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Indoor navigation systems can make unfamiliar buildings more accessible for people with vision impairments, but their

adoption is hampered by the efort of installing infrastructure and maintaining it over time. Most solutions in this space

require augmenting the environment with add-ons, such as Bluetooth beacons. Installing and calibrating such infrastructure

requires time and expertise. Once installed, localization accuracy often degrades over time as batteries die, beacons go

missing, or otherwise stop working. Even localization systems installed by experts can become unreliable weeks, months, or

years after the installation. To address this problem, we created LuzDeploy: a physical crowdsourcing system that organizes

non-experts for the installation and long-term maintenance of a Bluetooth-based navigation system. LuzDeploy simpliies

the tasks required to install and maintain the localization infrastructure, thus making a crowdsourcing approach feasible for

non-experts. We report on a ield deployment where 127 participants installed and maintained a blind navigation system

over several months in a 7-story building, completing 455 tasks in total. We compare the accuracy of the system installed by

participants to an installation completed by experts with specialized equipment. LuzDeploy aims to improve the sustainability

of indoor navigation systems to encourage widespread adoption outside of research settings.

CCS Concepts: · Human-centered computing → Computer supported cooperative work; Accessibility technolo-
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(a) (b)

Fig. 1. Examples of LuzDeploy tasks: (a) The bot directs a worker to the general area in which a beacon should be placed; (b)

a subsequent sampling step (also performed by non-experts) creates a model of the Bluetooth signals used for localization.
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1 INTRODUCTION

People with vision impairments can have diiculty navigating unfamiliar indoor spaces because visual cues
and signage are not accessible to them [55]. The dominant approaches to make indoor environments accessible
to people with visual impairments require installing infrastructure add-ons [18, 37, 43, 56], but this is often
prohibitively expensive to do at scale and maintain over time in the real world. Typically, experts must install the
localization system and perform on-going maintenance to ensure a high level of accuracy. Installation can be cost
prohibitive and on-going maintenance is often too infrequent to ensure infrastructure accuracy when a person
arrives who needs to use it.
In this paper, we introduce LuzDeploy, a system that coordinates a local crowd to install and maintain an

indoor localization system via a Facebook bot using supporting mobile applications designed for non-experts.
We focus on indoor navigation systems that use Bluetooth Low Energy (BLE) beacons placed densely in the
environment, as this method is capable of achieving sub-meter localization accuracy [1]. Because this approach
uses commodity hardware, a person with visual impairments just needs a smartphone, while building owners
only need to place relatively inexpensive BLE beacons. However, installing the beacons takes time and expertise.
Furthermore, as beacons go missing or batteries die the localization accuracy degrades over time, so a trained
administrator must continually return to maintain the system.
Installing navigation infrastructure is currently an immense, upfront, and complex process performed by

people with expertise. Maintenance over the weeks, month, and years following installation is rarely done
frequently enough, and so localization accuracy naturally degrades as the infrastructure ages. When someone
with visual impairments enters a building, how can they trust that their navigation system will work? The long-
term sustainability of these systems hinge on experts maintaining the infrastructure over years, but because there
are few people with adequate training this does not scale well to large real-world environments. Administrators
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might hire and train more experts, but this also increases the cost of indoor localization technology. Because the
hiring and training process takes time to complete, it delays immediate adoption. Even when recruiting a large
workforce is possible (e.g., a pool of volunteers), coordinating them for concurrent installation or continuous
maintenance is challenging and time-consuming. In particular, to ensure the accuracy of the system, the workers
need to quickly notice and repair sporadic beacon failures.

LuzDeploy is inspired by recent work on crowdsourcing and collective action demonstrating that people can be
recruited via an open call and coordinated to work together to complete substantial tasks that have traditionally
required experts [6]. Such approaches are feasible because workers complete relatively small, decontextualized
tasks, while the system coordinates their work by planning tasks and maintaining higher-level context about
what needs to be done. In LuzDeploy, crowd members place and replace beacons, check the health of existing
beacons, and sample Bluetooth signals in particular locations to help the system learn to detect these locations in
the future. At no point does the crowd member need to understand how indoor localization works, but rather
only needs to perform simple tasks that we show do not require expert training.

LuzDeploy has two important features to engage the non-expert mobile crowd:

1 It allows easy non-expert participation: LuzDeploy simpliies a complex installation and maintenance
process by distributing small tasks with step-by-step, just-in-time instructions. A worker can quickly
complete small tasks with no expert training by following the given steps.

2 It enables drop-in, anytime engagement: The previously long process of instrumenting an entire building is
broken into small, predictable batches of work that workers can complete in minutes. Instead of performing
maintenance all at once every few months, the process is also spread out over these small tasks. This allows
passerby with just a few minutes of availability to quickly sign up and signiicantly impact the collective
efort.

We investigate how the installation and maintenance of such systems can be completed by non-expert workers.
We applied LuzDeploy to install and maintain a blind navigation system, NavCog [1], in 7 loors of the computer
science building at Carnegie Mellon University. Overall, 127 participants used LuzDeploy to install BLE beacons
and sample signal data throughout the building. This was completed in four diferent sessions:

(1) First session: We used LuzDeploy to coordinate a large number of drop-in, non-expert volunteers during
beacon installation. Over the course of one afternoon, 89 workers quickly joined the installation efort and
placed 99 BLE beacons in the building.

(2) Second session: To simulate the slow and sporadic nature of infrastructure maintenance tasks, a second
beacon deployment session took place over three months, during which 25 participants were engaged
casually based on their availability and placed 97 beacons.

(3) Third session: To see if we could encourage more involvement in data sampling tasks, we provided
small amounts of compensation for the participants. Over two weeks, nine participants completed 25
data-sampling tasks and collected 185 Bluetooth signal samples at 112 unique locations in the building.

(4) Fourth session: Our third session did not give us enough information about the feasibility of crowdsourcing
to collect signal samples, so we held an additional month long session targeting a single loor of the building.
During this period, eight participants completed 211 tasks, collecting 1638 Bluetooth signal samples at 116
unique locations.

Our work shows generally that it is possible to engage non-expert participants in efective physical crowdsourc-
ing, and shows speciically that we can efectively use this approach to install and maintain indoor localization
infrastructure. Additionally, by automating the long-term maintenance of NavCog using a local crowd, the
system’s accuracy can be kept at a high level in perpetuity, which has been one of the primary challenges in
practice for similar prior systems.
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2 RELATED WORK

LuzDeploy is related to prior work on (i) navigation in the real world by people with visual impairments, and (ii)

mobile crowdsourcing and crowdsensing.

2.1 Real-world accessibility

People with visual impairments learn to navigate independently through extensive Orientation & Mobility (O&M)
training. Training on speciic routes (e.g., home to work) eases day-to-day navigation, while general purpose
navigation strategies are learned for unfamiliar environments [55]. However navigation in unfamiliar areas is
complex and presents a barrier to independent travel [19], as understanding the route layout is more diicult
without visual access to spatial information. Whereas sighted people visually scan their surroundings for spatial
cues like building layout, doorways, or signs, blind pedestrians mostly rely on haptic or audio cues. These cues are
typically slow to acquire and typically provide insuicient high-level route and landmark information to navigate
in new places. Providing this information en-route make unfamiliar environments much easier to navigate
[19, 53]. LuzDeploy provides a method to install and maintain the infrastructure necessary for applications like
NavCog [1] to provide this information.

The white cane is the traditional navigation aid for individuals with visual impairments. It extends a person’s
haptic sensing range, increases their safety during navigation, and acts as an indicator of their visual impairment.
However, a white cane cannot provide high-level route guidance. As a result, researchers have studied other
approaches to supplement such tools. Outdoors, GPS localization can help support high-level route information
if there is adequate coverage [2, 28, 39]. Indoors, however, GPS signals are often too weak; even outdoors, GPS
can be limited to a localization accuracy of tens of meters [41]. Navigation assistance techniques that do not rely
on GPS often involve adding after-market infrastructure to the environment. A widespread physical add-on is
tactile paving [26], which is installed on the loor of the environment to signal routes that people with visual
impairments can follow with a white cane. This system works well in persistent installations with a small number
of routes. It works less well for complex, temporary, or changing venues, as it is onerous to place or modify tactile
paving infrastructure.

Other approaches for providing navigation assistance use sensor-transmitter couplings [16], with an array of
transmitters installed in the environment at known locations, and a sensing device carried by the user [4, 35, 46].
In particular, approaches that use Bluetooth low-energy (BLE) beacons [1, 15, 18] are accurate, robust, and have
been used to guide people with visual impairments. Most importantly, environments can be augmented with
BLE beacon networks after the construction of the physical venue, without requiring structure reconiguration.
However, the installation and calibration procedures for these systems require expertise. Moreover, recruiting
and training expert personnel to perform the installation takes time and investment. In particular, for large
environments and time critical installation, there is a signiicant barrier to enroll a suicient number of skilled
installers.

Alternative approaches might seemmore feasible, but they also have high set up or maintenance costs. Installing
passive RFID tags around the building removes the need for battery replacement. However, the installation needs
to be more dense, the user needs to carry higher-power sensing devices, and the tags can still be removed or
damaged. Localization based on WiFi does not need additional add-ons beyond WiFi access points [42], and it
uses many samples of signal strength to construct a localization model, like Bluetooth approaches. However, the
localization is typically not as accurate because there are fewer signals to observe. Computer vision methods
utilizing Simultaneous Localization and Mapping (SLAM) do not have any physical infrastructure to install and
maintain, but an expert must construct a 3D model of the building’s interior and update it whenever something
changes. Regardless of the method used, indoor localization techniques sufer from the same basic problem: it

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 0, Article 0. Publication date: March 2018.



Crowdsourcing the Installation & Maintenance of Indoor Localization Infrastructure • 0:5

is diicult to install and maintain the system over time. LuzDeploy allows non-experts to do this work, and
coordinates their eforts over time.
Minimizing the amount of deployed infrastructure (e.g., beacons) while still providing the required level of

localization accuracy is one way to reduce the costs related to the installation and maintenance of a navigation
system [3]. An orthogonal approach is to reduce the installation costs by using non-experts to perform the
deployment. Pebble explored how inexperienced workers can set up navigation infrastructure for the navigation of
robots [25]. Results show that, while some individuals could place sensors correctly, others lacked understanding
of what they were doing as a whole, leading to confusion in the placement of sensors. LuzDeploy directs crowd
members to do speciic, simple tasks in the environment, helping to decrease confusion.

In this work, we explore using automated agents to provide a broader picture to non-expert workers about the
installation they conduct. Unlike Pebble, we explore a real world deployment instead of using the technology
within a lab setting. Our work probes coordinating local crowds to participate in the deployment. This approach
has the advantage that it could be potentially adopted to bring blind navigation infrastructure into more spaces
as any passer-by can potentially join and help in the deployment.

Fig. 2. The LuzDeploy administrator interface allows a new indoor space to be prepared for instrumentation by LuzDeploy.

Users select layers (floors) on the let, download lists of beacons for each path segment, or download all beacon installation

tasks at once. The right pane allows users to view the floor plan along with the placed beacon markers, or add new markers

to the map. This information is then used by the LuzDeploy bot to coordinate the non-expert crowd’s efort.

2.2 Mobile Crowdsourcing and Crowdsensing

Physical crowdsourcing involves organizing crowds to perform work in the physical world [33, 45, 51]. TASKer,
a recent system for mobile crowdsensing, has shown this approach to be viable on college campuses, distributing
tasks to around 900 students [30]. However, this platform focused primarily on data reporting and collection
tasks. LuzDeploy combines crowdsensing with physical crowdsourcing to understand both what tasks need to be
done, and then coordinate their completion.
Crowdsourced fabrication demonstrated this by guiding participants through step-by-step instructions to

manufacture a pavilion [36]. As participants entered the work area, a "foreman engine" guided them through
their smart-watch and blinking lights to complete a series of tasks in collaboration with robot arms. The end
result was a constructed pavilion made of sticks held in place by string tension. We draw on Lafreniere et al.’s
example of step-by-step, just-in-time instructions for the design of LuzDeploy’s tasks.
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On the topic of volunteer engagement, Heimerl et al. [23] and Goncalves et al. [20] both explored placing
physical kiosks throughout universities to motivate workers to complete expert tasks. While these works show
how speciic local communities could be engaged on the spot to execute work, LuzDeploy uses this approach to
recruit participants and then guide them to conduct physical tasks elsewhere in the building.

Crowdwork typically expects workers to just complete the tasks at hand for payment, but micro-volunteering
involves volunteers in similar tasks with other motivators like interest in the topic [31]. Because of this, volunteers
often know more about the intended goal of a task than in typical crowdwork. Volunteering delivers critical
services to communities through collective action, i.e., actions that two or more individuals take to pursue the
same collective good. Social computing systems are starting to play an important role in collective action [49],
but they are rare because it is diicult to design systems in which a crowd of volunteers can be coordinated to
produce large scale change [57]. It is especially diicult to guide crowds to make relevant and useful contributions
to the efort [14].
Most volunteering systems focus on making it easy for people to sign-up, input their information, and be

matched with relevant tasks [22, 40]. The technological contributions of these systems are primarily matching
algorithms that automatically ind appropriate tasks for new members based on a measure of their skills and
interests [17, 38, 40]. Recently, we have also seen the emergence of research aimed at enhancing volunteer
recruitment, by making it easy for people to share volunteer opportunities with friends online [10, 11]. However,
systematically guiding volunteers is diicult [24], so many of these systems fail to provide adequate guidance. As
a result, many collective eforts fail because substantial work is not produced [24].
Crowdsourcing can work with diferent kinds of incentives, including monetary, altruism, interest in the

subject, etc. A number of systems use volunteers for collective action around causes people care about [8]. The
łGames with a purposež paradigm focuses on designing game mechanisms that engage crowds to do useful
volunteer work while having fun [13, 54]. These systems mainly focus on guiding volunteers to collectively
take action and complete intelligence tasks that are diicult for computers to complete but are relatively easy
for humans. Similarly, online micro-volunteering leverages social networks to recruit participants for short
tasks [5, 10, 48]. This form of volunteering has recently been used to produce collective action [48], and also solve
accessibility problems [7]. For example, Brady et al. [10] leveraged existing social networks to answer questions
posed by people with visual impairments about the contents of photos. Most work to date concentrates on using
online crowd labor to complete intelligence tasks; LuzDeploy applies micro-volunteering and crowdwork to
physical accessibility tasks that would otherwise be diicult to automate.

3 LUZDEPLOY

LuzDeploy is a system that coordinates non-experts via a Facebook bot to use mobile applications designed for
non-experts to install and maintain physical localization infrastructure. In the next section, we discuss the design
considerations we used in developing LuzDeploy focused on the target use case: the installation and maintenance
of NavCog, a navigation assistant for people with visual impairments. We introduce worklows that we developed
to guide non-expert volunteers to perform the activities involved in the considered use case. With those in mind,
we propose an architecture of the system and describe its components (see Section 3.2).

3.1 Design Considerations

General mobile crowdsourcing tools can take many forms [27, 30], depending on the types of tasks considered and
the crowd engaged to complete those tasks. We identiied diferent kinds of tasks involved in the installation, status
monitoring, and maintenance activities of NavCog. Based on the identiied tasks, we outlined worklows suitable
for performing them, as well as methods for engaging a sample target population and promoting participation.
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3.1.1 Use Case: Installation and Maintenance of the NavCog System. We envision LuzDeploy as a system for
coordinating groups of volunteers to complete mobile, physical crowdsourcing tasks such as installing sensors,
collecting signal data, or reporting on infrastructure health. Speciically, we wanted to apply this to the installation
and ongoing maintenance of a blind navigation application, NavCog.

A typical NavCog [1] installation, without specialized sampling equipment, currently proceeds as follows:

(1) An administrator chooses the locations where BLE beacons should be installed (about every 5 meters) and
marks them on the building loorplans.

(2) Each beacon must be installed in the building at the marked locations. The beacons are aixed high on
the wall to limit the interference caused by the obstruction of the Bluetooth signals by nearby people and
objects. The Minor ID of each placed beacon should match the one intended by the map. The locations of
Bluetooth beacons do not have to be exact, and the system will work well even if the beacons are 1-2m of
from their designated location.

(3) Once the beacons are installed, experts use their smartphones to collect many samples of Bluetooth signal
data in the building at known locations, also known as łingerprintingž. Each ingerprint sample measures
a few seconds (typically 5) of the signal strength for nearby beacons. When collecting data at ingerprinting
locations, experts also mark their positions on a map. This forms the ground truth data for NavCog
localization, it is therefore ideal for this estimate to be as accurate as possible.

(4) The collected ingerprints and the beacons locations are then used to create a model of BLE beacon signals
for the building which is used for localization.

After installation, the system must be maintained over time. Besides worrying about the beacon batteries
running low, administrators must also look for beacons that have been moved or damaged. The process is the
following:

(1) Every few weeks to months, depending on the overall health of the system (which is hard to estimate
precisely), an expert should perform a łsweepž procedure for each hallway of the environment, which
consists in sensing the beacons health status with their smartphone. Speciically, this process looks for
the beacons expected in that area and marks those that are missing due to damage or battery failure. If
a constant low of NavCog users is present in the chosen environment, this can be done by end users’
navigation applications. However, because NavCog speciically targets infrequent blind users who are
unfamiliar with the environment, we do not expect this to happen often. Experts will generally need to
complete this process.

(2) Using the record of missing or damaged beacons collected during the sweeping task, system maintainers
then locate and replace or repair the beacons not seen in the sweeping process.

To enable non-expert volunteers to perform the installation and maintenance of NavCog, the identiied tasks
are segmented into simpler micro-tasks. These include: (i) installing beacons, (ii) collecting ingerprint data, (iii)
sweeping a hallway for missing beacons, and (iv) replacing/repairing a broken beacon. The tasks are further
deined as sequences of atomic activities which are provided as instructions to the volunteers. Because the irst
two tasks are completed during installation, a known quantity of work is available all at once. The latter two are
maintenance tasks that occur less frequently, although sweeping could be scheduled.
The quality of the completed installation tasks will afect the resulting localization accuracy when users’

navigate with NavCog, but there is some room for error in the setup process. For beacon installation task, a
placement error of 1-2 meters would not signiicantly impair NavCog localization. Similarly, the data sampling
tasks will always have some amount of error in the actual location in which the samples were collected versus
the reported locations, even when the tasks are performed by experts. Clearly, more error in the reported location
of the samples will also lead to a higher localization error in the model. A good measure of quality in this case is
to evaluate the localization error from the resulting NavCog model.
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3.1.2 Engaging the Crowd. There are many motivations for people to participate in crowd work, especially
mobile crowdwork [32, 34, 52]. For crowdsourcing ormicro-volunteering systems designed to support accessibility,
past systems have leveraged money [7, 21], social connections [9], fun games [29], and altruism as motivators [50].
The motivators depend heavily on the installation environment, on the engaged crowd, and on the tasks at hand.
For example, in a temporary venue such as a research conference, there are numerous people available for a short
time, so the best motivators produce quick and focused bursts of volunteer work. In a university environment,
the passers-by tend to be students who are frequently present for a short time between classes or during breaks
from work, so they can be engaged for less focused, long-term participation.

With LuzDeploy, we studied the following motivators:

• Altruism - Participants were told that the goal of the installation was to make the building accessible to
individuals with vision impairments. We believe that this motivator made it easy to recruit new participants
as most of the passers-by we engaged with this motivator participated in the installation efort.

• Interest - We piqued the interest of potential participants by providing technical information about the
installed navigation assistance infrastructure and the NavCog app, as well as about the LuzDeploy system.
This motivator works well in a technical context, such as at a university or a scientiic conference, in which
the passers-by may be knowledgeable and interested in the technical challenges of the approach. We do
not anticipate that this motivator would work well in more public contexts, such as a mall.

• Competitiveness - This motivator aimed at gamifying the installation process by introducing competitive
game mechanics. We achieved this by tracking the results of the participants’ work and publishing the
participants’ scores on a leaderboard in a highly-traicked area. This aspect was reported to be a strong
motivator by one of the most productive participants of Session 2 during an informal interview.

• Monetary incentives - We added direct monetary compensation in sessions 3 and 4 to encourage repeat
engagement. Given the expense of engaging experts to install and maintain this infrastructure, even fairly
generous compensation may be signiicantly less expensive.

3.2 LuzDeploy Implementation

We targeted our deployment of LuzDeploy to students on a university campus, so we wanted an interface that
would make it easy to immediately sign up and receive step-by-step instructions. We developed LuzDeploy
as a chat bot using Facebook Messenger1, as most students already had it installed on their phones. In other
participant pools, such as a dedicated weekly volunteer group, drop-in participation might not be an important
or desirable feature, and another interface could be preferable. This version of LuzDeploy uses three components:

(1) The LuzDeploy Bot: The bot is a server application that handles incoming messages and conversation state,
and also reminds workers of uninished tasks. This server maintains a record of workers, placed beacons,
and collected Bluetooth ingerprints.

(2) The LuzDeploy Map: The map is a modiied version of the interface supplied by the NavCog system [1], a
web view of building loorplans that are overlaid on top of Google Maps. Administrators use this interface to
deine data for tasks. For workers, this map shows the locations for beacon placement, ingerprint locations,
and hallways to be swept.

(3) The LuzDeploy Data Sampler: For data sampling tasks (i.e., ingerprinting and sweeping), we could not use
Facebook alone because it did not allow us to collect Bluetooth data. We instead developed a companion
app that would open for those tasks from the bot conversation. This app sends the observed Bluetooth data
to the Bot and redirects the user back to the conversation when done.

Figure 3 demonstrates how these components inter-operate to guide users in completing tasks.

1Speciically, we used Facebook Messenger Send API: https://developers.facebook.com/docs/messenger-platform/send-api-reference
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Fig. 3. LuzDeploy components: The administrator uses the online Map interface to create the data for beacon placement,

fingerprinting, and sweeping tasks, which are dispatched by the LuzDeploy Bot to participants through Facebook Messenger.

Then, the Bot uses either the Map or Data Sampler application to guide the participants to complete the assigned task.

3.3 LuzDeploy Bot

The LuzDeploy Bot is a server that receives incoming messages from workers and responds over the Facebook
Messenger platform. The bot manages conversation state with each user, keeping track of current tasks and the
state of the deployment.

3.3.1 Task State Machines. The tasks are each implemented as a state machine to control the step-by-step
instructions. As commands (see Table 1) or data is sent in the conversation, the bot responds as needed and
changes the saved data state.

Command Action

start start an assigned task
reject give up a task if you have one
ask get another task if you do not have one

earnings see how much money you have earned
leave leave the deployment (can rejoin)
help request a list of commands or personal help

Table 1. List of commands available in LuzDeploy. Instead of a natural language interface, we used simple, one word

commands that users can look up.

Each task state can also specify which additional responses it accepts, such as łyes" and łno" for a question,
or łnumber" if that state accepts numerical input. Alternatively, tasks can send buttons to users to perform
these responses, or options can be pre-illed for the participants to quickly respond. Data sent from an external
application, such as the Data Sampler, can also trigger a state change.
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3.3.2 Event mode and Casual mode. Depending on the level of volunteer motivation and recruitment method
the administrator may choose to enable one of two diferent deployment types that afect task distribution:
"event-based" or "casual" deployment.

In an łevent-based deployment", volunteers are expected to be involved for an extended period of time. This is
appropriate if an existing pool of volunteers is being leveraged. When joining the deployment efort, volunteers
are immediately given a task to complete. After the completion of each task, another one is immediately assigned
and started. This is meant to keep volunteers continuously engaged.
In contrast, łcasual deployments" are eforts where volunteers are expected to be involved only sporadically

for a few minutes at a time. This is appropriate when there is high volunteer turnover or relatively few tasks to
be completed (e.g., ongoing maintenance). In this mode, volunteers ask for a new task when they would like a
new one. They receive daily reminders of any uninished tasks, and are prompted to start a new task if they do
not already have one.
In either deployment type, tasks are randomly assigned from what is currently available. For example, if

beacons need to be placed on one loor and data needs to be sampled on another, participants have a 50% chance
of getting either task type. If users do not want to complete the task they are given, they can "reject" it to abandon
the task. Doing this alerts the user that tasks are randomly assigned and they may receive a diferent one if they
ask again. As this is a very simple method of assigning tasks, future versions of LuzDeploy may instead take the
performance of volunteers on diferent task types into account.

3.4 LuzDeploy Map

We modiied the open-source NavCog online interface to allow administrators to layout the information used by
the bot. Administrators upload pictures of building loorplans, which are then rotated and scaled to it over their
relative locations on Google Maps. They then annotate walkable areas in the building, spots where beacons were
to be placed, and locations for ingerprints to be collected.

A read-only version of this map was included with tasks to show workers where beacons were to be placed or
samples were to be collected. When the workers clicked a link to the map, it would open with a speciic location
highlighted for a beacon to be placed, a ingerprint to be collected, or a hallway to be swept. The users were able
to move the map around to ind the correct location, or zoom in to see a more precise location.

3.5 LuzDeploy Data Sampler

While Facebook Messenger was a good platform choice for deploying beacons, we were unable to collect the
Bluetooth signal data needed for our ingerprints without an additional application. The LuzDeploy Data Sampler
is an iOS app that can scan for the presence of beacons or collect ingerprint samples. Users were directed to open
the app during conversations with the bot, and the clicked link would load all necessary data into the application.
Following the map and instructions onscreen, users would press the button to collect data when ready. After the
task was complete, the user was directed back to the conversation for additional tasks.

3.6 Tasks

As mentioned previously, each task is implemented as a state machine to control conversation low over multiple
steps and remember its internal state. This is useful for some physical tasks that need special batching logic, such
as guiding a user to pick up some beacons, then inding open locations for them that are adjacent. While many
bot commands are the same at any moment (see Table 1), this logic that is speciic to each task is contained in
these state machines.
Below we detail the tasks that LuzDeploy Bot has currently implemented. Example conversations with

participants for each task are provided in Appendix A.
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3.6.1 Place Beacons. In the Place Beacons task, volunteers are directed to a supply station where they could
pick up several beacons. Based on the number of beacons the participant takes, the Bot selects the same number
of positions to place them, all close to each other. One by one, the participant is directed to a new location. The
user conirms a beacon has not been mistakenly placed at that location already, enters the number of the beacon
they are placing, and inally sticks the beacon on the wall. This is repeated until the participant does not have
any remaining beacons. If the participant reports that the position already happens to be occupied by a beacon
already, the Bot will redirect the participant to a new location.

3.6.2 Bluetooth Sampling. In the Bluetooth Sampling task, the Bot sends the participant a link to the LuzDeploy
Data Sampler, pre-loading it with a user-speciied number of adjacent ingerprint locations. For each location,
the application guides the user using the map and directs them to press the start button. The app then collects
Bluetooth RSSI data for ive seconds as the participant slowly rotates to create an orientation-invariant sample.

3.6.3 Beacon Health Check. The beacons must be periodically checked to make sure they are still in place and
have suicient battery charge. In this task, participants are given a link to the LuzDeploy Data Sampler which
loads a map of a single hallway (i.e., NavCog edge). The participant starts collecting Bluetooth data and walks
the length of the hallway, pressing stop when they reach the end. The app reports the presence or absence of
beacons that were placed near that hallway.

3.6.4 Replace Beacon. The Replace Beacon task asked volunteers to pick up a new beacon, take it to a location,
and place it on the wall in a manner similar to the Place Beacons task, However, if another beacon was already
present on the wall, such as if the battery had died, the bot asked the user to return that beacon to the supply
station, where administrators could later investigate what failed.
Changing LuzDeploy to support an additional type of multi-step, physical crowdsourcing task just requires

creating one Javascript ile detailing the states. For example, if we wished to add a task to LuzDeploy to collect
pictures around the campus, we may include a step that directs the user to a speciic location by guiding them
using an embedded map. Once the user indicated they had arrived by issuing a command such as łhere", then the
bot would provide instructions for how to take the photo. After the photo had been received by the bot, it would
move the task into the generic complete state, allowing the user to take another. Future work should investigate
how these tasks could be described without writing additional Javascript code, but still maintain the lexibility of
custom logic.

4 DEPLOYMENT ON A UNIVERSITY CAMPUS

We used LuzDeploy to install and begin maintenance of NavCog on the Carnegie Mellon University campus, but
this system could be modiied for deployment in a variety of public environments. For example: a conference
center, hospital, airport, or library.

However, the population in these varying environments are diferent; students might be in the university every
weekday, but the same is not true of travellers in an airport. In some cases, such as a hospital or conference, there
may already be a dedicated pool of volunteers that will use the system. On a university campus it may be better
to engage students in an installation efort by recruiting them on the quad.
The relationship of a person to the building being instrumented can also have a great efect. We motivated

students to participate in our studies partially through altruism, interest in the technical aspects of the project,
monetary compensation, and competitiveness with other students. In other venues with diferent worker pools,
these motivators could be completely inefective. Passengers on a layover in an airport may not be motivated to
compete with strangers to a place they will never visit again.
The recruitment of volunteers and motivations for their participation is therefore diicult to proscribe in

advance. It is infeasible to design and evaluate a system that would be appropriate for every scenario, so the
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manner of recruitment and volunteer motivation is largely left up to the administrator using LuzDeploy. That
being said, we did evaluate several variations of features in LuzDeploy that could change based on the volunteer
pool being engaged. This evaluation was performed over four diferent sessions.

4.1 Session 1

In order to prepare the building for the installation, BLE beacons were numbered and their intended locations
were marked on the LuzDeploy Map. These locations were manually chosen, based on building loorplans, to
yield high localization accuracy for navigation assistance with NavCog. During the irst session only, an early
LuzDeploy prototype was used that expected each beacon to be placed in these pre-determined locations.

The irst session took place on a single day from 4PM to 10PM in the computer science building of the university.
Multiple members of the research team recruited students walking through a heavily traicked hallway near
a building entrance. Most workers were able to quickly join the deployment and take a beacon to place in the
building. After messaging the bot and illing out the consent form, workers were immediately given a task to
install a beacon. This session was meant to be a single-day event, so after each task was completed, a new task
was sent to the worker. Event-based deployment continued until the worker stopped participating. At the end of
the day, workers were asked to ill out an online survey about their experience with LuzDeploy.

Fig. 4. Number of participants and installed beacons per hour

throughout the deployment.

4.1.1 Results. In total, LuzDeploy attracted 89 par-
ticipants from passerby during this session, with activ-
ity peaking around 4PM and 7PM (see Figure 4), which
were times of high foot traic in the building. We no-
ticed that 13 participants did perform the assigned task
but did not remember to start the task in the bot chat.
These participants and the corresponding 13 beacon
placements are therefore not assigned to any of the
listed time ranges.
During this session, a total of 99 beacons were

placed. 70 participants, which is 78% of those who
signed the consent form, placed at least one beacon,
while 11 participants placed more than one beacon
(see Figure 5a). Because each task required workers to place a speciic beacon in a speciic spot, volunteers
returned to the supply station each time to get the next requested beacon. As a result, each task incurred a large
amount of walking overhead. This one-to-one mapping of beacon to placement location also prevented picking
up more that one beacon at a time, so most volunteers did not place more than one beacon.

There were 6 participants who signed the consent form but never joined the deployment to get a task, and 13
participants who joined but did not complete a task. Some of these participants encountered technical issues
with LuzDeploy Bot or Facebook Messenger, which is why they were unable to continue.

4.1.2 Post-Session Survey. The Bot distributed a survey after the deployment to collect workers’ feedback
for improvements before the next session. The survey was completed by 21 participants, 23% of those who
participated. 85% of these respondents reported prior and frequent previous volunteering activities. The most
common reason that survey respondents gave for participating in the study was that they thought the project
was interesting or fun (8 of 21, corresponding to 38%). Other reasons are reported in Table 2.

Two-thirds of respondents (14 out of 21) found the tasks short and easy. 16 out of 21 respondents (76%) gave
input on how LuzDeploy could be improved. The most common improvement for LuzDeploy, suggested by 9
participants (56% of suggestions), was some method of ’batching’ to place multiple beacons at once.
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(a) Session 1 (b) Session 2

Fig. 5. Number of beacons placed by each participant in each session. Batching was introduced in the second session, so

tasks are beacons are segmented by task. While there were fewer participants in the second session, almost the same number

of beacons were placed.

Reasons to participate # of participants %

Project seemed interesting 8 38%
Participant had free time 4 19%
Invited by a colleague 4 19%
Participant was close by 3 14%
Our stand had food and snacks 3 14%
Interested in accessibility 2 10%

Table 2. Reasons to participate listed by volunteers.

The survey also asked participants to answer why they stopped taking new tasks. Most reported that they had
to get back to work or it was late (12 participants, 57%), but some felt they had already contributed enough to the
deployment efort and were not motivated to do more (5 participants, 24%). One survey respondent was confused
by LuzDeploy Bot’s instructions and could not ind help.
In order to understand if LuzDeploy could motivate these workers to help with ongoing maintenance of the

beacons, we asked if participants would be willing to check on beacons periodically. 11 (52%) wanted to check on
beacons provided they had placed them initially, but only 7 (33%) were willing to spend time inspecting beacons
placed by others.

4.1.3 Visual Beacon Inspection. One week after the deployment, a visual inspection of each installed beacon
was performed by two members of the research team. NavCog does not need the beacons to be placed exactly at
a ixed point [3], so the beacons were inspected to see if they were within 1 meter of the location marked on
the building loor plan. Of the 99 beacons deployed in the building, 73 were on the designated map marker or
close enough. During inspection, we found that 6 beacons out of those given to the workers were missing and 17
beacons were near the intended location but too far away. Out of these 17, one beacon was found broken apart
after the deployment.

4.2 Session 2
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To simulate the less frequent and less planned nature of maintenance tasks, our second session occurred over
four months.

Fig. 6. In the second session, a small end table replaced the

presence of the research team. On the table is a lock-box with

beacons and a tablet displaying a leaderboard, progress, and

sign up information.

Based on feedback from the irst session, three key
improvements were made to beacon placement tasks
before the second session. The irst was that beacons
were no longer tied to a speciic location. Instead work-
ers would pick up any beacon, be given a map location,
and later tell the bot which one they had placed. This
removed the initial time it took to ind the correctly
numbered beacon. The second improvement reduced
overhead time walking to and from the beacon supply
point through batching. Workers would take as many
beacons as they had time to place, and then the Bot
would pick the same number of locations near each
other. This minimized the amount of walking required
between placing beacons. Finally, tasks were imme-
diately started on assignment for more accurate data
collection, although task completion still had to be
manually indicated.
Rather than a single-day event, the second session

took place over four months, and without a constant
presence from the research team. Instead, we recruited
participants primarily through liers, on-line posts on
social media, and emails to campus mailing lists. Participants from the irst session were invited to complete
tasks in the second session, although only one participant placed a beacon in both sessions.
A beacon supply station (Figure 6) was set up in the same hallway as the irst session. The stand included a

stock of beacons in a locked safe and a tablet. The tablet continuously displayed information on how to join as a
volunteer, the overall progress of the deployment, and a leader-board of participants. Each task earned points on
completion, and tasks that were batched earned more points.
To simulate the more sporadic nature of maintenance tasks, we utilized a more "casual" task assignment

strategy, as volunteers were not given a new task to complete as soon as they inished one. However, workers
were either reminded every day about tasks they had not yet completed or about a new task if they didn’t have
one.

4.2.1 Results. 25 participants placed a total of 97 beacons in the second session, resulting in an average of 3.9
beacons per person (2.7 per task over 36 tasks).

The majority of tasks were completed in the afternoon, although we did see some volunteers in the morning
or late at night because the building is open to students at all hours (see Fig 7a. Task reminders were sent out at
12:30PM every day based on a note in prior work [30], but activity did not spike from 12PM - 2PM compared to
later in the afternoon.

No beacons were placed on a Saturday, but some were on a Sunday, surprisingly. Overall most of the tasks and
beacons are concentrated on Tuesday - Thursday, perhaps due to when classes are scheduled.

Beacon Status Session 1 Session 2

Placed Correctly 73 83
Of Marker 17 10
Broken 1 2
Not Found 6 2

Total 99 97

Table 3. The number of beacons correctly placed (or otherwise)

from each session. We can see that the majority were placed

correctly. Cross-participant verification tasks could catch these

cases and move the beacons to the correct location.

4.2.2 Visual Beacon Inspection. After the second
session, we again visually inspected the placed bea-
cons to see what the placement accuracy was. We
found that 83 beacons had been placed correctly, and
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(a) Tasks and Beacons by Hour of Day (b) Tasks and Beacons by Weekday

Fig. 7. Number of tasks completed and installed beacons by day of week and time of day throughout the second session. The

times and days likely mirror student activity in the building, such as classes. Some outliers (e.g., 1AM and Sundays) remain.

only 12 were too far from the intended location or not
found. Two beacons placed in this session were found
broken during the inspection.
The percentage of beacons placed correctly in-

creased in the second session, and two possible ex-
planations exist for this. A participant who decided
to place a batch of beacons when they had the time,
instead of when they met the researchers in the hallway, may have taken more care when completing the tasks.
Alternatively, because a smaller number of participants placed more beacons in this session, they may have
learned how to place them more efectively, gaining expertise over repeated tasks.

In the visual inspections of beacons after each session we noticed that many participants struggled to ind the
exact location to place the beacons, leading to some beacons being as much as 1-2m of from the speciied location.
This usually happened in areas with few features, such as bare hallways, where it was not easy to identify the
correct beacon location. The participants also tended to łlock on" to salient locations for beacon placement, such
as corners or boundaries on walls. The placement of these beacons likely inluenced later volunteers, as many
beacons in the same area were placed in a similar way.

We observed some other common reasons that resulted in wrong positioning of the beacons:

• Material matters: When the beacon was to be placed on glass windows or bulletin boards, many partici-
pants instead placed the beacons on a nearby wall.

• Maps are ambiguous: Beacons that were to be placed in the middle of a bare wall were often of the map
marker. This was especially true in hallways where the only distinguishing map features were interior
room boundaries not visible to the volunteer.

• Maps are not always correct: Some locations on the map could have been landmarks for participants,
but there was not a corresponding location in the building, as the map was out of date.

• Height was not consistent: We requested that participants try to place the beacons as high as possible,
but some were placed too low. In some areas, participants placed the beacons level with those previously
placed, but we observed many instances where they were inconsistent (see Figure 8). The overhead view of
the map did not provide guidance on height.
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(a) (b) (c)

Fig. 8. Beacons placed in poor locations: (a) too low on the wall, (b) on the underside of a light fixture, (c) on the floor.

• Orientation is not easy to discern: Beacons on pillars and wall corners were often not facing the direction
intended by the map (which did not show an arrow to indicate orientation), as participants just tried to get
them near to the landmark.

Less ambiguous map locations will likely lead to deployments with more accurate beacon placements. This
adds a second constraint on the administrators when designating the beacon locations for the deployment. Not
only must we consider the beacon locations that lead to high accuracy for NavCog, but also which locations
are more suitable from the workers’ perspective. However, since the highest localization accuracy is actually
desired in the proximity of salient environment features, such as turns and doors [3], placing beacons near those
elements is beneicial, and ultimately does not impose additional limitations to the task organization. Based on
this intuition, in the following sessions, the data collection tasks were designed to correspond to easily identiiable
environment features such as doors, pillars, and corners.

4.3 Session 3

Over a two week period, we tested the Bluetooth signal ingerprinting and sweeping tasks. These tasks were
deployed in the same manner as the second session, although only volunteers with iOS devices were allowed to
complete them. The Facebook bot sent participants a link that opened the LuzDeploy Data Sampler app.

Because our participant pool was constrained to iOS devices and those who would download the companion
application, we ofered compensation to encourage more continuous participation. Participants were paid $0.125
per ingerprint sample collected and $0.40 per hallway swept, which came to an equivalent average hourly rate
of $15.

4.3.1 Results. For ingerprinting, 9 participants collected 1-4 samples at 112 locations, resulting in 185 total
samples collected (mean of 20.5 per participant). The samples were collected on 2 diferent loors, and were
completed in batches ranging from 2 to 18 samples (mean of 11.6 per task).
The number of ingerprint samples we collected was impressive for the small number of participants we

recruited in such a short period of time. Recruiting a larger group of participants would enable us to quickly
perform installations at scale. Future work will investigate how we may quickly recruit more participants and
encourage more engagement with LuzDeploy.
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Finally, we also wanted to assess how LuzDeploy can use physical crowdsourcing to monitor the system health,
in this case by sweeping for the beacons’ presence in building hallways. Sweeping is needed only sporadically
and there are far fewer hallways than ingerprint locations, so only 9 of these tasks were completed by 3 separate
participants (who also collected ingerprint samples in this session). These participants swept a total of 25 beacons,
inding all of them reporting correctly.

4.4 Session 4

The third session gave us insight on whether participants could complete data sampling and health check tasks,
but we wanted to assess the quality of the data they collected. To do this, we gathered enough data to build a
NavCog model over a month-long period. The fourth session was limited to a single loor in the building that
was easily accessible to all participants. Eight participants were recruited through a LuzDeploy Bot message and
liers posted in the building, and two were repeat participants. The participants were paid the same amounts as
in Session 3.

4.4.1 Results. The eight participants collected a total of 1638 samples across 116 points on a single loor in the
building. Almost all of the samples can be attributed to two participants, who collected 1116 and 352 samples,
respectively.

To estimate the quality of the collected samples, we compared a NavCog model built with the data from Session
4 to a NavCog model built by experts. The Session 4 model contained 1638 samples at 116 locations on a single
loor. The expert-built model was created using the latest NavCog sampling method, which uses a LiDAR to
ensure the Bluetooth ingerprints are accurately labelled [47].
Once we constructed the two localization models, we measured the localization accuracy achieved on each

of them using a third set of 590 test ingerprints with known ground-truth locations. We then compared the
localization results obtained by the twomodels. In all cases, the localization was performed using single ingerprint
samples, instead of the user’s trajectory over time. While NavCog makes use of the smartphone’s inertial motion
unit (IMU) to estimate the user’s movement, for this evaluation we did not use movement data. This constraint
makes it easier to compare the localization estimate against known ground-truth samples, but it also inlates the
error estimates in both models compared to what a user would actually experience when using NavCog.
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Fig. 9. Error average, median, and

standard deviation for the expert-

built and Session 4 NavCog models.

Figure 9 reports the results of the accuracy evaluation. The model con-
structed with LuzDeploy data from Session 4 has a higher localization error
(median=1.6m, avg=2.5m, std=2.8m) than the expert-constructed model us-
ing LiDAR-labelled data (median=1.2m, avg=1.6m, std=1.1m), which is to be
expected. However, there is only a 0.4m increase in the median error, mean-
ing the model would still be usable for localization with slightly reduced
accuracy. Furthermore, beacuse beacon placement and ingerprint collection
points are selected in proximity of turning points, doors, and other features
of interest, the decrease in localization accuracy is not expected to have as
much impact on the key areas in which accurate localization is required.

5 DISCUSSION

5.1 Streamlining Installation and Worker Participation

The installation process for navigation systems like NavCog is a complex
activity, and LuzDeploy serves as a valuable tool to break down the worklow
into small tasks. The segmented tasks are easy for non-experts to start and quickly complete, thus making the
entire process more accessible. We were able to recruit 127 non-expert individuals who completed 455 tasks,
reducing the workload of each single task to several minutes at a time.
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On the whole, we found that volunteers would quickly drop-in and drop-out of our deployments. Driven by
curiosity and the low efort required to start using LuzDeploy, many passerby would participate in the activity,
but most volunteers would only complete a single task. One aspect that we explored to improve the eiciency of
the volunteer work is to make it possible for the participants to deine the amount of activity they are willing
to commit to the project. This approach was used after session 1, as participants could complete tasks as their
schedule allowed and set how much work each task included. This resulted in a higher task per person ratio, and
therefore a more eicient use of our participant pool.
A particularly hard aspect of orchestrating physical crowdsourcing activities was maintaining this constant

pool of volunteers. LuzDeploy not only needs to raise immediate interest but also encourage participants to
commit to follow-through on further tasks over time. Based on survey feedback in the irst session, we believe
participants might have felt some investment and responsibility for beacons they personally placed and were
therefore more likely to participate in the upkeep of that portion of the infrastructure. In future work, we hope to
investigate how personal involvement in the placement of beacons inluences the degree of participant retention
during maintenance activities.
Additionally, involving workers in the organizational and decision making process could lead to heightened

engagement. At the moment, LuzDeploy is designed in a manner similar to existing crowdwork: small, simple,
and proscribed tasks. However, prior research suggests that giving workers further autonomy and ability to
demonstrate competency would be a good motivator [34]. In many ways, collective action projects enable
this, as volunteers and activists organize themselves and set the direction of their movement, sometimes with
technological scafolding [49, 57].

5.2 Worker Incentives

Through our various sessions, we employed four diferent incentive mechanisms to recruit and continuously
engage workers. Altruism in participating in a project to help people with vision impairments and interest in the
technical aspects of our projects helped us recruit volunteers in Session 1, as many people were curious about
how LuzDeploy and NavCog worked to make the building more accessible. However, we found that this curiosity
and initial interest did not translate as well to recruiting participants in the casual deployments of sessions 2.
Therefore, we tried to add a competitive aspect using a leaderboard with scores for each participant. While some
said this motivated them to complete tasks, a full-scale game built around LuzDeploy could provide better results
than this simple aspect. In sessions 3 and 4 we added monetary incentives to both attract participants who it our
criteria and keep them engaged over the long term, which we found to be the case for some of our participants.

As previously mentioned in Section 4, the design of LuzDeploy incentives may not directly translate to other
venues or participant pools. In a volunteer pool for a local hospital, perhaps the altruistic goal of making the
building more accessible is enough to motivate volunteers. Monetary compensation, or something of similar
value, is likely a more general motivator than interest in the technical underpinnings of NavCog. In airports, an
airline could ofer free rewards through their smartphone application for people who completed tasks in the
terminal. However, airline passengers would not have the same connection to the building as students. Spatial
augmented-reality games, like Pokemon GO2 or Ingress3, have also shown that people can be mobilized to speciic
locations and engaged over time [12], so this approach may also make sense for the general public. In future
sessions, it would be beneicial to collect data with these diferent worker pools and venues to see how the
incentives and design of LuzDeploy perform across diferent populations and venues.

2https://www.pokemongo.com/
3https://www.ingress.com/
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5.3 Beacon Placement

In physical crowdsourcing tasks that irst require the workers to reach the location in which the task is performed,
ambiguity in guiding the participants to the task location may result in diiculties in performing the task, and
therefore in lower work quality. While NavCog can tolerate a certain degree of imprecision in the installation of
beacons and data collection, these directly impact the localization accuracy of the resulting NavCog infrastructure.
In session 4, deining crowdsourcing tasks in relation to visually salient environment features was crucial to enable
correct guidance during task dispatching, and thus guarantee a higher quality of the resulting infrastructure.
Another insight derived from the sessions that involved beacon placement is that people are generally not

accustomed to others changing physical infrastructure. In some cases attaching a physical object to a wall in a
building that is not one’s own space might even be considered vandalism. Clearly, issues of trust and authority
will need to be considered in other deployments and the development of future systems. This brings up questions
for future work: Should rogue deployments of beacons in places where permission has not been granted be
explicitly discouraged? How will workers know the diference?

5.4 Event and Casual Deployments

Because natural battery failure does not usually occur in the time span we ran the study over (7 months), we
approximated this aspect in our second, third, and fourth sessions using a łcasualž deployment type. In the second
session, this resulted in fewer participants involved in the deployment, but those who were involved placed more
beacons overall and more beacons correctly. We hypothesized that this might be due to the participants gaining
experience over repeated beacon placements, or because they took more care when they completed tasks on
their own schedules.
The beneit of our łevent-basedž deployment in the irst session was involvement from many participants,

leading us to believe that using this for the initial installation could greatly reduce the individual workloads of
beacon placement and ingerprinting. Afterwards, a łcasualž mode of task distribution could be used for ongoing
sweeping and beacon replacement.

5.5 uality of Completed Tasks

The quality of tasks completed by the participants during installation is important to monitor, as this will afect
the localization experience by end users of the NavCog system. Overall, during the beacon placement tasks, we
found that the majority of beacons were placed correctly, with between 10-20% being placed too far from the
marked location. This misplacement is undesirable, but has a minimal efect on NavCog’s localization accuracy, as
the ingerprint samples are more important for the localization system than the absolute position of the beacons.
We found that a NavCog model generated with the samples collected by our crowd workers was not as accurate
as an expert model, but still provided usable localization.

Quality control mechanisms could increase the accuracy of the NavCog model generated with crowdsourced
samples. Veriication tasks would ask workers to manually check each other’s results to ensure beacon placement
is as accurate as possible. Automatic methods, such as outlier detection, could identify workers who submit
invalid data or low-quality ingerprint samples. By combining these two methods, LuzDeploy Bot could direct
workers to collect more quality data in areas with high localization error rates. After further work to ensure
quality, we may see LuzDeploy data get closer to expert-installation accuracy levels.

We must consider whether the installation completed by the crowd workers was worth time and cost expended,
compared to an expert installation. Over the course of our third and fourth sessions, we paid our participants
nearly $300, which is likely less than a team of experts would charge. They did not require any training beyond
the instructions that LuzDeploy Bot delivered, and were already available in the building, instead of having
experts travel to our location. However, the crowd work was spread out over weeks, and experts would likely
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focus on completing the installation in much less time. Additionally, while the system created by crowdworkers
was suiciently accurate to enable navigation assistance with NavCog, the expert model achieved a higher
localization accuracy than the one using data collected by the crowd workers. If an organization would like quick
installation and the highest accuracy, it may make sense to spend more money and hire an expert to come in.
However, if the goal is to install indoor navigation systems as widely as possible, crowdwork may be a viable
option.

5.6 Future Work

Beyond the areas of further investigation already outlined in previous sections, there are several improvements
for the LuzDeploy system that could impact future deployments. Our participant pool is currently limited to
workers with an iOS device, but by porting the LuzDeploy Data Sampler to the Android operating system, we
could engage android users in all tasks, including data sampling. Additionally, the LuzDeploy Map and task
descriptions could be improved to provide more accurate guidance, thus reducing user error in task execution.
Finally, implementing the quality control and veriication mechanisms, mentioned previously, would provide
participants with needed feedback so that they may improve their work.

Our deployment of LuzDeploy was intentionally not a controlled laboratory experiment, as we wanted to collect
data in a large-scale, realistic setting. However, data from a controlled study could be valuable, so we would like
to conduct experiments in small scenarios where more controlled data analysis could be performed. Speciically,
controlled variables such as the timing of task reminders, instruction text, and deployment type (i.e., event vs.
casual) could be compared for statistically signiicant diferences in outcomes. A testbed for these controlled
experiments could also provide an overall comparison of physical crowdsourcing with other installation methods,
such as experts or robotic installations.

More generally, we believe that LuzDeploy advocates future work in understanding and supporting adoption
of assistive technology longer into its deployment than has been done previously. We know that many tools
are abandoned because they are too diicult to learn, break and the user does not know how to ix them, or
gradually degrade in efectiveness [44]. Future work may explore how crowdsourcing and collective action can
make technology feasible that was previously too diicult to deploy because it requires on-going maintenance.

6 CONCLUSION

The technology to create accurate and usable indoor navigation aids for people with visual impairments is
here. However, indoor navigation solutions that require extensive installation and maintenance will not become
widespread unless the process is simpliied. In this paper, we have introduced LuzDeploy, a system that coordinates
the work of non-experts in installing and maintaining needed infrastructure via a Facebook Bot using supporting
mobile applications. On-site workers, such as the students in our studies, complete small tasks in support of this
broader goal without needing special expertise. We demonstrated two diferent methods of using LuzDeploy:
a casual and event approach for task distribution, which are appropriate for diferent venues and participant
populations. Once the infrastructure for these navigation systems are installed, LuzDeploy ensures the system is
kept operational by preventing decay due to broken or powerless beacons. In our study, LuzDeploy successfully
coordinated 127 participants to install indoor localization infrastructure in a 7-story building and maintain it
over several months. As long-term maintenance is a major limiting factor in real-world adoption of current
technology, LuzDeploy is a valuable aid for moving this technology out of the lab setting. By overcoming the
logistical limitations of these installations, we can inally create widespread and usable indoor navigation systems
for people with visual impairments.
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A APPENDIX A: EXAMPLE PARTICIPANT CONVERSATIONS

Below are example conversation with participants for their irst interaction with LuzDeploy Bot, as well as their

interactions for the beacon placement, data sampling, and health check tasks.

A.1 Geting started

LuzDeploy Bot: Hi! [P1], I am the LuzDeploy bot. To continue you must complete the following consent

form. [Button: "Open Consent Form"]

LuzDeploy Bot: Which deployment would you like to join? [Button: "Gates Hillman Center"]

LuzDeploy Bot: Great! Welcome to the Gates Hillman Center deployment! Say ’ask’ for a new task. [Button:

"ask"]

A.2 Beacon Placement

Participant: ask

LuzDeploy Bot: In this task you will place beacons in the environment that will be used by people with

visual impairments to navigate. Please go to the Supply Station (Gates 5th loor near the

bridge exit). Tell me when you are ’there’. [Button: "there"]

Participant: there

LuzDeploy Bot: Great! To open the lockbox, type the code 020217, then #, then turn the switch. Now grab as

many beacons as you are willing to place. Please close and lock the box. Tell me how many

you took (you can press a button or type a number). [Buttons: "1", "3", "5"]

Participant: 1

LuzDeploy Bot: You have 1 beacon to place. Please go to the location marked on the map below. [Button:

"Open Map"]

LuzDeploy Bot: Tell me when you are ’there’! [Button: "there"]

Participant: there

LuzDeploy Bot: Is there already a beacon placed on the wall there? [Buttons: "no", "yes"]

Participant: no

LuzDeploy Bot: What is the number on the back of one of the beacons you have?

Participant: 682

LuzDeploy Bot: The beacon number is 682, correct? [Buttons: "yes", "no"]

Participant: yes

LuzDeploy Bot: Place the beacon high on the wall (you can double check using the map), and try to make it

look neat. Don’t put it on signs, door frames, or light ixtures. [Button: "Open Map"]

LuzDeploy Bot: Tell me when you are ’done’! [Button: "done"]

Participant: done

LuzDeploy Bot: Thanks! There are more tasks available! Say ’ask’ to get another.

A.3 Fingerprint Collection

Participant: ask

LuzDeploy Bot: We need you to help us sample beacon data in the building. How many samples would you

like to collect (one sample takes about 30 seconds on average)?

Participant: 15

LuzDeploy Bot: Please open the LuzDeploy app below and follow the instructions. Let me know when you

are ’done’! [Button: "Open LuzDeploy"]
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LuzDeploy Map: [The following instructions are presented in the application alongside maps depicting the

location of the sample:] Go to the location marked on the map. Then press the button to

scan for 5 seconds. You will be asked to rotate while scanning.

Participant: [participant presses button]

LuzDeploy Map: Now turn around in place slowly until the timer runs out. [5 second timer starts]

LuzDeploy Map: [This repeats until all samples have been collected. The participant is then directed back to

the conversation with LuzDeploy Bot.]

LuzDeploy Bot: Thanks, you earned $1.88. There are more tasks available! Say ’ask’ to get another.

A.4 Health Check

Participant: ask

LuzDeploy Bot: We need you to help us check which beacons are not working in the building. Please open

the LuzDeploy app below and follow the instructions. Let me know when you are ’done’!

[Button: "Open LuzDeploy"]

LuzDeploy Map: [The following instructions are presented in the application alongside maps depicting the

location of the sample:] Go to node 183 in the map above. Then press the start button below.

Participant: [participant presses button]

LuzDeploy Map: Now walk to node 185 at the end of the red path. Once there, press the stop button below.

Participant: [participant presses button and is redirected back to the conversation with LuzDeploy Bot]

LuzDeploy Bot: Thanks, you earned $0.40. There are no more tasks available right now.
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