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Mitochondria play a pivotal role in cardioprotection. Here we report some fundamental

studies which considered the role of mitochondrial components (connexin 43,

mitochondrial KATP channels and mitochondrial permeability transition pore) in

postconditioning cardioprotection. We briefly discuss the role of mitochondria, reactive

oxygen species and gaseous molecules in postconditioning. Also the effects of

anesthetics—used as cardioprotective substances—is briefly considered in the context

of postconditioning. The role of mitochondrial postconditioning signaling in determining

the limitation of cell death is underpinned. Issues in clinical translation are briefly

considered. The aim of the present mini-review is to discuss in a historical perspective

the role of main mitochondria mechanisms in cardiac postconditioning.

Keywords: cardioprotection, ischemia/reperfusion, reactive oxygen species, redox signaling, mitochondria,

connexin 43

INTRODUCTION

Mitochondria are fundamental as sources of energy, but also to sustain life being elements
involved in cell survival and death. Mitochondrial dysfunction is a critical element of many
diseases including ischemia/reperfusion (I/R) and subsequent development of ventricular systolic
dysfunction and possible compensatory heart hypertrophy. This article outlines the role of
mitochondria as targets for reducing I/R damage in myocardial postconditioning.

Cardiac postconditioning has been defined by the seminal work of Vinten-Johansen’s
group as “repetitive ischemia applied during early reperfusion” (Zhao et al., 2003). The
name postconditioning was proposed in comparison with the previously discovered ischemic
preconditioning. It soon became clear that intramyocardial mechanisms are responsible for both
pre and postconditioning cardioprotection and that mitochondria may play a pivotal role (Pagliaro
et al., 2004; Tsang et al., 2004; Hausenloy and Yellon, 2016).

Postconditioning attracted the interest of researchers as it allows an easier approach in humans.
Indeed, it has been tested several times, both with a mechanical (brief ischemia) or pharmacological
approach to target mitochondria in animals and humans. Also, inhibition of mitochondrial
permeability transition to limit the so-called “post-cardiac arrest syndrome,” observed in patients
resuscitated from cardiac arrest, has been tested in a pre-clinical study (Cour et al., 2011). The
results with both approaches are contradictory and have been reviewed elsewhere (Gomez et al.,
2009; Penna et al., 2013a; Dongworth et al., 2014). The main purpose of the present article
is a diachronic approach to studies that considered mitochondria mechanisms involvement in
postconditioning.

MITOCHONDRIA AND HEART POSTCONDITIONING

Searching on Pubmed for “Mitochondria∗[title] and heart and postconditioning” with a publication
date limit from 2003/01/01 to 2017/12/31 we found 82 articles.
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In this series of article, the first report which hypothesized
and confirmed an important role for mitochondria in
postconditioning was the article by Argaud et al. (2005). These
authors confirmed a role for the mitochondrial permeability
transition pore (mPTP) in lethal reperfusion injury and
suggested that this pore is modulated by postconditioning.
The study was conducted in anesthetized open-chest rabbits.
Mitochondria were isolated from the risk area of myocardium,
and calcium-induced mPTP opening was determined using a
potentiometric method. Postconditioning inhibited the opening
of the mPTP and provided a robust anti-ischemic protection.
Later, the same group demonstrated that mitochondrial calcium
decreased in pre-conditioning, but increased significantly either
in postconditioning or after inhibition of mPTP (Argaud et al.,
2008). These data have suggested that Ca2+ retention within
mitochondria may clarify the limitation of reperfusion damage
in postconditioned hearts (but not in preconditioned). The
involvement of mitochondria in postconditioning protection has
been confirmed in several studies, for Reviews see ((Boengler
et al., 2011a, 2013; Di Lisa et al., 2011)).

The mPTP, whose nature is still controversial (Figure 1), plays
a pivotal role in the shift from life to death (Bernardi et al.,
2015; Kwong and Molkentin, 2015). Already in 2006 Ovize’s
group reviewed the evidence for an important role of the mPTP
in postconditioning (Gateau-Roesch et al., 2006). It was soon
evident that mPTP priming occurs during ischemia and early
reperfusion, and that mPTP opens at the time of full reperfusion,
leading to cell death, whereas pre- and postconditioning prevent
the pore formation. Also, modulation of electron transport has
emerged as a mechanism responsible for cardiac mitochondria
protection, which decreases myocardial injury during ischemia
and early reperfusion (Chen et al., 2006). In 2007 Gomez et al.
confirmed that inhibition of mPTP at reperfusion not only
limits infarct size but also improves functional recovery and
mice survival (Gomez et al., 2007). Then, in a dog model of
myocardial I/R,Mykytenko et al. demonstrated that the beneficial
effects of postconditioning and effects on mitochondrial function
persisted 24 h after the ischemic event (Mykytenko et al.,
2008). In particular, postconditioning reduced infarct size and
decreased CK activity after prolonged reperfusion and the
protection was attributable to the opening of mitochondrial
KATP channels (mKATP) and inhibition of mPTP opening.
Nevertheless, mPTP physiology is complex and its transient
opening during preconditioning is protective (Dongworth et al.,
2014; Hausenloy and Yellon, 2016).

It is likely that the signal transducer and activator of
transcription 3 (STAT3) contributes to cardioprotection by
stimulation of respiration and inhibition of mPTP opening
(Boengler et al., 2010; Heusch et al., 2011). We confirmed
the role of STAT3 in ischemic postconditioning but as a
component upstream to mitochondrial ROS (Reactive Oxygen
Species) signaling (Penna et al., 2013b). In cardiac cells, two
main types of mitochondria are present: interfibrillar (IFM)
and subsarcolemmal (SSM) with different biochemical and
morphological properties (e.g., lower oxidation potential and
lower enzyme activities of complex I, succinate dehydrogenase,
in SSM than IFM) (Palmer et al., 1977). In cardiac cells, STAT3

was principally present in the matrix of SSM and IFM. STAT1
was also found in mitochondria under physiological conditions,
but this does not occur for STAT5 (Boengler et al., 2010; Heusch
et al., 2011).

Mitochondrial connexin 43 and postconditioning protection
were studied several times (Penna et al., 2009; He et al., 2010;
Boengler et al., 2011a; Di Lisa et al., 2011). The mitochondrial
location of connexin 43 being central for cardioprotection has
been proposed by Schulz and co-workers (Boengler et al.,
2011a). It is clear that mitochondrial connexin 43 has a
role in postconditioning-induced ROS-signaling, but its precise
function is not clear. Recently, Tu et al. (2017) have described a
role for mitochondrial connexin 43 in hypoxic postconditioning.
However, postconditioning (unlike preconditioning) effectively
reduces infarct size in heterozygous connexin 43-deficient
(Cx43+/−) mice in vivo (Heusch et al., 2006), questioning
the role of connexin 43 in this cardioprotective intervention.
Nevertheless, a difference exists between IFM and SSM in
terms of connexin 43 presence and function. The role of these
subpopulations of mitochondria deserves more studies.

The mitochondrial ATP-sensitive K+ channels (mKATP) have
a putative important role in postconditioning cardioprotection
(Garlid and Halestrap, 2012; Jin et al., 2012). It has also been
suggested that themitochondrial calcium uniporter is involved in
the mechanisms of ischemic postconditioning (Yu et al., 2011).

MITOCHONDRIA AND ROS

Serviddio et al. suggested that mitochondria play a pivotal role
in H2O2 production and redox stress during reperfusion and
are important for the cardioprotective effect of postconditioning
(Serviddio et al., 2005). These authors used isolated perfused rat
hearts in which they compared an early normoxic reperfusion
with a hypoxic reperfusion. They found out that mitochondria
carbonyl proteins are somewhat lower in hypoxic than in the
normoxic group at the end of reperfusion and concluded that
hypoxic reperfusion at its onset limits myocardial injury and
the amount of mitochondrial H2O2 production. Although this
was not a real postconditioning, as defined by Vinten-Johansen’s
group (Zhao et al., 2003), it was the first study to hypothesize
some changes in redox aspects within mitochondria in early
reperfusion after a protective intervention.

We were the first to show that in order to induce
cardioprotection by postconditioning in isolated perfused rat
hearts, a signaling through a mKATP activation and redox-
sensitive mechanism is required (Penna et al., 2006). It is likely
that postconditioning procedures reduce the production of ROS
in early reperfusion, but if ROS are completely removed in the
initial minutes of reperfusion the heart cannot be protected by
the “repetitive ischemia applied during early reperfusion.” Our
observationwas confirmed several times by different laboratories.
The same year Bopassa et al. confirmed the involvement of
mPTP and suggested that phosphatidylinositol 3-kinase (PI3K)
regulates mPTP in isolated perfused rat hearts subjected to
a postconditioning protocol (Bopassa et al., 2006). We then
demonstrated that targeting of specific cellular sites such as
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FIGURE 1 | The most accepted model considers ATP synthase subunits as central elements of the mitochondrial permeability transition pore (mPTP). Indeed, the

F1FO ATP synthase has been suggested by Bernardi et al. (2015) to be a pore component for the inner mitochondrial membrane (IMM) forming a unit of the mPTP. It

has been suggested that adenine nucleotide translocase (ANT) and cyclophilin-D (CypD), together with mitochondrial phosphate carrier (PiC) form a complex that acts

as pore regulator. The pro-apoptotic proteins Bax/Bak located in the outer mitochondrial membrane (OMM) favor swelling and subsequently, mitochondria rupture

once the IMM complex opens (Kwong and Molkentin, 2015).

bradykinin B2 receptors and mKATP channels during early
reperfusion elicits postconditioning-like protection through ROS
signaling and ROS compartmentalization (Penna et al., 2007).
Very recently Boengler et al. (2017) have shown that p66shc is
present in both SSM and in IFM. However, it seems that ROS
formation by p66shc is not involved in determining myocardial
injury.

MITOCHONDRIA AND GASEOUS
CARDIOPROTECTIVE SUBSTANCES

Hydrogen sulfide (H2S), carbon monoxide (CO) and Nitric
Oxide (NO) are recognized as three gaseous mediators
for cardioprotection. All these molecules have potential
cardioprotective effects in the heart. In particular, the beneficial
actions were demonstrated against myocardial I/R injury,
including infarction, arrhythmia, hypertrophy, fibrosis, and
heart failure. These protective effects were mediated by complex
pathway and the effects included: anti-oxidative action, anti-
inflammatory responses, reduction of apoptosis, angiogenic
actions, and regulation of ion channel (Mancardi et al., 2009;
Andreadou et al., 2015; Penna et al., 2015). Since these gasses may
be produced within mitochondria and may profoundly affect the
function of these organelles, here we discuss briefly their role in
the context of cardioprotection. The enzymatic production of
NO is mediated by three isoforms of NOS isoforms: neuronal
(nNOS or NOS I), inducible (iNOS or NOS II), and endothelial
(eNOS or NOS III). A specific mitochondrial NOS isoform
has been also proposed. NOS activity is governed by different

factors (co-factors and substrate availability, and endogenous
inhibitors) and the NO can induce post-transcriptional,
post-translational and transcriptional modulations in specific
subcellular compartments. Importantly, during ischemia, when
pH becomes acidic and oxygen-dependent NOS activity may
be impaired, the formation of NO can also derive from the
non-enzymatic reduction of nitrite/nitrate, which can be dietary
and endogenous in origin (Andreadou et al., 2015).

Also, the activation of the NO/cGMP pathway, with
augmentation of cGMP and NO levels, has been observed after
postconditioning maneuvers in different cardiac models. During
postconditioning, the activation of eNOS and Akt pathway
converge on Glycogen Synthase Kinase-3β (GSK-3β) and inhibits
mPTP opening (Correa et al., 2015). Different concentrations
of NO induce different action in the mitochondria. In
particular, high NO concentration open the mPTP with the
formation of peroxynitrite and disulphide bonds formation,
while physiological NO levels favor mPTP closure with post-
translational modification of protein S-nitrosylation (Correa
et al., 2015 and references therein). In early reperfusion, a
temporary interruption of respiration may prevent exaggerated
generation of superoxide anion (O−

2 ) and ONOO− and reduce
the thiol oxidation with permanent inactivation of metabolic
enzymes or inhibition of mPTP opening (Piantadosi, 2012).

Hydrogen sulfide (H2S) is produced by several enzymes,
within and outside mitochondria. It seems that H2S produced
by cystathionine-gamma-lyase (CSE) from L-cysteine can readily
scavenge the ROS and may induced protection with two
mechanisms, one reperfusion injury salvage kinase (RISK)-
dependent and the other RISK-independent. Therefore, H2S as
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NO has important antioxidant properties, but in contrast to
NO, H2S cannot directly form radicals (Mancardi et al., 2009).
An interesting and recent paper by Banu et al. (2016) reports
that both postconditioningmaneuvers and H2S postconditioning
significantly restores the complex I activity to near normal level,
particularly in IFM. The preserved IFM activity was evidenced
by the improvement in electron transport chain enzyme activities
and mitochondrial respiration.

Endogenous carbon monoxide (CO) is synthesized by
hemoxygenases (HO-1 and HO-2) as a consequence of the
catabolism of haem and is an important bioactive molecule. It has
been observed that CO induces the mitochondrial production of
O−

2 , which is transformed by superoxide dismutase to H2O2, and
then a subsequent Akt activation by H2O2 limits apoptosis after
I/R (Kondo-Nakamura et al., 2010). Moreover, the anti-apoptotic
effects of CO are related to the inhibition of mPTP. In isolated
mitochondria, CO inhibited mPTP opening, loss of potential,
cytochrome c release and swelling (Queiroga et al., 2010). Further
details on the role of NO, H2S, and CO in cardioprotection can
be found on Andreadou et al. (2015).

MITOCHONDRIA AND ANESTHETICS

Agents targeting mitochondria with prominent postconditioning
effects are anesthetics. The volatile anesthetic sevoflurane given
for 2min at the beginning of reperfusion-induced myocardial
protection against myocardial I/R injury. This sevoflurane-
postconditioning is mediated, at least in part, by mKATP-
channels (Obal et al., 2005). Almost simultaneously, in a similar
model, Feng et al. have published that another volatile anesthetic,
isoflurane, induces postconditioning preventing the opening of
the mPTP via inhibition of GSK-3β (Feng et al., 2005). It was
also demonstrated, in vivo, that the antiapoptotic protein B
cell lymphoma-2 (Bcl-2) mediates myocardial postconditioning
protection by isoflurane, thus indirectly modulating mPTP
activity (Wang et al., 2006; Pravdic et al., 2010).

Propofol, another anesthetic, also displayed cardioprotective
effect against cardiac I/R injury associated with inhibition of
mPTP opening. Intriguingly, compared to propofol, sevoflurane
induces more beneficial effects on functional recovery and infarct
size (He et al., 2008). Another study suggested that sevoflurane
postconditioning protects isolated rat hearts through the
involvement of the ROS-ERK 1/2-mPTP signaling cascade (Yao
et al., 2010). Moreover, sevoflurane postconditioning protects
infarcted rat hearts against I/R damage by inhibiting mPTP
opening through the involvement of PKB/Akt and ERK1/2 (Yao
et al., 2009). Nevertheless, sevoflurane-induced postconditioning,
as other conditioning protocols, results impaired by the presence
of hyperglycemia. This impairment of protection was reversed
by the mPTP inhibition with cyclosporine A (Huhn et al.,
2008) or by inhibition of excess mitochondrial fission with
dynamin-related protein 1 inhibitor (Yu et al., 2017). Lim et al.
have confirmed that the mPTP plays an essential role in in
the cardioprotection induced by ischemic and pharmacological
preconditioning and by postconditioning (Lim et al., 2007).
Yet, pharmacological postconditioning may be limited by a

“ceiling effect of protection,” but, this ceiling effect may
be reversed by simultaneous inhibition of GSK-3β via the
opening of mKATP channels (Couvreur et al., 2009). GSK-3β
modulates mitochondrial function and Gomez et al.confirmed
that GSK-3β inhibition via its S9-phosphorylation is required for
postconditioning and that this phosphorylation likely works by
inhibiting the opening of the mPTP (Gomez et al., 2008). Indeed,
it has been suggested that the phosphorylation/inactivation of
GSK-3β is involved in the inhibition of mPTP opening via
the interaction with several elements of the mPTP regulatory
complex and subsequent increase in mPTP-ROS threshold
(Tanno et al., 2014). Finally, it is of note that morphine, an
opiate often given to patients who have undergone surgery
and anesthesia, may induce postconditioning via delta-1 opioid
receptors activation and mPTP modulation (Kim et al., 2011).

MITOCHONDRIAL POSTCONDITIONING
SIGNALING AND LIMITATION OF CELL
DEATH

Postconditioning signaling converges on mitochondria, thus
limiting all forms of cell death. We have suggested that
postconditioning or perfusion of the heart with bradykinin
may activate cellular signaling leading to the opening of
mKATP channels, increasing ROS production, inhibiting the
mPTP and inducing cardioprotection (Penna et al., 2006). It
has been suggested that the cooperation between bradykinin
and bradykinin-receptor may favor the assembly of a caveolar
signaling platform (signalosome). The receptors with ligands
migrate to caveolae, where signaling elements are scaffolded into
signalosomes that translocate to mitochondria. The signalosome-
mitochondria interaction then initiates mKATP channels,
increases ROS production, which favors mitochondrial protein
kinase C epsilon activation andmPTP inhibition, thus decreasing
myocardial injury (Quinlan et al., 2008). It has been suggested
that postconditioning similarly to adenosine may induce HSP90-
dependent translocation of PKCε to mitochondria, likely
via mitochondrial import machinery TOM70 (Yang et al.,
2012). These results suggest an important implication of
cytosolic protein translocation within mitochondria in ischemic
postconditioning (Boengler et al., 2011b).

Mitochondria are important players in many types of
apoptotic and necrotic cell death (Murphy and Steenbergen,
2011). We were among the first to demonstrate that
postconditioning increases the levels of anti-apoptotic markers,
including the phospho-GSK-3β and Pim-1 kinases, while
decreasing the pro-apoptotic markers, namely cytochrome
c, thus preserving the mitochondrial morphology (Penna
et al., 2009). Fang et al. confirmed that postconditioning
attenuates cardiomyocyte injury and apoptosis by blocking
mPTP (Fang et al., 2008). Subsequently, Li et al. suggested that
the cardioprotective effect of postconditioning is mediated by
apoptosis repressor with caspase recruitment domain (ARC)
(Li et al., 2009). Dong et al. also showed that postconditioning
may protect cardiomyocytes from apoptosis via an interaction
between PKCε and calcium-sensing receptors to inhibit
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endoplasmic and sarcoplasmic reticulum-mitochondria crosstalk
(Dong et al., 2010).

The influence of mitochondrial dynamics in I/R and
cardioprotection, and their potential as targets in treating
cardiovascular disease, are also emerging (Boengler et al.,
2011a; Ong and Hausenloy, 2017). Finally, experimental studies
highlighted the importance of exosomes and vesicles in local
and distant intercellular communication mechanisms after
myocardial infarction. Exosomes and vesicles are potentially
useful as cell-free therapeutic candidates (Lai et al., 2010; Bell
et al., 2012; Chen et al., 2013; Barile et al., 2014; Giricz et al.,
2014; Ibrahim et al., 2014; Yellon and Davidson, 2014; de Couto
et al., 2017; Sluijter et al., 2018). However, caution must be used
and extensive studies are necessary because their mechanisms of
protection are still unknown.

TRANSLATION ISSUES

Pharmacological and mechanical ischemic postconditioning
can be therapeutic options (Pagliaro and Penna, 2015). For
instance, blocking the mPTP could be beneficial, but mPTP
blockers have yielded mostly neutral effects in both myocardial
infarction and heart failure patients. Also, mechanical ischemic
postconditioning yielded contradictory results. In animalmodels,
postconditioning resulted in an increase in myocardial salvage
(about 30 % in rats, 35% in dogs, 50% in pigs, and 65% in
rabbits) (Zhao et al., 2003; Mykytenko et al., 2008; Sun et al.,
2010). However, in humans studies of postconditioning effects
onmarkers of myocardial injury have obtained conflicting results
(Lønborg, 2015; Pagliaro and Penna, 2015). Several authors (Staat
et al., 2005; Thibault et al., 2007; Xue et al., 2010) reported a
decrease in enzyme leakage. Lønborg et al. (2010) using magnetic
resonance imaging found an increase in myocardial salvage ratio.
Yet authors (Sörensson et al., 2010; Freixa et al., 2012; Hahn
et al., 2013) do not observe any effect of postconditioning in
humans withmyocardial infarction. Thus, additional studies with
adequately sized and designed randomized trials are necessary.
Hope comes from a recent trial which reports a significant
increase in myocardial salvage when classical postconditioning
has been combined with remote ischemic conditioning (Eitel
et al., 2015).

CONCLUSIONS

In conclusion, here we have reported several studies which
have shown that different signal transduction pathways are
switched on or switched off both by ischemic postconditioning
and by pharmacological postconditioning. These signaling
pathways converge onmitochondria where different components
are affected preserving many of the mitochondrial functions
after ischemia/reperfusion. Within mitochondria, a central role
is played by connexin 43, mKATP channels and mPTP.
Mitochondrial dynamics are also of fundamental importance
in I/R and cardioprotection (Boengler et al., 2011a; Ong and
Hausenloy, 2017). Many other factors and consequently several
other studies are not considered and we apologize to authors of
those studies. However, the core aim of the present mini-review
was to report the main steps which allow us to understand the
role of these organelles in postconditioning and it may represent
a starting point to deepen the understanding of mitochondria
role in cardioprotection. Future researches and developments
in this field should rely on appropriate animal models (with
comorbidities and co-medication) that can allow identifying
candidates for future clinical trials and, 1 day, discovery the
appropriate strategies to eradicate myocardial infarction and its
sequela.

AUTHOR CONTRIBUTIONS

CP and PP drafted the first version and supervised the
manuscript. All authors evaluated retrieved papers and their
reference lists to identify additional relevant articles. JP and SF
made the figure. All authors revised themanuscript and approved
the final version of the manuscript.

FUNDING

This study was funded by the University of Turin, Ricerca Locale
Ex-60% (Grants: PAGP_RILO_16_01).

ACKNOWLEDGMENTS

The authors of this work were supported by the University of
Turin.

REFERENCES

Andreadou, I., Iliodromitis, E. K., Rassaf, T., Schulz, R., Papapetropoulos, A.,
and Ferdinandy, P. (2015). The role of gasotransmitters NO, H2S and
CO in myocardial ischaemia/reperfusion injury and cardioprotection by
preconditioning, postconditioning and remote conditioning. Br. J. Pharmacol.

172, 1587–1606. doi: 10.1111/bph.12811
Argaud, L., Gateau-Roesch, O., Augeul, L., Couture-Lepetit, E., Loufouat,

J., Gomez, L., et al. (2008). Increased mitochondrial calcium coexists
with decreased reperfusion injury in postconditioned (but not
preconditioned) hearts. Am. J. Physiol. Heart Circ. Physiol. 294, H386–H391.
doi: 10.1152/ajpheart.01035.2007

Argaud, L., Gateau-Roesch, O., Raisky, O., Loufouat, J., Robert, D., and
Ovize, M. (2005). Postconditioning inhibits mitochondrial permeability

transition. Circulation 111, 194–197. doi: 10.1161/01.CIR.0000151290.
04952.3B

Banu, S. A., Ravindran, S., and Kurian, G. A. (2016). Hydrogen sulfide
post-conditioning preserves interfibrillar mitochondria of rat heart
during ischemia reperfusion injury. Cell Stress Chaperones 21, 571–582.
doi: 10.1007/s12192-016-0682-8

Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L.
M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells
inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial
infarction. Cardiovasc. Res. 103, 530–541. doi: 10.1093/cvr/cvu167

Bell, R., Beeuwkes, R., Bøtker, H. E., Davidson, S., Downey, J., Garcia-Dorado,
D., et al. (2012). Trials, tribulations and speculation! Report from the 7th
Biennial Hatter Cardiovascular Institute Workshop. Basic Res. Cardiol. 107,
300. doi: 10.1007/s00395-012-0300-6

Frontiers in Physiology | www.frontiersin.org 5 March 2018 | Volume 9 | Article 287

https://doi.org/10.1111/bph.12811
https://doi.org/10.1152/ajpheart.01035.2007
https://doi.org/10.1161/01.CIR.0000151290.04952.3B
https://doi.org/10.1007/s12192-016-0682-8
https://doi.org/10.1093/cvr/cvu167
https://doi.org/10.1007/s00395-012-0300-6
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pagliaro et al. Mitochondria and Postconditioning

Bernardi, P., Rasola, A., Forte, M., and Lippe, G. (2015). The mitochondrial
permeability transition pore: channel formation by F-ATP synthase, integration
in signal transduction, and role in pathophysiology. Physiol. Rev. 95,
1111–1155. doi: 10.1152/physrev.00001.2015

Boengler, K., Bencsik, P., Palóczi, J., Kiss, K., Pipicz, M., Pipis, J., et al. (2017).
Lack of contribution of p66shc and its mitochondrial translocation to ischemia-
reperfusion injury and cardioprotection by ischemic preconditioning. Front.
Physiol. 8:733. doi: 10.3389/fphys.2017.00733

Boengler, K., Heusch, G., and Schulz, R. (2011a). Mitochondria
in postconditioning. Antioxid. Redox Signal. 14, 863–880.
doi: 10.1089/ars.2010.3309

Boengler, K., Heusch, G., and Schulz, R. (2011b). Nuclear-encoded mitochondrial
proteins and their role in cardioprotection. Biochim. Biophys. Acta Mol. Cell

Res. 1813, 1286–1294. doi: 10.1016/j.bbamcr.2011.01.009
Boengler, K., Hilfiker-Kleiner, D., Heusch, G., and Schulz, R. (2010). Inhibition

of permeability transition pore opening by mitochondrial STAT3 and its
role in myocardial ischemia/reperfusion. Basic Res. Cardiol. 105, 771–785.
doi: 10.1007/s00395-010-0124-1

Boengler, K., Ungefug, E., Heusch, G., and Schulz, R. (2013). The STAT3
inhibitor stattic impairs cardiomyocyte mitochondrial function through
increased reactive oxygen species formation. Curr. Pharm. Des. 19, 6890–6895.
doi: 10.2174/138161281939131127115940

Bopassa, J. C., Ferrera, R., Gateau-Roesch, O., Couture-Lepetit, E., and Ovize,
M. (2006). PI 3-kinase regulates the mitochondrial transition pore in
controlled reperfusion and postconditioning. Cardiovasc. Res. 69, 178–185.
doi: 10.1016/j.cardiores.2005.07.014

Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., et al. (2013).
Cardiac progenitor-derived exosomes protect ischemic myocardium from
acute ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 431,
566–571. doi: 10.1016/j.bbrc.2013.01.015

Chen, Q., Camara, A. K., Stowe, D. F., Hoppel, C. L., and Lesnefsky, E. J. (2006).
Modulation of electron transport protects cardiac mitochondria and decreases
myocardial injury during ischemia and reperfusion. Am. J. Physiol. Cell Physiol.

292, C137–C147. doi: 10.1152/ajpcell.00270.2006
Correa, F., Buelna-Chontal, M., Chagoya, V., García-Rivas, G., Vigueras, R.

M., Pedraza-Chaverri, J., et al. (2015). Inhibition of the nitric oxide/cyclic
guanosine monophosphate pathway limited the cardioprotective effect of post-
conditioning in hearts with apical myocardial infarction. Eur. J. Pharmacol. 765,
472–481. doi: 10.1016/j.ejphar.2015.09.018

Cour, M., Loufouat, J., Paillard, M., Augeul, L., Goudable, J., Ovize, M., et al.
(2011). Inhibition of mitochondrial permeability transition to prevent the
post-cardiac arrest syndrome: a pre-clinical study. Eur. Heart J. 32, 226–235.
doi: 10.1093/eurheartj/ehq112

Couvreur, N., Tissier, R., Pons, S., Chenoune, M., Waintraub, X., Berdeaux,
A., et al. (2009). The ceiling effect of pharmacological postconditioning
with the phytoestrogen genistein is reversed by the GSK3β inhibitor SB
216763 [3-(2,4-dichlorophenyl)−4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-
dione] through mitochondrial ATP-dependent potassium chan. J. Pharmacol.

Exp. Ther. 329, 1134–1141. doi: 10.1124/jpet.109.152587
de Couto, G., Gallet, R., Cambier, L., Jaghatspanyan, E., Makkar,

N., et al. (2017). Exosomal MicroRNA transfer into macrophages
mediates cellular postconditioning. Circulation 136, 200–214.
doi: 10.1161/CIRCULATIONAHA.116.024590

Di Lisa, F., Canton, M., Carpi, A., Kaludercic, N., Menabò, R., Menazza,
S., et al. (2011). Mitochondrial injury and protection in ischemic
pre- and postconditioning. Antioxid. Redox Signal. 14, 881–891.
doi: 10.1089/ars.2010.3375

Dong, S., Teng, Z., Lu, F. H., Zhao, Y. J., Li, H., Ren, H., et al. (2010).
Post-conditioning protects cardiomyocytes from apoptosis via PKC(epsilon)-
interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic
reticulum-mitochondria crosstalk. Mol. Cell. Biochem. 341, 195–206.
doi: 10.1007/s11010-010-0450-5

Dongworth, R. K., Hall, A. R., Burke, N., and Hausenloy, D. J. (2014). Targeting
mitochondria for cardioprotection: examining the benefit for patients. Future
Cardiol. 10, 255–272. doi: 10.2217/fca.14.6

Eitel, I., Stiermaier, T., Rommel, K. P., Fuernau, G., Sandri, M., Mangner, N.,
et al. (2015). Cardioprotection by combined intrahospital remote ischaemic
perconditioning and postconditioning in ST-elevation myocardial infarction:

the randomized LIPSIA CONDITIONING trial. Eur. Heart J. 36, 3049–3057.
doi: 10.1093/eurheartj/ehv463

Fang, J., Wu, L., and Chen, L. (2008). Postconditioning attenuates cardiocyte
ultrastructure injury and apoptosis by blocking mitochondrial permeability
transition in rats. Acta Cardiol. 63, 377–387. doi: 10.2143/AC.63.3.1020316

Feng, J., Lucchinetti, E., Ahuja, P., Pasch, T., Perriard, J. C., and Zaugg, M.
(2005). Isoflurane postconditioning prevents opening of the mitochondrial
permeability transition pore through inhibition of glycogen synthase kinase 3β.
Anesthesiology 103, 987–995. doi: 10.1097/00000542-200511000-00013

Freixa, X., Bellera, N., Ortiz-Pérez, J. T., Jiménez, M., Paré, C., Bosch, X.,
et al. (2012). Ischaemic postconditioning revisited: lack of effects on infarct
size following primary percutaneous coronary intervention. Eur. Heart J. 33,
103–112. doi: 10.1093/eurheartj/ehr297

Garlid, K. D., and Halestrap, A. P. (2012). The mitochondrial KATP channel—Fact
or fiction? J. Mol. Cell. Cardiol. 52, 578–583. doi: 10.1016/j.yjmcc.2011.12.011

Gateau-Roesch, O., Argaud, L., and Ovize, M. (2006). Mitochondrial permeability
transition pore and postconditioning. Cardiovasc. Res. 70, 264–273.
doi: 10.1016/j.cardiores.2006.02.024

Giricz, Z., Varga, Z. V., Baranyai, T., Sipos, P., Pálóczi, K., Kittel, Á., et al.
(2014). Cardioprotection by remote ischemic preconditioning of the rat
heart is mediated by extracellular vesicles. J. Mol. Cell. Cardiol. 68, 75–78.
doi: 10.1016/j.yjmcc.2014.01.004

Gomez, L., Li, B., Mewton, N., Sanchez, I., Piot, C., Elbaz, M., et al. (2009).
Inhibition of mitochondrial permeability transition pore opening: translation
to patients. Cardiovasc. Res. 83, 226–233. doi: 10.1093/cvr/cvp063

Gomez, L., Paillard, M., Thibault, H., Derumeaux, G., and Ovize, M. (2008).
Inhibition of GSK3β by postconditioning is required to prevent opening of
the mitochondrial permeability transition pore during reperfusion. Circulation
117, 2761–2768. doi: 10.1161/CIRCULATIONAHA.107.755066

Gomez, L., Thibault, H., Gharib, A., Dumont, J. M., Vuagniaux, G., and
Scalfaro, P. (2007). Inhibition of mitochondrial permeability transition
improves functional recovery and reducesmortality following acutemyocardial
infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 293, H1654–H1661.
doi: 10.1152/ajpheart.01378.2006

Hahn, J. Y., Song, Y. B., Kim, E. K., Yu, C. W., Bae, J. W., Chung,
W. Y., et al. (2013). Ischemic postconditioning during primary
percutaneous coronary intervention: the effects of postconditioning
on myocardial reperfusion in patients with ST-segment elevation
myocardial infarction (POST) randomized trial. Circulation 128, 1889–1896.
doi: 10.1161/CIRCULATIONAHA.113.001690

Hausenloy, D. J., and Yellon, D.M. (2016). Ischaemic conditioning and reperfusion
injury. Nat. Rev. Cardiol. 13, 193–209. doi: 10.1038/nrcardio.2016.5

He, W., Zhang, F. J., Wang, S. P., Chen, G., Chen, C. C., and Yan, M.
(2008). Postconditioning of sevoflurane and propofol is associated with
mitochondrial permeability transition pore. J. Zhejiang Univ. Sci. B 9, 100–108.
doi: 10.1631/jzus.B0710586

He, Y., Zeng, Z. Y., Zhong, G. Q., Li, J. Y., Li, W. K., and Li, W.
(2010). Mitochondrial connexin43 and postconditioning protection in rabbits
underwent myocardial ischemia/reperfusion injury. Zhonghua Xin Xue Guan

Bing Za Zhi 38, 357–362. doi: 10.3760/cma.j.issn.0253-3758.2010.04.020
Heusch, G., Büchert, A., Feldhaus, S., and Schulz, R. (2006). No loss of

cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res.
Cardiol. 101, 354–356. doi: 10.1007/s00395-006-0589-0

Heusch, G., Musiolik, J., Gedik, N., and Skyschally, A. (2011). Mitochondrial
STAT3 activation and cardioprotection by ischemic postconditioning in pigs
with regional myocardial ischemia/reperfusion. Circ. Res. 109, 1302–1308.
doi: 10.1161/CIRCRESAHA.111.255604

Huhn, R., Heinen, A., Weber, N. C., Hollmann, M. W., Schlack, W., and Preckel,
B. (2008). Hyperglycaemia blocks sevoflurane-induced postconditioning in
the rat heart in vivo: cardioprotection can be restored by blocking the
mitochondrial permeability transition pore. Br. J. Anaesth. 100, 465–471.
doi: 10.1093/bja/aen022

Ibrahim, A. G., Cheng, K., and Marbán, E. (2014). Exosomes as critical agents
of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2, 606–619.
doi: 10.1016/j.stemcr.2014.04.006

Jin, C., Wu, J., Watanabe, M., Okada, T., and Iesaki, T. (2012). Mitochondrial K+

channels are involved in ischemic postconditioning in rat hearts. J. Physiol. Sci.
62, 325–332. doi: 10.1007/s12576-012-0206-y

Frontiers in Physiology | www.frontiersin.org 6 March 2018 | Volume 9 | Article 287

https://doi.org/10.1152/physrev.00001.2015
https://doi.org/10.3389/fphys.2017.00733
https://doi.org/10.1089/ars.2010.3309
https://doi.org/10.1016/j.bbamcr.2011.01.009
https://doi.org/10.1007/s00395-010-0124-1
https://doi.org/10.2174/138161281939131127115940
https://doi.org/10.1016/j.cardiores.2005.07.014
https://doi.org/10.1016/j.bbrc.2013.01.015
https://doi.org/10.1152/ajpcell.00270.2006
https://doi.org/10.1016/j.ejphar.2015.09.018
https://doi.org/10.1093/eurheartj/ehq112
https://doi.org/10.1124/jpet.109.152587
https://doi.org/10.1161/CIRCULATIONAHA.116.024590
https://doi.org/10.1089/ars.2010.3375
https://doi.org/10.1007/s11010-010-0450-5
https://doi.org/10.2217/fca.14.6
https://doi.org/10.1093/eurheartj/ehv463
https://doi.org/10.2143/AC.63.3.1020316
https://doi.org/10.1097/00000542-200511000-00013
https://doi.org/10.1093/eurheartj/ehr297
https://doi.org/10.1016/j.yjmcc.2011.12.011
https://doi.org/10.1016/j.cardiores.2006.02.024
https://doi.org/10.1016/j.yjmcc.2014.01.004
https://doi.org/10.1093/cvr/cvp063
https://doi.org/10.1161/CIRCULATIONAHA.107.755066
https://doi.org/10.1152/ajpheart.01378.2006
https://doi.org/10.1161/CIRCULATIONAHA.113.001690
https://doi.org/10.1038/nrcardio.2016.5
https://doi.org/10.1631/jzus.B0710586
https://doi.org/10.3760/cma.j.issn.0253-3758.2010.04.020
https://doi.org/10.1007/s00395-006-0589-0
https://doi.org/10.1161/CIRCRESAHA.111.255604
https://doi.org/10.1093/bja/aen022
https://doi.org/10.1016/j.stemcr.2014.04.006
https://doi.org/10.1007/s12576-012-0206-y
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pagliaro et al. Mitochondria and Postconditioning

Kim, J. H., Chun, K. J., Park, Y. H., Kim, J., Kim, J. S., Jang, Y. H., et al. (2011).
Morphine-induced postconditioning modulates mitochondrial permeability
transition pore opening via delta-1 opioid receptors activation in isolated rat
hearts. Korean J. Anesthesiol. 61, 69–74. doi: 10.4097/kjae.2011.61.1.69

Kondo-Nakamura, M., Shintani-Ishida, K., Uemura, K., and Yoshida, K. (2010).
Brief exposure to carbon monoxide preconditions cardiomyogenic cells against
apoptosis in ischemia-reperfusion. Biochem. Biophys. Res. Commun. 393,
449–454. doi: 10.1016/j.bbrc.2010.02.017

Kwong, J. Q., and Molkentin, J. D. (2015). Physiological and pathological roles
of the mitochondrial permeability transition pore in the heart. Cell Metab. 21,
206–214. doi: 10.1016/j.cmet.2014.12.001

Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., et al. (2010).
Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury.
Stem Cell Res. 4, 214–222. doi: 10.1016/j.scr.2009.12.003

Li, Y., Ge, X., and Liu, X. (2009). The cardioprotective effect of postconditioning
is mediated by ARC through inhibiting mitochondrial apoptotic pathway.
Apoptosis 14, 164–172. doi: 10.1007/s10495-008-0296-4

Lim, S. Y., Davidson, S. M., Hausenloy, D. J., and Yellon, D. M. (2007).
Preconditioning and postconditioning: the essential role of the
mitochondrial permeability transition pore. Cardiovasc. Res. 75, 530–535.
doi: 10.1016/j.cardiores.2007.04.022

Lønborg, J., Kelbaek, H., Vejlstrup, N., Jørgensen, E., Helqvist, S., Saunamäki,
K., et al. (2010). Cardioprotective effects of ischemic postconditioning
in patients treated with primary percutaneous coronary intervention,
evaluated by magnetic resonance. Circ. Cardiovasc. Interv. 3, 34–41.
doi: 10.1161/CIRCINTERVENTIONS.109.905521

Lønborg, J. T., (2015). Targeting reperfusion injury in the era of primary
percutaneous coronary intervention: hope or hype? Heart 101, 1612–1618.
doi: 10.1136/heartjnl-2015-307804

Mancardi, D., Penna, C., Merlino, A., Del Soldato, P., Wink, D. A., and
Pagliaro, P. (2009). Physiological and pharmacological features of the novel
gasotransmitter: hydrogen sulfide. Biochim. Biophys. Acta 1787, 864–872.
doi: 10.1016/j.bbabio.2009.03.005

Murphy, E., and Steenbergen, C. (2011). What makes the mitochondria a killer?
Can we condition them to be less destructive? Biochim. Biophys. Acta 1813,
1302–1308. doi: 10.1016/j.bbamcr.2010.09.003

Mykytenko, J., Reeves, J. G., Kin, H., Wang, N. P., Zatta, A. J., Jiang, R., et al.
(2008). Persistent beneficial effect of postconditioning against infarct size: role
of mitochondrial KATP channels during reperfusion. Basic Res. Cardiol. 103,
472–484. doi: 10.1007/s00395-008-0731-2

Obal, D., Dettwiler, S., Favoccia, C., Scharbatke, H., Preckel, B., and Schlack, W.
(2005). The influence of mitochondrial KATP-channels in the cardioprotection
of preconditioning and postconditioning by sevoflurane in the rat in vivo.
Anesth. Analg. 101, 1252–1260. doi: 10.1213/01.ANE.0000181336.96511.32

Ong, S. B., and Hausenloy, D. J. (2017). Mitochondrial dynamics as a therapeutic
target for treating cardiac diseases. Handb. Exp. Pharmacol. 240, 251–279
doi: 10.1007/164_2016_7

Pagliaro, P., and Penna, C. (2015). Redox signalling and cardioprotection:
translatability and mechanism. Br. J. Pharmacol. 172, 1974–1995.
doi: 10.1111/bph.12975

Pagliaro, P., Rastaldo, R., Penna, C., Mancardi, D., Cappello, S., and Losano, G.
(2004). Nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway
is involved in ischemic postconditioning in the isolated rat heart. Circulation
110:136.

Palmer, J. W., Tandler, B., and Hoppel, C. L. (1977). Biochemical properties
of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac
muscle. J. Biol. Chem. 252, 8731–8739.

Penna, C., Granata, R., Tocchetti, C. G., Gallo, M. P., Alloatti, G., and Pagliaro, P.
(2015). Endogenous cardioprotective agents: role in pre and postconditioning.
Curr. Drug Targets 16, 843–867. doi: 10.2174/1389450116666150309115536

Penna, C., Mancardi, D., Rastaldo, R., Losano, G., and Pagliaro, P. (2007).
Intermittent activation of bradykinin B2 receptors and mitochondrial KATP
channels trigger cardiac postconditioning through redox signaling. Cardiovasc.
Res. 75, 168–177. doi: 10.1016/j.cardiores.2007.03.001

Penna, C., Perrelli, M. G., and Pagliaro, P. (2013a). Mitochondrial pathways,
permeability transition pore, and redox signaling in cardioprotection:
therapeutic implications. Antioxid. Redox Signal. 18, 556–599.
doi: 10.1089/ars.2011.4459

Penna, C., Perrelli, M. G., Raimondo, S., Tullio, F., Merlino, A., Moro, F.,
et al. (2009). Postconditioning induces an anti-apoptotic effect and preserves
mitochondrial integrity in isolated rat hearts. Biochim. Biophys. Acta 1787,
794–801. doi: 10.1016/j.bbabio.2009.03.013

Penna, C., Perrelli, M. G., Tullio, F., Angotti, C., Camporeale, A., Poli,
V., et al. (2013b). Diazoxide postconditioning induces mitochondrial
protein S-Nitrosylation and a redox-sensitive mitochondrial
phosphorylation/translocation of RISK elements: No role for SAFE. Basic
Res. Cardiol. 108, 371. doi: 10.1007/s00395-013-0371-z

Penna, C., Rastaldo, R., Mancardi, D., Raimondo, S., Cappello, S., and Gattullo,
D. (2006). Post-conditioning induced cardioprotection requires signaling
through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+

channel and protein kinase C activation. Basic Res. Cardiol. 101, 180–189.
doi: 10.1007/s00395-006-0584-5

Piantadosi, C. A. (2012). Regulation of mitochondrial processes by
protein S-nitrosylation. Biochim. Biophys. Acta 1820, 712–721.
doi: 10.1016/j.bbagen.2011.03.008

Pravdic, D., Mio, Y., Sedlic, F., Pratt, P. F., Warltier, D. C., Bosnjak, Z. J., et al.
(2010). Isoflurane protects cardiomyocytes and mitochondria by immediate
and cytosol-independent action at reperfusion. Br. J. Pharmacol. 160, 220–232.
doi: 10.1111/j.1476-5381.2010.00698.x

Queiroga, C. S., Almeida, A. S., Martel, C., Brenner, C., Alves, P. M., and Vieira,
H. L. (2010). Glutathionylation of adenine nucleotide translocase induced by
carbon monoxide prevents mitochondrial membrane permeabilization and
apoptosis. J. Biol. Chem. 285, 17077–17088. doi: 10.1074/jbc.M109.065052

Quinlan, C. L., Costa, A. D., Costa, C. L., Pierre, S. V., Dos Santos, P., and Garlid,
K. D. (2008). Conditioning the heart induces formation of signalosomes that
interact with mitochondria to open mitoKATP channels. Am. J. Physiol. Hear

Circ. Physiol. 295, H953–H961. doi: 10.1152/ajpheart.00520.2008
Serviddio, G., Di Venosa, N., Federici, A., D’Agostino, D., Rollo, T.,

and Prigigallo, F. (2005). Brief hypoxia before normoxic reperfusion
(postconditioning) protects the heart against ischemia-reperfusion injury by
preventing mitochondria peroxyde production and glutathione depletion.
FASEB J. 19, 354–361. doi: 10.1096/fj.04-2338com

Sluijter, J. P. G., Davidson, S. M., Boulanger, C. M., Buzás, E. I., de Kleijn, D. P. V.,
Engel, F. B., et al. (2018). Extracellular vesicles in diagnostics and therapy of the
ischaemic heart: position paper from the working group on cellular biology of
the heart of the European Society of Cardiology. Cardiovasc. Res. 114, 19–34.
doi: 10.1093/cvr/cvx211

Sörensson, P., Saleh, N., Bouvier, F., Böhm, F., Settergren, M., Caidahl, K., et al.
(2010). Effect of postconditioning on infarct size in patients with ST elevation
myocardial infarction. Heart 96, 1710–1715. doi: 10.1136/hrt.2010.199430

Staat, P., Rioufol, G., Piot, C., Cottin, Y., Cung, T. T., L’Huillier, I., et al.
(2005). Postconditioning the human heart. Circulation 112, 2143–2148.
doi: 10.1161/CIRCULATIONAHA.105.558122

Sun, H., Guo, T., Liu, L., Yu, Z., Xu, W., Chen, W., et al. (2010). Ischemic
postconditioning inhibits apoptosis after acute myocardial infarction in pigs.
Heart Surg. Forum 13, E305–E310. doi: 10.1532/HSF98.20101013

Tanno, M., Kuno, A., Ishikawa, S., Miki, T., Kouzu, H., Yano, T., et al.
(2014). Translocation of Glycogen Synthase Kinase-3β (GSK-3β), a trigger
of permeability transition, is kinase activity-dependent and mediated by
interaction with Voltage-dependent Anion Channel 2 (VDAC2). J. Biol. Chem.

289, 29285–29296. doi: 10.1074/jbc.M114.563924
Thibault, H., Piot, C., and Ovize, M. (2007). Postconditioning in man. Heart Fail.

Rev. 12, 245–248. doi: 10.1007/s10741-007-9033-2
Tsang, A., Hausenloy, D. J., Mocanu, M. M., and Yellon, D. M. (2004).

Postconditioning: a form of “modified reperfusion” protects the myocardium
by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ. Res. 95,
230–232. doi: 10.1161/01.RES.0000138303.76488.fe

Tu, R. H., Li, Q. J., Huang, Z., He, Y., Meng, J. J., Zheng, H. L., et al. (2017).
Novel functional role of heat shock protein 90 in mitochondrial connexin
43-mediated hypoxic postconditioning. Cell. Physiol. Biochem. 44, 982–997.
doi: 10.1159/000485399

Wang, C., Neff, D. A., Krolikowski, J. G., Weihrauch, D., Bienengraeber,
M., Warltier, D. C., et al. (2006). The influence of B-cell lymphoma 2
protein, an antiapoptotic regulator of mitochondrial permeability transition,
on isoflurane-induced and ischemic postconditioning in rabbits.Anesth. Analg.
102, 1355–1360. doi: 10.1213/01.ane.0000202463.28618.64

Frontiers in Physiology | www.frontiersin.org 7 March 2018 | Volume 9 | Article 287

https://doi.org/10.4097/kjae.2011.61.1.69
https://doi.org/10.1016/j.bbrc.2010.02.017
https://doi.org/10.1016/j.cmet.2014.12.001
https://doi.org/10.1016/j.scr.2009.12.003
https://doi.org/10.1007/s10495-008-0296-4
https://doi.org/10.1016/j.cardiores.2007.04.022
https://doi.org/10.1161/CIRCINTERVENTIONS.109.905521
https://doi.org/10.1136/heartjnl-2015-307804
https://doi.org/10.1016/j.bbabio.2009.03.005
https://doi.org/10.1016/j.bbamcr.2010.09.003
https://doi.org/10.1007/s00395-008-0731-2
https://doi.org/10.1213/01.ANE.0000181336.96511.32
https://doi.org/10.1007/164_2016_7
https://doi.org/10.1111/bph.12975
https://doi.org/10.2174/1389450116666150309115536
https://doi.org/10.1016/j.cardiores.2007.03.001
https://doi.org/10.1089/ars.2011.4459
https://doi.org/10.1016/j.bbabio.2009.03.013
https://doi.org/10.1007/s00395-013-0371-z
https://doi.org/10.1007/s00395-006-0584-5
https://doi.org/10.1016/j.bbagen.2011.03.008
https://doi.org/10.1111/j.1476-5381.2010.00698.x
https://doi.org/10.1074/jbc.M109.065052
https://doi.org/10.1152/ajpheart.00520.2008
https://doi.org/10.1096/fj.04-2338com
https://doi.org/10.1093/cvr/cvx211
https://doi.org/10.1136/hrt.2010.199430
https://doi.org/10.1161/CIRCULATIONAHA.105.558122
https://doi.org/10.1532/HSF98.20101013
https://doi.org/10.1074/jbc.M114.563924
https://doi.org/10.1007/s10741-007-9033-2
https://doi.org/10.1161/01.RES.0000138303.76488.fe
https://doi.org/10.1159/000485399
https://doi.org/10.1213/01.ane.0000202463.28618.64
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pagliaro et al. Mitochondria and Postconditioning

Xue, F., Yang, X., Zhang, B., Zhao, C., Song, J., Jiang, T., et al. (2010).
Postconditioning the human heart in percutaneous coronary intervention.
Clin. Cardiol. 33, 439–444. doi: 10.1002/clc.20796

Yang, Z., Sun, W., and Hu, K. (2012). Molecular mechanism underlying
adenosine receptor-mediated mitochondrial targeting of protein kinase
C. Biochim. Biophys. Acta 1823, 950–958. doi: 10.1016/j.bbamcr.2011.
12.012

Yao, Y., Li, L., Li, L., Gao, C., and Shi, C. (2009). Sevoflurane postconditioning
protects chronically-infarcted rat hearts against ischemia-reperfusion injury by
activation of pro-survival kinases and inhibition of mitochondrial permeability
transition pore opening upon reperfusion. Biol. Pharm. Bull. 32, 1854–1861.
doi: 10.1248/bpb.32.1854

Yao, Y. T., Li, L. H., Chen, L., Wang, W. P., Li, L. B., and Gao, C. Q. (2010).
Sevoflurane postconditioning protects isolated rat hearts against ischemia-
reperfusion injury: the role of radical oxygen species, extracellular signal-
related kinases 1/2 and mitochondrial permeability transition pore. Mol. Biol.

Rep. 37, 2439–2446. doi: 10.1007/s11033-009-9755-4
Yellon, D. M., and Davidson, S. M. (2014). Exosomes: nanoparticles

involved in cardioprotection? Circ. Res. 114, 325–332. doi: 10.1161/
CIRCRESAHA.113.300636

Yu, J., Maimaitili, Y., Xie, P., Wu, J. J., Wang, J., Yang, Y. N., et al.
(2017). High glucose concentration abrogatessevoflurane post-conditioning

cardioprotection by advancing mitochondrial fission but dynamin-related
protein 1 inhibitor restores these effects. Acta Physiol. 220, 83–98.
doi: 10.1111/apha.12812

Yu, T. N., Hong, H., Yang, J. Q., Gao, Q., and Xia, Q. (2011). Role of mitochondrial
calcium uniporter in cardioprotection induced by ischemic postconditioning
in isolated rat heart. Zhejiang Da Xue Xue Bao Yi Xue Ban 40, 304–308.

Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R.
A., et al. (2003). Inhibition of myocardial injury by ischemic postconditioning
during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol.

Hear Circ. Physiol. 285, H579–H588. doi: 10.1152/ajpheart.01064.2002

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Pagliaro, Femminò, Popara and Penna. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 8 March 2018 | Volume 9 | Article 287

https://doi.org/10.1002/clc.20796
https://doi.org/10.1016/j.bbamcr.2011.12.012
https://doi.org/10.1248/bpb.32.1854
https://doi.org/10.1007/s11033-009-9755-4
https://doi.org/10.1161/CIRCRESAHA.113.300636
https://doi.org/10.1111/apha.12812
https://doi.org/10.1152/ajpheart.01064.2002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Mitochondria in Cardiac Postconditioning
	Introduction
	Mitochondria and Heart Postconditioning
	Mitochondria and ROS
	Mitochondria and Gaseous Cardioprotective Substances
	Mitochondria and Anesthetics
	Mitochondrial Postconditioning Signaling and Limitation of Cell Death
	Translation Issues
	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


