of the two

xes. Property 2 shows how to compute the horizontal and vertical

istances.

roperty 2. Let ρ be the device pitch angle, d1 and d2 the directed

inimum and maximum vertical distances between the contour and

he center of the image (in pixel), f the focal distance (in pixel), lh the

eight of the optical unit lens (see Fig. 13 for a graphical representa-

ion). The horizontal and vertical distances (dh and dv, respectively)

etween the device and the optical unit are:

h = lh · cos(arctan(d2/ f ) + ρ) · cos(arctan(d1/ f ) + ρ)

sin(arctan(d2/ f ) − arctan(d1/ f ))
(2)

v = dh · tan(arctan(d1/ f ) + ρ) (3)

There are two aspects related to the “distance” property that are

orth observing. First, the formulae are based on the contour height,
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o

Vision and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2
hich is computed after rotating the contour by the inverse of the

orizon inclination. This makes the proposed technique ‘rotation in-

ariant’ in the sense that it is not affected by accidental rotation of

he device. The reason for using the height as the reference length

s that, by using the device accelerometer, it is possible to compute

he device pitch (i.e., the inclination with respect to the ground) that

s then used to compensate for projection distortion. The second as-

ect is that, in practice, “distance” property checks the vertical size of

he contour and discards the contours that are too small or too big.

ndeed, small contours correspond to potential AOUs that are too dis-

ant from the user, hence not relevant for the recognition. Analogous

easoning can be applied for contours that are very large.

The “width” property is used to prune the contours whose width

s not compatible with the width of an optical unit lens. Property 3

hows how to compute the width of the object represented by the

ontour. Note that distance d between the camera and the traffic light

s easily computed from dh and dv.

roperty 3. Let wc be the contour width, f the camera focal distance

in pixel), α the angular distance between the image plane and the
n mobile devices for pedestrians with visual impairment, Computer

015.11.017
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Fig. 14. “Width”.
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6 Henceforth hue scale is reported in [0, 180).
plane of the optical unit lens and d the distance between the cam-

era and the optical unit. The width of the object represented by the

contour is:

w = d · wc

f · cos(α)
(4)

There is a major difference with respect to the computation of the

“distance” property: the relative angle α between the image plane

and the plane of the optical unit lens (see Fig. 14) is not known. Con-

sequently it is not possible to compute the exact width of the con-

tour, but it is possible to bind it in a range. The minimum value of the

range represents the case in which α is zero (i.e., the device camera is

pointing directly towards the traffic light), while the maximum value

represents the situation in which α is equal to the ‘maximum rotation

distance’ (see Section 2.4). If the width of the optical unit lens (which

is known) is not contained in the range, the contour is pruned.

3.5. Validation of active optical units

Each contour that passes the pruning step has geometrical proper-

ties compatible with an AOU; still, it is not guaranteed that it actually

represents an AOU. To validate a contour, the proposed solution ex-

tracts from the input image the image portion (called ‘patch’, in the

following) corresponding to the contour minimum-bounding rectan-

gle (MBR).

Note that the contour is rotated (see Algorithm 1, Line 8). For this

reason, in theory, it should be necessary to apply the same rotation

to the original image before extracting the patch. Since it is compu-

tationally expensive to rotate the entire image, the patch is rotated

on-the-fly when it is constructed.

The patch is then resized to the same size as the template, which

is a system parameter. Finally, the two figures (patch and template)

are compared with the fast normalized cross-correlation technique

[21], chosen as the technique to evaluate the similarity between two

images. The patch is considered to be an active optical unit if the re-

sult of the comparison is larger than a given threshold T (see Line 16

in Algorithm 1). The methodology to select the threshold is described

in Section 5.

Example 3. Fig. 15a shows a portion of an original image. Figs. 15b

shows the contour, as extracted during the extraction step, while

15 c shows the rotated contour computed during the pruning step.

Fig. 15d shows the extracted patch. Note that the extracted patch is

smaller than the template shown in Fig. 15e (in the figure they are

shown with the same size, but the patch has a smaller resolution).

For this reason the patch is first resized to have the same size as the

template and then the two images are compared. In this example, fast

normalized cross-correlation returns a value of 0.82 that, as shown in
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o

Vision and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2
ection 5 is larger than T, hence the contour is recognized as a green

OU.

. Algorithm improvements

In addition to the core recognition procedure described in

ection 3, the proposed technique implements a number of improve-

ents aimed at increasing the reliability of the results and computa-

ional performances.

.1. Improving recognition of red and yellow AOUs

As shown in Section 5, the boundaries of the range filters for the

ed and yellow colors overlap. As a consequence, it is relatively fre-

uent that a red AOU is confused with a yellow one, and vice versa.

To avoid this problem, the following optimization is introduced.

he main loop starting at Line 2 (see Algorithm 1) is iterated for

wo colors only (instead of three): green and ‘yellowRed’, i.e., a single

olor representing both red and yellow AOUs. To distinguish between

ed and yellow AOUs, a procedure is run during the validation phase,

fter extracting the patch p (Line 13). This procedure counts, in the

atch p, the number of pixels with a purely red hue (160 ≤ h ≤ 179)

nd those with a purely yellow hue (10 ≤ h ≤ 30)6. If the number of

ed pixels is larger than the number of yellow ones, the patch is then

ssumed to be red and is compared with the red template. Otherwise

he patch is assumed to be yellow.

As shown in Section 5, this approach helps reducing the number

f cases in which yellow and red AOUs are confused.

.2. Improving computational performance

As shown in Section 5, the computation time of the base recogni-

ion algorithm is about 1s on a modern smartphone (with maximum

mage resolution). While a delay of about 1 s in the notification of the

urrent traffic light color could be tolerable, an additional problem

rose during preliminary experiments: it is challenging, for people

ith VIB, to point the device camera towards the traffic light. To find

he correct position, users needs to rotate the device left and right

hile paying attention to the device feedback (audio or vibration).

his requires a responsive system and a delay of 1 s is not tolerable as

t does not allow the user to find the traffic light position.

To speed up the computation, two different techniques are

dopted: multi-resolution processing and parallel computation.

ulti-resolution is based on the idea that the validation step requires

he processing of images at a high resolution, while extraction and

runing steps are reliable (in terms of precision and recall) even when

mages are processed at a smaller resolution. Running these two steps

ith images at a smaller resolution significantly improves the perfor-

ances. For this reason, a resized version of the acquired image is

rocessed during the extraction and pruning steps. Then, during the

alidation step, the image patch p is extracted (see Line 13) from the

cquired high-definition image. ‘Resize factor’ is the parameter that

efines to what extent the original images is resized. Technically, the

umber of pixels on both sides of the original image is divided by

resize factor’. As shown in Section 5, this optimization drastically re-

uces the computation time. However, large values of the resize fac-

or negatively affect algorithm recall, so the value of the resize factor

hould be carefully tuned.

Since modern smartphones have multi-core CPUs, a natural ap-

roach to improve the performance of computational intensive op-

rations is to adopt parallel computation. In particular, two pools of

hreads are used: one aimed at parallelizing the extraction process

Algorithm 1, Line 2), the other aimed at parallelizing the contours’
n mobile devices for pedestrians with visual impairment, Computer

015.11.017

http://dx.doi.org/10.1016/j.cviu.2015.11.017


S. Mascetti et al. / Computer Vision and Image Understanding 000 (2015) 1–13 9

ARTICLE IN PRESS
JID: YCVIU [m5G;December 21, 2015;13:19]

Fig. 15. Validation of candidates AOUs. (a) Portion of original image, (b) Contour, (c) Rotated Contour, (d) Image Patch (rotated), (e) Template image.

Table 5

Composition of the two sets of images.

Set Light Number of images with

intensity No AOU Green AOU Red AOU Yellow AOU

Tuning Very high 62 21 22 22

High 62 21 21 19

Mid 62 21 21 22

Low 62 21 21 21

Evaluation Very high 75 62 45 37

High 105 96 104 52

Mid 64 78 109 59

Low 120 51 118 77
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rocessing (Algorithm 1, Line 6). The former pool has a number of

hreads equal to the number of colors, while the latter has a number

f threads equal to the number of CPU cores.

. Parameters tuning and experimental evaluation

Two main sets of experiments were conducted: one set, called

computational-based’ is aimed at tuning the system parameters and

t quantitatively measuring the performances of TL-recognizer. The

econd set, called ‘human-based’ is aimed at qualitatively asserting

he effectiveness of the proposed technique.

.1. Experimental evaluation methodology and setting

In order to ease the development of TL-recognizer and to guaran-

ee reproducibility of the computational-based experiments, the fol-

owing methodology was adopted: images of urban scenarios were

ecorded, each one with its associated information representing de-

ice orientation7. Each image was manually annotated with the po-

ition and the color of AOUs (if any). Finally, an Android app was im-

lemented to read the stored images and to use them as input for

L-recognizer.

Two datasets of images each were created. The exposition of all

he collected images has been chosen according to the methodol-

gy described in Section 3.2. The ‘tuning’ dataset (501 images), was

sed for debugging and parameters tuning, while the ‘evaluation’

ataset (1, 252 images) was used for performance measurement. Both

atasets are divided into four subsets, one for each of the illumina-

ion conditions defined in Section 3.2. Details are reported in Table 5.

he two datasets of images are publicly available8. Note that some of

he pictures (in particular with mid and low illumination conditions)

ere taken while it was raining and results are not affected by this

eather condition.
7 Henceforth, the term ‘image’ refers to the actual image with the associated device

rientation information.
8 http://webmind.di.unimi.it/CVIU-TrafficLightsDataset

t

a

Please cite this article as: S. Mascetti et al., Robust traffic lights detection o

Vision and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2
During the computer-based experiments, a number of parameters

ere measured, including: precision, recall, computation time and

umber of “R-Y errors”, i.e., the number of times a yellow AOU is con-

used with a red AOU or vice versa. Note that, from the point of view

f a person with VIB that is about to cross a road, a yellow AOU has

he same semantic as a red AOU i.e., the person should not start cross-

ng. For this reason, when computing precision and recall, a R-Y error

s still considered a true positive result. Note that, unless otherwise

pecified, precision is always equal to one, meaning that no traffic

ight is erroneously detected. Finally, note that computation time is

easured excluding the time needed to acquire the input image.

To conduct human-based experiments TL-recognizer was imple-

ented into a mobile application that collects live input from the

amera and the accelerometer and that implements basic versions

f the TL-logic and TL-Navigation modules. The application continu-

usly runs TL-recognizer with the acquired frames and creates three

essages for the user: ‘not found’, ‘stop’ and ‘go’: the first indicates

hat no traffic light was found, the second indicates that a red or

ellow AOU was detected and the third one indicates that a green

OU was detected. To convey these messages, the application uses

poken messages (through the system text-to-speech synthesizer),

wo clearly distinguishable vibration patterns (for ‘stop’ and ‘go’ mes-

ages) and a visual message for subjects that are partially sighted (the

ntire screen becomes black, red or green).

The experiment involved 2 blind subjects and 2 low-visioned sub-

ects (unable to see the traffic lights involved in the experiment). The

xperiments took place in different illumination conditions. All sub-

ects have been trained for about one minute on how to use the ap-

lication. Then, in a real urban intersection, subjects were asked to

alk towards a crossroad and to determine when it was safe to start

rossing in a given direction (straight, left or right) i.e., when a green

raffic light appears right after a red one. For each attempt, a supervi-

or recorded whether the task was successfully completed and took

ote of any problem or delay in the process. Each subject repeated

his task five times. Finally, the subjects were asked to answer a ques-

ionnaire.

For what concerns the devices used during the experiments, the

mages were collected with a Samsung Galaxy Camera with Android

.1. Computer-based and human-based experiments were conducted

ith a Nexus 5 device with Android 5, which, with respect to a Galaxy

amera, has a faster CPU and is also more ergonomic for the subjects

nvolved in the human-based tests9.

.2. Parameters tuning

The recognition technique presented in Section 3 uses several

ystem parameters that need to be tuned. Section 3.2 describes the

uning process of the parameters used for image acquisition. The
9 The choice of using a Galaxy Camera to collect images was driven by the fact that,

t that time, this was the only available device supporting manual EV settings.

n mobile devices for pedestrians with visual impairment, Computer
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Fig. 16. Pixels composing AOUs (for the color version of this figure, the reader is referred to the web version of this article)..

Table 6

Range filters boundaries.

Optical unit color H min H max S min S max V min V max

Green 70 95 100 255 80 255

yellowRed (first) 0 25 100 255 80 255

yellowRed (second) 166 180 100 255 80 255
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Fig. 17. Impact of image resolution on computation time and recall.

Table 7

Performances of TL-recognizer.

Testset Precision Recall Computation time

Tuning 1 0.85 113ms

Evaluation 1 0.81 107ms
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tuning of other parameters that mainly affect system performance

is described in the following.

One set of parameters defines the boundaries of the range filters

(see Algorithm 1). To tune these values each pixel composing AOUs

(if present) was sampled in the 501 pictures composing the tun-

ing dataset. This was obtained with a semi-automated process: first,

a few pixels were manually sampled, hence defining broad ranges.

Then, by running the algorithm with these ranges, a set of contours

representing the AOUs were extracted, together with contours rep-

resenting other objects. Thanks to picture annotations, the contours

representing AOUs were automatically identified and the values of all

pixels included in these contours were stored. From this set of pixels

white pixels (i.e., v = 255) and dark pixels were excluded.

The selected pixels are shown in Fig. 16 where green, red and yel-

low dots represent a pixel for a green, red and yellow AOU, respec-

tively. Given these results, the smallest ranges to include all pixels

were defined . Results are shown in Table 6. Note that, since the yel-

lowRed color lies on both sides of the hue circular axis, two range

filters are defined and their disjunction yields the result.

Threshold T is another important parameter that requires to be

tuned. The following methodology was adopted: the image process-

ing algorithm was run for each image in the tuning dataset. For each

extracted patch (see Algorithm 1) the value of the normalized cross

correlation was stored, together with a boolean value representing

whether the patch is actually an AOU or not (this is derived from the

annotations). Among all patches in all images in the tuning dataset,

the larger cross correlation value for a patch that does not represent

an AOU is 0.586. Threshold T is set to this value, hence guaranteeing,

in the tuning dataset, a precision of 1.

Fig. 17 shows the impact of the resolution on both recall and com-

putation time. As expected, computation time decreases almost lin-

early, since most of the costly operations are linear in the number of

pixels in the image. At the same time, recall slowly decreases when

using images with up to 3 times less pixels (i.e., 1413 × 1884) that

guarantee a recall of 0.887. With smaller images, recall decreases at

a faster rate. For these reasons, images with a resolution of 1413 ×
1884 were used in the tests. Note that, while in the tests the images

are resized from their original size to 1413 × 1884, in the TL-recognizer

prototype this operation is not necessary: indeed images are directly

acquired at a similar resolution (i.e., 1536 × 2048) and this also sig-

nificantly speeds-up the image acquisition process.
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o
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.3. Impact of the algorithm improvements

With the basic version of the algorithm, the proposed technique

ncurs in the ‘R-Y error’ in 20 cases in the images in the tuning set.

his means that, considering only the 168 images containing red and

ellow AOU, the frequency of this error is above 10%. By using the

mprovement described in Section 4.1, the number of these errors is

educed by 75% with 5 errors and a frequency of less than 3%.

Fig. 18 shows computation time and recall for different values of

he resize-factor parameter. As expected, there is a trade-off between

omputation time and recall (this is very similar to what was ob-

erved for the resolution parameter). By observing the results shown

n Fig. 18 it is possible to conclude that value 3 is a good trade-off:

omputation time is halved (with respect to value 1), while recall de-

reases only by 0.03. For larger values (e.g., 4) there is no substan-

ial improvement in the computation time, while recall decreases by

ore than 0.1.

Finally, it has been measured that with parallel processing compu-

ation time diminishes by about 40%: from an average computation

ime of 183–113ms. Table 7 shows the system performance measured
n mobile devices for pedestrians with visual impairment, Computer
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Fig. 18. Impact of resize factor on computation time and recall.

Fig. 19. Frame in a sunny day.
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Fig. 20. Contours extracted from Fig. 19.

Fig. 21. Frame during night.
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n the tuning dataset after having tuned the system parameters and

dopting the algorithm improvements.

.4. Results with the evaluation testset

Table 7 shows the results obtained with the evaluation dataset.

erformance results are very similar to those obtained with the tun-

ng dataset.

While conducting the evaluation with the testset it has been ob-

erved that computation time is influenced by the total number of

ontours that are processed. For example, images with an irregular

ackground (like Fig. 19) take much longer to compute than aver-

ge images. For example, Fig. 20 shows the contours extracted from

ig. 19: the bright background behind the trees results in more than

000 contours to be processed. Clearly the great majority is discarded

hanks to ‘distance’ and ‘width’ constraints, but still 80 of them need

o be validated. While the overall result is correct (no traffic light is

etected), the computation time for this frame is more than 500ms,

bout 5 times higher than the average time.

The above observation raises a more general question: how does

omputation time vary in the different illumination conditions? In

unny days it is more likely to have bright surfaces that generate a

igh number of contours, like in Fig. 19. Indeed, the average com-

utation time with high light intensity is 196ms. Vice versa, with low

ight intensity (e.g., at night), since fixed camera parameters are used,

he input image is almost entirely black, with the exception of traf-

c lights and other sources of light, like street lamps and car beacon
Please cite this article as: S. Mascetti et al., Robust traffic lights detection o
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ights. For example, in Fig. 21 a single contour is extracted for the

reen color (there is a small green AOU in the center of the image)

nd 5 contours are extracted for the ‘yellowRed’ color (in the figure, in

ddition to the green AOU, there are 5 small bright dots correspond-

ng to two car beacon lights and a street lamp). Hence, with low light

ntensity, the computation time is 52 ms, on average. In the two in-

ermediate illumination conditions i.e., high and mid light intensities,

he average computation times are 124 ms and 90 ms, respectively.

.5. Results of the human-based evaluation

Overall, all subjects have been able to successfully complete the

ssigned tasks. The only exception was with the first attempt made

y the first subject: since he was pointing the camera too high up and

lmost towards the sky, the traffic light was always out of the cam-

ra field of view. The problem was solved by simply explaining to the

ubject how to correctly point the camera. In the following experi-

ents with the other subjects this was explained during the training

hase. Note that this problem could also be solved by monitoring the

itch angle and by warning the user if the he/she is pointing too high

r too low.

During this experiment it has been observed that the two blind

ubjects needed a slightly longer time (up to about 5 seconds) to

nd the traffic light. This is due to the fact that they could not pre-

isely predict where the traffic light was and hence needed to rotate

eft and right until the traffic light entered the camera field of view.

n the contrary, the two partially sighted subjects managed to find

he traffic light almost instantaneously even if they could not see it.

ne possible motivation is that the two partially sighted subjects had

better understanding of their current position with respect to the

rossroad and a more developed ability to predict the position of the

raffic light.
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Fig. A.22. Horizon computation, lateral view.

Fig. A.23. Horizon computation, frontal view.
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For what concerns the questionnaire, all subjects agree that the

application is easy to use and useful. There are some comments that

are worth reporting. One subject observes that this application would

be very useful because some traffic lights are still not equipped with

acoustic signal and, even if they are, in some cases they are not work-

ing properly and in other cases it takes some time to find the button

to activate the signal (in Milan acoustic traffic lights need to be acti-

vated by a button positioned on the traffic light pole). Another subject

observes that he would use this application only when an acoustic

traffic light is not available, because it is not convenient to hold the

device in one hand while holding the white cane on the other one. All

subjects agree on the fact that the vibration pattern is the best way to

get the message. Indeed, audio messages can be hard to listen due to

traffic noise, as observed by one subject. Visual instructions are also

not practical, according to both low-visioned subjects, as they are not

always clearly visible.

6. Conclusions and future work

This paper presents TL-recognizer, a system to recognize pedes-

trian traffic lights aimed at supporting people with visual impair-

ments. The proposed technique, in addition to the pure computer vi-

sion algorithms, implements a robust method to acquire images with

proper exposure. The aim is to guarantee robust recognition in dif-

ferent illumination conditions. Experimental results show that TL-

recognizer actually achieves this objective and is also efficient, as it

can run several times a second on existing smartphones. Positive re-

sults were also obtained with a preliminary evaluation conducted on

subjects with VIB: they were able to detect traffic lights in different

illumination conditions.

In future work it would be interesting to integrate TL-recognizer

with a video tracking system, possibly based on the use of accelerom-

eter and gyroscope. Also, user interaction should be carefully stud-

ied, with the aim of providing all the required information without

distracting the user from its surrounding environment. The design

of effective user interfaces will become even more challenging if TL-

recognizer is integrated with other solutions that collect and convey

to the user contextual information, for example, the current address

or the presence of pedestrian crossings.

Regarding exposure robustness, improvements could be derived

from the adoption of HDR techniques to extend the acquisition dy-

namic range. In this case tests should be performed to verify the

trade-off between reliability gains and computational costs.

In order to ease the adoption of the proposed technique in dif-

ferent countries, a (semi) automated technique can be implemented

to tune the parameters. This could be possibly based on a learning

technique that gradually tunes the parameters in order to adapt to

different contexts.

An effort will also be devoted to the development of a commer-

cial product based on TL-recognizer. Indeed, it could be possible to

integrate this software with iMove, a commercial application that

supports orientation of people with VIB developed by EveryWare

Technologies. This will require tuning the system in order to detect

pedestrian traffic lights in countries other than Italy. Also, in the near

future it will be possible to implement TL-recognizer as an application

for wearable devices (e.g., glasses). This will solve one of the main

design issues: the fact that the user needs to hold the device in one

hand.

Appendix A. Proof of formal results

A.1. Proof of Property 1

The notation used in the proof refers to Figs. A.22 and A.23.
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roof. The ground is approximated to an infinite plane. Thus, line l,

hich points from the device camera to the horizon, is parallel to the

round plane and angle F̂DP is π /2.

We define h through its angle θ and a point P where h passes. The

eneral form is:

in(θ )x + cos(θ )y + (sin(θ )Px + cos(θ )Py) = 0 (A.1)

We now show how to compute θ and P.

Consider Fig. A.22. Let P be the point where the image plane inter-

ects line l. Thus, point P lies on the horizon line h and P is inside the

mage. Also, since point D is the device, segment DC is perpendicular

o CP. Hence PCD is a right triangle. Since CD is the focal distance f and

ngle PDC is the device pitch angle ρ , the distance (in pixel) between

he image center C and point P is d = f · tan(ρ).

In the image plane, the device roll θ is the inclination of the

evice’s x axis with respect to the ground plane. Since the hori-

on line h is parallel to the ground plane, θ is also the inclination

f the horizon in the image. Consider Fig. A.23. Let Q be the pro-

ection of C on the line parallel to the x axis (in the device refer-

nce system) that passes through P. Since ĈPQ + θ = π/2, it follows

hat P̂CQ = θ . Since the distance d is known, then the distance be-

ween point P and point C along the x axis is dx = PQ = d · sin(θ ).

nalogously, the distance between point P and point C along the

axis is dy = CQ = d · cos(θ ). Thus, the coordinates of point P are

=< Cx − sin(θ )d,Cy − cos(θ )d >.

Finally, substituting d and P in Eq. A.1 we obtain:

in(θ )x − cos(θ )y − sin(θ )(Cx + tan(ρ) sin(θ ) f ) + cos(θ )

(Cy + tan(ρ) cos(θ ) f ) = 0 (A.2)

�

.2. Proof of Property 2

To ease the reading of the proof, please refer to Fig. 13. Note that,

n the figure, points B and T are above point C. Since d1 is defined as

he directed vertical distances between C and B, in case B is below C,

he value of d1 is negative. The same holds for d2. Under this consid-

ration, it is easily seen that the following proof holds when both B

nd T are below C and also when B is below C and T is above C.

roof. Since dh = DA, by considering triangle DAG, it holds that

= DA = GD · cos (ĜDA) (A.3)
h
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Thesis easily follows by showing that

D =
lh · sin(π/2 − arctan( d2

f
) − ρ)

sin(arctan( d2

f
) − arctan( d1

f
))

=
lh · cos(arctan( d2

f
) + ρ)

sin(arctan( d2

f
) − arctan( d1

f
))

(A.4)

nd

D̂A = arctan

(
d1

f

)
+ ρ (A.5)

For what concerns GD, by considering triangle GED we have:

D = EG · sin (ĜED)

sin (ÊDG)
(A.6)

EG is the lens height lh given in input.

ÊDG is equal to T̂DB that, in turn, is equal to T̂DC − B̂DC. Since TDC

nd BDC are right triangles, it holds that T̂DC = arctan( CT
CD ) and B̂DC =

rctan( BC
DC ) where CT = d2, BC = d1 and CD = f . Hence:

D̂G = T̂DB = arctan

(
d2

f

)
− arctan

(
d1

f

)
(A.7)

For what concerns ĜED, by considering right triangle EDA we have

hat:

ÊD = ÂED = π/2 − ÊDA = π/2 − (ÊDI + ÎDA) (A.8)

here ÊDI = T̂DC and ÎDA is the device pitch ρ . So, it follows:

ÊD = ÂED = π/2 − arctan

(
d2

f

)
− ρ (A.9)

For what concerns ĜDA, it is equal to ĜDI + ÎDA where ĜDI = B̂DC

nd ÎDA is the device pitch ρ . Hence:

D̂A = arctan

(
d1

f

)
+ ρ (A.10)

Finally, we show the value of dv = AG. Consider the right triangle

DG where AD = dh and ĜDA is known (see above). Consequently,

v = AG = AD · tan (ĜDA) = dh · tan

(
arctan

(
d1

f

)
+ ρ

)
(A.11)

�

.3. Proof of Property 3

Notation used in the following proof refers to Fig. 14.

roof. Consider right triangle ADB: ÂDB = arctan(AB/AD) where

B = wc/2 and AD = f .

Now consider right triangle CDE: CE = CD · tan(ĈDE) where CD =
and ĈDE = ÂDB. Hence:

F = 2 · CE = d · wc

f
(A.12)
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Finally, consider right triangle FEG:

= GF = EF/ cos(α) = d · wc

f · cos(α)
(A.13)

�
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