
Logical Methods in Computer Science
Vol. 14(1:18)2018, pp. 1–37
https://lmcs.episciences.org/

Submitted Apr. 29, 2016
Published Feb. 27, 2018

MIXIN COMPOSITION SYNTHESIS BASED ON INTERSECTION

TYPES

JAN BESSAI a, TZU-CHUN CHEN b, ANDREJ DUDENHEFNER a, BORIS DÜDDER a,
UGO DE’LIGUORO c, AND JAKOB REHOF a

a Technical University of Dortmund, Dortmund, Germany
e-mail address: jan.bessai@tu-dortmund.de
e-mail address: andrej.dudenhefner@tu-dortmund.de
e-mail address: boris.duedder@tu-dortmund.de
e-mail address: jakob.rehof@tu-dortmund.de

b Technical University of Darmstadt, Darmstadt, Germany
e-mail address: tcchen@rbg.informatik.tu-darmstadt.de

c University of Torino, Torino, Italy
e-mail address: ugo.deliguoro@unito.it

Abstract. We present a method for synthesizing compositions of mixins using type
inhabitation in intersection types. First, recursively defined classes and mixins, which are
functions over classes, are expressed as terms in a lambda calculus with records. Intersection
types with records and record-merge are used to assign meaningful types to these terms
without resorting to recursive types. Second, typed terms are translated to a repository
of typed combinators. We show a relation between record types with record-merge and
intersection types with constructors. This relation is used to prove soundness and partial
completeness of the translation with respect to mixin composition synthesis. Furthermore,
we demonstrate how a translated repository and goal type can be used as input to an existing
framework for composition synthesis in bounded combinatory logic via type inhabitation.
The computed result is a class typed by the goal type and generated by a mixin composition
applied to an existing class.

Key words and phrases: Record Calculus, Combinatory Logic, Type Inhabitation, Mixin, Intersection
Type.

This article is based on the submission to the 13th International Conference on Typed Lambda Calculi
and Applications, TLCA 2015.

This work was partially supported by EU COST Action IC1201: BETTY and MIUR PRIN CINA Prot.
2010LHT4KM, San Paolo Project SALT. Tzu-chun Chen is also partially supported by the ERC grant
FP7-617805 LiVeSoft – Lightweight Verification of Software.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(1:18)2018
© Bessai, Chen, Dudenhefner, Düdder, de’Liguoro, and Rehof
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302255916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://lmcs.episciences.org/
http://creativecommons.org/about/licenses


2 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

1. Introduction

Starting with Cardelli’s pioneering work [Car84], various typed λ-calculi extended with
records have been thoroughly studied to model sophisticated features of object-oriented pro-
gramming languages, like recursive objects and classes, object extension, method overriding
and inheritance (see e.g. [AC96, Bru02, KL05]).

Here, we focus on the synthesis of mixin application chains. In the object-oriented
paradigm, mixins [Moo86, Can79] have been introduced as an alternative construct for code
reuse that improves over the limitations of multiple inheritance, e.g. connecting incompatible
base classes and semantic ambiguities caused by the diamond problem [HTT87]. Together
with abstract classes and traits, mixins (functions over classes) can be considered as an
advanced construct to obtain flexible implementations of module libraries and to enhance
code reusability; many popular programming languages miss native support for mixins, but
they are an object of intensive study and research (e.g. [BPS99, OZ05]). In this setting we
aim at synthesizing classes from a library of mixins. Our particular modeling approach is
inspired by modern language features (e.g. ECMAScript “bind”) to preserve contexts in
order to prevent programming errors [Ecm11].

We formalize synthesis of classes from a library of mixins as an instance of the relativized
type inhabitation problem in combinatory logic. Relativized type inhabitation is the following
decision problem: given a combinatory type context ∆ and a type τ does there exist an
applicative term e such that e has type τ under the type assumptions in ∆? We implicitly
include the problem of constructing such a term as the synthesized result.

Although relativized type inhabitation is undecidable even in simple types, it is decidable
in k-bounded combinatory logic BCLk(→,∩) [DMRU12]. BCLk(→,∩) is the combinatory
logic typed with arrow and intersection types, where k bounds the depth of types wrt. →
used to instantiate schematic combinator types. Hence, an algorithm for semi-deciding type
inhabitation for BCL(→,∩) = ⋃k BCLk(→,∩) can be obtained by iterative deepening over k
and solving the corresponding decision problem in BCLk(→,∩) [DMRU12]. In the present
paper, we enable combinatory synthesis of classes via intersection typed mixin combinators.
Intersection types [BCDC83] play an important rôle in combinatory synthesis, because they
allow for semantic specification of components and synthesis goals [DMRU12, BDDM14].
They also allow a natural way to type records.

Now, looking at {C1 ∶ σ1, . . . ,Cp ∶ σp,M1 ∶ τ1, . . . ,Mq ∶ τq} ⊆ ∆ as the abstract specifica-
tion of a library including classes Ci and mixins Mj with interfaces σi and τj respectively,
and given a type τ specifying a desired class, we may identify the class synthesis problem
with the relativized type inhabitation problem of constructing a term e, i.e. an applicative
composition of classes and mixins, typed by τ in ∆. To make this feasible, we have to
bridge the gap between the expressivity of highly sophisticated type systems used for typing
classes and mixins, for instance F -bounded polymorphism used in [CCH+89, CHC90], and
the system of intersection types from [BCDC83]. In doing so, we move from the system
originally presented in [Lig01], consisting of a type assignment system of intersection and
record types, to a λ-calculus which we enrich here with record merge operation (called
“with” in [CHC90]), to allow for expressive mixin combinators. The type system is modified
by reconstructing record types ⟨li ∶ σi ∣ i ∈ I⟩ as intersection of unary record types ⟨li ∶ σi⟩,
and considering a subtype relation extending the one in [BCDC83]. This is however not
enough for typing record merge, for which we consider a type-merge operator +. The
problem of typing extensible records and merge, faced for the first time in [Wan91, Rém92],



MIXIN COMPOSITION SYNTHESIS 3

is notoriously hard; to circumvent difficulties the theory of record subtyping in [CHC90]
(where a similar type-merge operator is considered) allows just for “exact” record typing,
which involves subtyping in depth, but not in width. Such a restriction, that has limited
effects wrt. a rich and expressive type system like F -bounded polymorphism, would be too
severe in our setting. Therefore, we undertake a study of the type algebra of record types
with intersection and type-merge, leading to a type assignment system where exact record
typing is required only for the right-hand side operand of the term merge operator, which is
enough to ensure soundness of typing.

The next challenge is to show that in our system we can type classes and mixins in a
meaningful way. Classes are essentially recursive records. Mixins are made of a combination
of fixed point combinators and record merge. Such combinators, which usually require
recursive types, can be typed in our system by means of an iterative method exploiting the
ability of intersection types to represent approximations of the potentially infinite unfolding
of recursive definitions.

The final problem we face is the encoding of intersection types with record types and
type-merge into the language of BCLk(→,∩). For this purpose, we consider a conservative
extension of bounded combinatory logic, called BCLk(TC), where we allow unary type
constructors that are monotonic and distribute over intersection. We show that the (semi)
algorithm solving inhabitation for BCLk(→,∩) can be adapted to BCLk(TC), by proving that
the key properties necessary to solve the inhabitation problem in BCLk(→,∩) are preserved
in BCLk(TC) and showing how the type-merge operator can be simulated in BCLk(TC).
In fact, type-merge is not monotonic in its second argument, due to the lack of negative
information caused by the combination of + and ∩. Our work culminates in two theorems
that ensure soundness and completeness of the so obtained method wrt. synthesis of classes
by mixin application.

1.1. Contributions. The contributions of this article can be summarized as follows:

● A type system with intersection types and records (T⟨⟩) for a λ-calculus with records (ΛR)
is designed and its key properties are proven.

● T⟨⟩ is used as a typed calculus for classes and mixins.
● Bounded combinatory logic and a decision algorithm for relativized type inhabitation are

extended with constructors (BCLk(TC)) retaining complexity results.
● A sound and (partially) complete encoding of mixins and classes in T⟨⟩ as combinators in

BCLk(TC) for synthesis is proven and exemplified.
● Negative information, i.e. the information on which labels are absent, is encoded with

polynomial overhead.

1.2. Organization. The article is organized as follows: Section 2 discusses the development
of traits and mixins as well as program synthesis. In Section 3, intersection and record types
for a λ-calculus with records are introduced as a domain specific language for representing
mixins and classes. Section 4 adapts bounded combinatory logic to include constructors
(BCLk(TC)) as a foundation for mixin synthesis. Section 5 presents the encoding of record
types in BCLk(TC), mixin composition synthesis by type inhabitation and provides detailed
examples including the use of semantic types. A conclusion in Section 6 hints at future work.



4 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

2. Related Work

This work evolves from the contributions [BDDM14, LC14, BDD+15a] to the workshop
ITRS’14 and the original submission to TLCA15 [BDD+15b]. It combines two research areas,
type systems for traits and mixins and program synthesis using type inhabitation.

2.1. Type Systems for Traits and Mixins. The concept of mixins goes back to research
on Lisp dialects in the late 70’s and early 80’s [Can79, WM80, Moo86]. The motivation was
to extend code organization in object-oriented languages, which was traditionally defined by
hierarchical inheritance. To this end Cannon introduced base flavors serving as a starting
point later to be extended by mixin flavors [Can79]. Mixin flavors implement particular
features and can only be instantiated by application to existing flavors. They can define
requirements to be met prior to application. If they use internal state, this state cannot be
shared with other flavors.

Type theories for objects and classes were developed shortly after. Languages like
Simula [DN66] and Smalltalk-80 [DS84] are object-oriented typed languages, but their type
system is geared toward memory management rather than safe reuse. Various techniques
have been deployed to enable type safe reuse of implementations. Cardelli’s seminal paper
“A Semantics of Multiple Inheritance” [Car84] filled this gap. Type inference for products
with subtyping was shown to be decidable in [Mit84]. Cardelli improved upon the cum-
bersome encoding of entities using records with named projections instead of products.
Subtyping addresses permutation of record entries as well as multiple inheritance. It ensures
compatibility of horizontally extended and vertically specialized records.

A series of later developments dealt with issues introduced by recursion and obtained
type inference. To this end Wand designed an ML-inspired system [Wan87] that later inspired
the development of System F≤ [CCH+89]. A fine grained analysis of the connection between
inheritance and subtyping was now possible [CHC90] and came to the surprising negative
conclusion, that “inheritance is not subtyping”. This analysis by Cook, Hill and Canning
is also the first to discuss the difference between early and late binding of the recursion
inherently present in objects: delegating recursion to methods using a self parameter (late
binding) as done previously by Mitchell [Mit90] unifies classes and objects, whereas early
fixpoint computation at the class level is open for later modifications by inheritance and
mixins. Subsequently, Bracha and Cook reinterpreted mixins in the light of classes and
inheritance, where they can act as abstract subclasses [BC90]. Their main contribution was
to shed light on the abstract operation of mixin application in contrast to prior work, which
focused on implementation details like class hierarchy linearization. This operation turns
out to be powerful enough to encode (multiple) inheritance. From there on, development
took two main routes. One direction was the development of advanced object calculi, which
is covered in great detail in [AC96]. The other direction was to model the type systems of
mainstream programming languages. Featherweight Java by Igarashi, Pierce and Wadler is a
prominent example [IPW01] for the latter direction. It inspired a mixin based treatment of
virtual classes in [EOC06]. A parallel development focused on traits, which are a restriction
of mixins to subtype compatible overwriting [LS08, LSZ12]. Bono et al. suggested a formal
type system for a calculus with traits [BDG07, BDG08]. The most recent studies follow this
trend to bring together the two directions. Java has been partially formalized by Rowe and
van Bakel [BR13, RB14], and completely in K-Java [BR15]. Recently, the Scala compiler



MIXIN COMPOSITION SYNTHESIS 5

is being reworked to match DOT [AMO12, ARO14, AGO+16], a formal dependently typed
core specification.

2.2. Synthesis by Type Inhabitation. Synthesis is by now a vast area of computer
science, and we can only attempt here to place our approach broadly in relation to major
points of comparison.

The synthesis problem can be traced back to Alonzo Church [Chu57, Tho09]. It was
first considered for the problem of automatically constructing a finite-state procedure
implementing a given input/output relation over infinite bitstreams specified as a logical
formula. The automata-theoretic approach was notably advanced by Pnueli and Rosner in
the context of linear temporal logic (LTL) [PR89] and by many others since then. Another
major branch of work in synthesis is deductive synthesis, as studied by Manna and Waldinger,
who rely on proof systems for program properties [MW80], with many more works following
in this tradition.

The presented approach to the synthesis problem is proof-theoretic and can best be
characterized more specifically as type-based and component-oriented. This approach was
initiated by Rehof et al. [RU11, DMRU12, Reh13] around the idea of using the inhabitation
problem in bounded combinatory logics with intersection types [BCDC83] as a foundation for
synthesis. In contrast to standard combinatory logic [HS08, DCH92] invented by Schönfinkel
in 1924 [Sch24], k-bounded combinatory logic BCLk(→,∩) [DMRU12] introduces a bound
k on the level of types, i.e. depth wrt. →, used to instantiate schematic combinator types.
Additionally, rather than considering a fixed base of combinators (for example, the base
S,K), the inhabitation problem is relativized to an arbitrary set ∆ of typed combinators,
given as part of the input to the relativized inhabitation problem:

Given ∆ and τ , is there an applicative term e such that ∆ ⊢BCLk(→,∩) e ∶ τ?

In many instances the inhabitation problem with a fixed-base is much easier than in the
relativized case, where the base is part of the input. For example, Pspace-completeness
of inhabitation in the simple-typed λ-calculus [Sta79] implies Pspace-completeness of
the equivalent simple-typed SK-calculus. The related problem of term enumeration for
simple-typed λ-calculus has been studied by Ben-Yelles [BY79] and, more recently, by
Hindley [Hin08].

Linial and Post [LP49] initiated the study of decision problems for arbitrary propositional
axiom systems (partial propositional calculi, abbreviated PPC), in reaction to a question
posed by Tarski in 1946. In the Linial-Post theorem they show existence of a PPC with an
unsolvable decision problem. Later, Singletary showed that every recursively enumerable
many-one degree can be represented by the implicational fragment of PPC [Sin74]. This
implies that the relativized inhabitation problem is undecidable for combinatory logic with
schematism even in simple types. Recent developments [Bok15] show that it is undecidable,
whether a given finite set of propositional formulas constitutes an adequate axiom system
for a fixed intuitionistic implicational propositional calculus.

In contrast, the main result of [DMRU12] is that the relativized inhabitation problems
for BCLk(→,∩) with intersection types form an infinite hierarchy, being (k + 2)-Exptime-
complete for each fixed bound k.

In [Reh13], unbounded relativized inhabitation is seen, already at the level of simple
types, to constitute a Turing-complete logic programming language for program composition,



6 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

in a way that is related to work on proof-theoretic generalizations of logic programming
languages [MNPS91].

Perhaps surprisingly, component-oriented synthesis is a relatively recent development.
The approach of combinatory logic synthesis is basically motivated by the idea that type
structure provides a natural and code-oriented vehicle for synthesis specifications together
with the idea that combinatory logic provides a natural type-theoretic model of components,
component interfaces, and component composition. Vardi and Lustig initiated the component-
oriented approach within the automata-theoretic tradition, explicitly developing the idea
of synthesizing systems from preexisting components [LV09] with the idea of leveraging
design intelligence and efficiency from components as building blocks for synthesis. A recent
Dagstuhl meeting explored these ideas of design and synthesis from components across
different communities [RV14].

Realizing the component-based idea within type-based synthesis requires ways to deal
with semantic specification as well as the combinatorial explosion of search spaces inherent
in synthesis problems. Rehof et al. [RU12] introduced the idea of using intersection types
[BCDC83] to type-based synthesis as a means of addressing the problem of search control
and semantic specification at the type level. We refer to types enriched with semantic
specifications through intersection types as semantic types. In addition to semantic types,
Rehof et al. have introduced the idea of staging into synthesis via modal types [DMR14].
Simple types were used by Steffen et al. [SMvdB97] in the context of temporal logic synthesis
to semantically enrich temporal specifications with taxonomic information.

The notion of composition synthesis using semantic types is related to adaptation
synthesis via proof counting [HHSW02, WY05]. In particular, in [HHSW02] typed predicate
logic is used for semantic specification at the interface level. We follow this idea, however
the type system, underlying logic and algorithmic methods are different.

Refinement types [FP91] externally relate specifications to implementation types. The
refinement type scheme structurally constraints how refinement types are formed: this
prevents semantic specifications like (Int→ Int)∩ Injective, which are possible in our system.
Recently, refinement types have been used for example guided synthesis in [FOWZ16]. Types
have also been used in order to synthesize code completions [GKKP13]. Intersection types
are not only useful for semantic specification, but also to encode objects. To this end they
can be combined with records as proposed in [Pie91]. Their relation to object-oriented
inheritance has been studied in [CP96] and serves as an inspiration for our work.

Combinatory logic synthesis has been implemented in a framework, Combinatory Logic
Synthesizer (CL)S, which is still being further developed [BDD+14].

3. Intersection Types for Mixins and Classes

3.1. Intersection and record types. We consider a type-free λ-calculus of extensible
records, equipped with a merge operator. The term syntax is defined by the following
grammar:

ΛR ∋M,N,Mi ∶∶= x ∣ (λx.M) ∣ (MN) ∣ (M.l) ∣ R ∣ (M ⊕R) terms

R ∶∶= ⟨li =Mi ∣ i ∈ I⟩ records

where x ∈ Var and l ∈ Label range over denumerably many term variables and labels
respectively, and the sets of indexes I are finite. Free and bound variables are defined



MIXIN COMPOSITION SYNTHESIS 7

as for the ordinary λ-calculus, and we name Λ0
R the set of all closed terms in ΛR; terms

are identified up to renaming of bound variables and M{N/x} denotes capture avoiding
substitution of N for x in M . We adopt notational conventions from [Bar84]; in particular,
application associates to the left and external parentheses are omitted when unnecessary;
also the dot notation for record selection takes precedence over λ, so that λx. M.l reads
as λx.(M.l). If not stated otherwise ⊕ also associates to the left, and we avoid external
parentheses when unnecessary.

Terms R ≡ ⟨li =Mi ∣ i ∈ I⟩ (writing ≡ for syntactic identity) represent records, with fields
li and Mi as the respective values; we set lbl(⟨li =Mi ∣ i ∈ I⟩) = {li ∣ i ∈ I}. For records we
adopt the usual notation to combine sets, i.e. {li, lj ∣ i ∈ I, j ∈ J} = {li ∣ i ∈ I ∪ J}. The term
M.l is field selection and M ⊕R is record merge. In particular, if R1 and R2 are records then
R1 ⊕ R2 is the record having as fields the union of the fields of R1 and R2 and as values
those of the original records but in case of ambiguity, where the values in R2 prevail. The
syntactic constraint that R is a record in M ⊕R is justified after Definition 3.11. Note that
a variable x is not a record, hence λx.x ⊕ R is well-formed for any record R while λx.R ⊕ x
is not.

The actual meaning of these operations is formalized by the following reduction relation:

Definition 3.1 (ΛR reduction). Reduction Ð→⊆ Λ2
R is the least compatible relation such

that:

(β) (λx.M)N Ð→ M{N/x}
(sel) ⟨li =Mi ∣ i ∈ I⟩.lj Ð→ Mj if j ∈ I
(⊕) ⟨li =Mi ∣ i ∈ I⟩ ⊕ ⟨lj = Nj ∣ j ∈ J⟩ Ð→ ⟨li =Mi, lj = Nj ∣ i ∈ I ∖ J, j ∈ J⟩

Record merge subsumes field update as considered in [Lig01]: (M.l ∶= N) is exactly
(M ⊕ ⟨l = N⟩), but merge is not uniformly definable in terms of update as long as labels
are not expressions in the calculus, therefore we take merge as primitive operator. The
reduction relation Ð→ is Church-Rosser namely its transitive closure Ð→∗ is confluent.

Theorem 3.2 (Church-Rosser property). For all M if M Ð→∗ M1 and M Ð→∗ M2 then
there is M3 such that M1 Ð→∗ M3 and M2 Ð→∗ M3.

Proof. By adapting Tait and Martin-Löf’s proof of Church-Rosser property of β-reduction
of λ-calculus, which is based on the so called 1-reduction ↠1. To the clauses for ordinary
λ-calculus (see e.g. [Bar84] Definition 3.2.3) we add:

i) ∀i ∈ I. Mi↠1 M
′
i ⇒ ⟨li =Mi ∣ i ∈ I⟩↠1 ⟨li =M ′

i ∣ i ∈ I⟩
ii) M ↠1 M

′ ⇒M.l↠1 M
′.l

iii) M ↠1 M
′ & R↠1 R

′ ⇒M ⊕ R↠1 M
′ ⊕ R′

iv) ∀i ∈ I. Mi↠1 M
′
i & j ∈ I ⇒ ⟨li =Mi ∣ i ∈ I⟩.lj ↠1 M

′
j

v) ∀i ∈ I. Mi↠1 M
′
i & ∀j ∈ J. Nj ↠1 N

′
j ⇒

⟨li =Mi ∣ i ∈ I⟩ ⊕ ⟨lj = Nj ∣ j ∈ J⟩↠1 ⟨li =M ′
i , lj = N ′

j ∣ i ∈ I ∖ J, j ∈ J⟩
Now it is easy to check that ↠∗

1 = Ð→∗ so that by Lemma 3.2.2 of [Bar84] it suffices to show
that ↠1 satisfies the diamond property:

M ↠1 M1 & M ↠1 M2 ⇒ ∃M3. M1↠1 M3 & M2↠1 M3.

The latter is easily established by induction over the definition of M ↠1 M1 and by cases of
M ↠1 M2.



8 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

In the spirit of Curry’s assignment of polymorphic types and of intersection types in
particular, types are introduced as a syntactical tool to capture semantic properties of terms,
rather than as constraints to term formation.

Definition 3.3 (Intersection types for ΛR).

T ∋ σ,σi ∶∶= a ∣ ω ∣ σ1 → σ2 ∣ σ1 ∩ σ2 ∣ ρ types

T⟨⟩ ∋ ρ, ρi ∶∶= ⟨⟩ ∣ ⟨l ∶ σ⟩ ∣ ρ1 + ρ2 ∣ ρ1 ∩ ρ2 record types

where a ranges over type constants and l ranges over the denumerable set Label.

We use σ, τ , possibly with sub and superscripts, for types in T and ρ, ρi, possibly with
superscripts, for record types in T⟨⟩ only. Note that → associates to the right, and ∩ binds
stronger than →. As with intersection type systems for the λ-calculus, the intended meaning
of types are sets, provided a set theoretic interpretation of type constants a.

Following [BCDC83], type semantics is given axiomatically by means of the subtyping
relation ≤, that can be interpreted as subset inclusion: see e.g. [Mit96] §10.4 for extending
such interpretation to record types. It is the least pre-order over T satisfying Definition 3.4
and Definition 3.5.

Definition 3.4 (Type inclusion: arrow and intersection types).

(1) σ ≤ ω and ω ≤ ω → ω
(2) σ ∩ τ ≤ σ and σ ∩ τ ≤ τ
(3) σ ≤ τ1 & σ ≤ τ2 ⇒ σ ≤ τ1 ∩ τ2
(4) (σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2
(5) σ2 ≤ σ1 & τ1 ≤ τ2 ⇒ σ1 → τ1 ≤ σ2 → τ2

By 3.4.2 type ω is the top w.r.t. ≤; by 3.4.2 and 3.4.3 σ ∩ τ is the meet. Writing σ = τ if
σ ≤ τ and τ ≤ σ, from 3.4.1 and 3.4.5 we have ω ≤ ω → ω ≤ σ → ω ≤ ω, which are all equalities.
Finally from 3.4.4 and 3.4.5 we also have (σ → τ1) ∩ (σ → τ2) = σ → τ1 ∩ τ2.

If σ1 ≤ τ1 and σ2 ≤ τ2 then by transitivity we have σ1 ∩ σ2 ≤ σ1 ≤ τ1 and σ1 ∩ σ2 ≤ σ2 ≤ τ2
from which σ1 ∩ σ2 ≤ τ1 ∩ τ2 follows by 3.4.3. Hence ≤ is a precongruence w.r.t. ∩, and hence
= is a congruence.

Definition 3.5 (Type inclusion: record types).

(1) ⟨l ∶ σ⟩ ≤ ⟨⟩
(2) ⟨l ∶ σ⟩ ∩ ⟨l ∶ τ⟩ ≤ ⟨l ∶ σ ∩ τ⟩
(3) σ ≤ τ ⇒ ⟨l ∶ σ⟩ ≤ ⟨l ∶ τ⟩
(4) ρ + ⟨⟩ = ⟨⟩ + ρ = ρ
(5) (ρ1 + ρ2) + ρ3 = ρ1 + (ρ2 + ρ3)
(6) (ρ1 ∩ ρ2) + ρ3 = (ρ1 + ρ3) ∩ (ρ2 + ρ3)
(7) ⟨l ∶ σ⟩ + (⟨l ∶ τ⟩ ∩ ρ) = ⟨l ∶ τ⟩ ∩ ρ
(8) ⟨l ∶ σ⟩ + (⟨l′ ∶ τ⟩ ∩ ρ) = ⟨l′ ∶ τ⟩ ∩ (⟨l ∶ σ⟩ + ρ) if l ≠ l′
(9) ρ1 ≤ ρ2 ⇒ ρ1 + ρ ≤ ρ2 + ρ

(10) ρ1 = ρ2 ⇒ ρ + ρ1 = ρ + ρ2
While Definition 3.4 is standard after [BCDC83], comments on Definition 3.5 are in

order. First observe that from ⟨l ∶ σ⟩ ≤ ⟨⟩ we obtain that ⟨l ∶ σ⟩ ∩ ⟨⟩ = ⟨l ∶ σ⟩, so that by
putting ρ = ⟨⟩ in 3.5.7 and in 3.5.8 we obtain by 3.5.10:

⟨l ∶ σ⟩ + ⟨l ∶ τ⟩ = ⟨l ∶ τ⟩, ⟨l ∶ σ⟩ + ⟨l′ ∶ τ⟩ = ⟨l ∶ σ⟩ ∩ ⟨l′ ∶ τ⟩ (l ≠ l′). (3.1)



MIXIN COMPOSITION SYNTHESIS 9

Type ⟨⟩ is the type of all records. Type ⟨l ∶ σ⟩ is a unary record type, whose meaning
is the set of records having at least a field labeled by l, with value of type σ; therefore
⟨l ∶ σ⟩ ∩ ⟨l ∶ τ⟩ is the type of records having label l with values both of type σ and τ , that is
of type σ ∩ τ . In fact the following equation is derivable:

⟨l ∶ σ⟩ ∩ ⟨l ∶ τ⟩ = ⟨l ∶ σ ∩ τ⟩. (3.2)

On the other hand ⟨l ∶ σ⟩∩ ⟨l′ ∶ τ⟩, with l ≠ l′, is the type of records having fields labeled by l
and l′, with values of type σ and τ respectively. It follows that intersection of record types
can be used to express properties of records with arbitrary (though finitely) many fields,
which justifies the abbreviations ⟨li ∶ σi ∣ i ∈ I ≠ ∅⟩ = ⋂i∈I⟨li ∶ σi⟩ and ⟨li ∶ σi ∣ i ∈ ∅⟩ = ⟨⟩,
where we assume that the li are pairwise distinct. Finally, as it will be apparent from
Definition 3.11 below, ρ1 + ρ2 is the type of all records obtained by merging a record of type
ρ1 with a record of type ρ2, which is intended to type ⊕ that is at the same time a record
extension and field updating operation. Since this is the distinctive feature of the system
introduced here, we comment on this by means of a few lemmas, illustrating its properties.

Lemma 3.6.

(1) ⟨lj0 ∶ σ⟩ + ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨lj ∶ τj ∣ j ∈ J⟩ if j0 ∈ J ,
(2) ⟨lj0 ∶ σ⟩ + ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨lj0 ∶ σ⟩ ∩ ⟨lj ∶ τj ∣ j ∈ J⟩ if j0 /∈ J
Proof.

(1) By commutativity and associativity of the meet operator ∩ and by 3.5.10, when j0 ∈ J
we may freely assume that

⟨lj0 ∶ σ⟩ + ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨lj0 ∶ σ⟩ + (⟨lj0 ∶ τj0⟩ ∩ ⟨lj ∶ τj ∣ j ∈ J ∖ {j0}⟩)
which is equal to ⟨lj0 ∶ τj0⟩ ∩ ⟨lj ∶ τj ∣ j ∈ J ∖ {j0}⟩ by 3.5.7, namely to ⟨lj ∶ τj ∣ j ∈ J⟩.

(2) By induction over the cardinality of J . If it is 0 then ⟨lj ∶ τj ∣ j ∈ ∅⟩ = ⟨⟩ and:

⟨lj0 ∶ σ⟩ + ⟨⟩ = ⟨lj0 ∶ σ⟩ = ⟨lj0 ∶ σ⟩ ∩ ⟨⟩
using 3.5.4, 3.5.1 and the fact that ∩ is the meet. If ∣J ∣ > 0 then, by reasoning as before
we have:

⟨lj0 ∶ σ⟩ + ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨lj0 ∶ σ⟩ + (⟨lj1 ∶ τj1⟩ ∩ ⟨lj ∶ τj ∣ j ∈ J ∖ {j1}⟩).
for some j1 ∈ J . Now j0 /∈ J implies lj0 ≠ lj1 , and the thesis follows by 3.5.8 and the
induction hypothesis.

Lemma 3.7.

(1) ⟨li ∶ σi ∣ i ∈ I⟩ ≤ ⟨lj ∶ τj ∣ j ∈ J⟩⇔ J ⊆ I & ∀j ∈ J. σj ≤ τj,
(2) ⟨li ∶ σi ∣ i ∈ I⟩ ∩ ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨li ∶ σi, lj ∶ τj , lk ∶ σk ∩ τk ∣ i ∈ I ∖ J, j ∈ J ∖ I, k ∈ I ∩ J⟩,
(3) ⟨li ∶ σi ∣ i ∈ I⟩ + ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨li ∶ σi, lj ∶ τj ∣ i ∈ I ∖ J, j ∈ J⟩,
(4) ∀ρ ∈ T⟨⟩. ∃ ⟨li ∶ σi ∣ i ∈ I⟩. ρ = ⟨li ∶ σi ∣ i ∈ I⟩.

Proof. Through this proof let ρ1 ≡ ⟨li ∶ σi ∣ i ∈ I⟩ and ρ2 ≡ ⟨lj ∶ τj ∣ j ∈ J⟩, where ≡ denotes
syntactic identity up to commutativity and associativity of ∩.

(1) The only if part is proved by induction over the derivation of ρ1 ≤ ρ2. If this equation is
an instance of axiom 3.5.1 then J = ∅ ⊆ I and ∀j ∈ J. σj ≤ τj is vacuously true.
Axiom 3.5.2 doesn’t apply being the labels li pairwise distinct.
In case the derivation ends by rule 3.5.3 we have I = J = {l} and σ ≤ τ by the premise of
the rule.



10 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

In case of the axiom instance ⟨l1 ∶ σ⟩ ∩ ⟨l2 ∶ τ⟩ ≤ ⟨l1 ∶ σ⟩ of 3.4.2 we have J = {l1} ⊆
{l1, l2} = I and obviously σ ≤ σ.
Finally in case of deriving ρ1 ≤ (ρ3 ∩ ρ4) from ρ1 ≤ ρ3 and ρ1 ≤ ρ4, where ρ2 ≡ ρ3 ∩ ρ4,
we have that for some J ′, J ′′ such that J = J ′ ∪ J ′′ it is ρ3 ≡ ⟨lh ∶ τh ∣ h ∈ J ′⟩ and
ρ4 ≡ ⟨lk ∶ τk ∣ k ∈ J ′′⟩. By induction we know that J ′ ⊆ I and σh ≤ τh for all h ∈ J ′ and
J ′′ ⊆ I and σk ≤ τk for all k ∈ J ′′. Therefore J = J ′ ∪ J ′′ ⊆ I and σj ≤ τj for all j ∈ J .
For the if part we reason by induction over the cardinality of J . If ∣J ∣ = 0 then ρ2 ≡ ⟨⟩,
hence either I = ∅, but then ρ1 ≡ ⟨⟩; or I ≠ ∅ so that ρ1 ≤ ⟨li ∶ σi⟩ ≤ ⟨⟩ for any i ∈ I, using
axiom 3.5.1. If ∣J ∣ > 0 then let j0 ∈ J be any index: then ρ2 ≡ ⟨lj ∶ τj ∣ j ∈ J ∖ {j0}⟩ ∩ ⟨lj0 ∶
τj0⟩. Now by induction ρ1 ≤ ⟨lj ∶ τj ∣ j ∈ J ∖ {j0}⟩; by hypothesis σj0 ≤ τj0 so that
ρ1 ≤ ⟨lj0 ∶ σj0⟩ ≤ ⟨lj0 ∶ τj0⟩ and we conclude being ∩ the meet w.r.t. ≤.

(2) This is an immediate consequence of commutativity, associativity, idempotency of ∩ and
equation (3.2).

(3) If I = ∅ thenρ1 = ⟨⟩ and the thesis follows by 3.5.4. Otherwise we have:

ρ1 + ρ2 = ⋂i∈I(⟨li ∶ σi⟩ + ρ2) by repeated applications of 3.5.6
= ⋂i∈I⟨li ∶ σi, lj ∶ τj ∣ i /∈ J, j ∈ J⟩ by Lemma 3.6.1 and 3.6.2
≡ ⟨li ∶ σi, lj ∶ τj ∣ i ∈ I ∖ J, j ∈ J⟩.

(4) By induction over ρ. If ρ = ⟨⟩ there is nothing to prove.
If ρ ≡ ρ1 ∩ ρ2 then by induction ρ1 = ⟨l1i ∶ σ1i ∣ i ∈ I1⟩ and ρ2 = ⟨l2i ∶ σ2i ∣ i ∈ I2⟩ so that the
thesis follows by (2) above and the fact that = is a congruence w.r.t. ∩.
Similarly if ρ ≡ ρ1 + ρ2 the thesis follows by induction using (3) and the fact that = is a
congruence w.r.t. + by 3.5.9 and 3.5.10.

Remark 3.8. By 3.5.6 the + distributes to the left over ∩; however this doesn’t hold to the
right, namely ρ1 + (ρ2 ∩ ρ3) ≠ (ρ1 + ρ2)∩ (ρ1 + ρ3): take ρ1 ≡ ⟨l1 ∶ σ1, l2 ∶ σ2⟩, ρ2 ≡ ⟨l1 ∶ σ′1⟩ and
ρ3 ≡ ⟨l2 ∶ σ′2⟩, with σ1 ≠ σ′1 and σ2 ≠ σ′2. Then by Lemma 3.7.3 we have: ρ1 + (ρ2 ∩ ρ3) = ρ1 +
⟨l1 ∶ σ′1, l2 ∶ σ′2⟩ = ⟨l1 ∶ σ′1, l2 ∶ σ′2⟩, while (ρ1 +ρ3)∩ (ρ2 +ρ3) = ⟨l1 ∶ σ1, l2 ∶ σ′2⟩∩ ⟨l1 ∶ σ′1, l2 ∶ σ2⟩ =
⟨l1 ∶ σ1 ∩ σ′1, l2 ∶ σ2 ∩ σ′2⟩. The last example suggests that (ρ1 + ρ2)∩ (ρ1 + ρ3) ≤ ρ1 + (ρ2 ∩ ρ3).

On the other hand by 3.5.9 + is monotonic in its first argument. However we have
ρ2 ≤ ρ3 /⇒ ρ1 + ρ2 ≤ ρ1 + ρ3. Indeed:

⟨l0 ∶ σ1, l1 ∶ σ2⟩ + ⟨l1 ∶ σ3, l2 ∶ σ4⟩ = ⟨l0 ∶ σ1, l1 ∶ σ3, l2 ∶ σ4⟩
/≤ ⟨l0 ∶ σ0, l1 ∶ σ1, l2 ∶ σ4⟩ if σ3 /≤ σ1
= ⟨l0 ∶ σ1, l1 ∶ σ2⟩ + ⟨l2 ∶ σ4⟩

even if ⟨l1 ∶ σ1, l2 ∶ σ2⟩ ≤ ⟨l2 ∶ σ2⟩. From this we conclude that + is not monotonic in its second
argument. Comparing this with 3.5.10 we see that ≤ is not a precongruence w.r.t. +, while
=, namely the symmetric closure of ≤, is a congruence.

Finally if one assumes (1)-(3) of Lemma 3.7 as axioms then (pre)-congruence axioms in
Definition 3.5 become derivable. The opposite is hardly provable and possibly false1.

Lemma 3.7.1 states that subtyping among intersection of unary record types subsumes
subtyping in width and depth of ordinary record types from the literature. Lemma 3.7.3
shows that the + type constructor reflects at the level of types the operational behavior of
the merge operator ⊕. Lemma 3.7.4 says that any record type is equivalent to an intersection
of unary record types; this implies that types of the form ρ1 + ρ2 are eliminable in principle.

1Remark of an anonymous referee about our former attempt to derive 3.5.9 and 3.5.10 from the other
axioms.



MIXIN COMPOSITION SYNTHESIS 11

However, they play a key role in typing mixins, motivating the issue of control of negative
information in the synthesis process: see Section 5. More properties of subtyping record
types w.r.t. + and ∩ are listed in the next two lemmas.

Lemma 3.9. ρ1 + ρ2 = ρ1 ∩ ρ2⇔ ρ1 + ρ2 ≤ ρ1.

Proof. W.l.o.g. by 3.7.4 let us assume that ρ1 = ⟨li ∶ σ1,i ∣ i ∈ I⟩, ρ2 = ⟨lj ∶ σ2,j ∣ j ∈ J⟩ and
ρ3 = ⟨lk ∶ σ3,k ∣ k ∈K⟩. If ρ1 + ρ2 = ρ1 ∩ ρ2 then by 3.7.2 and 3.7.3:

⟨li ∶ σ1,i, lj ∶ σ2,j ∣ i ∈ I ∖ J, j ∈ J⟩
= ⟨li ∶ σ1,i, lj ∶ σ2,j , lk ∶ σ1,k ∩ σ2,k ∣ i ∈ I ∖ J, j ∈ J ∖ I, k ∈ I ∩ I⟩

Obviously J = (J ∖ I) ∪ (I ∩ J) and from 3.7.1 we deduce that σ2,j = σ1,j ∩ σ2,j for all j ∈ J ,
hence σ2,j ≤ σ1,j so we conclude that ρ1 + ρ2 ≤ ρ1 again by 3.7.1. Since all these implications
can be reverted, we conclude.

Let us define the map lbl ∶ T⟨⟩ → ℘(Label) (where ℘(Label) is the powerset of Label)
by:

lbl(⟨l ∶ σ⟩) = {l}, lbl(ρ1 ∩ ρ2) = lbl(ρ1 + ρ2) = lbl(ρ1) ∪ lbl(ρ2).

Lemma 3.10.

(1) ρ1 = ρ2 ⇒ lbl(ρ1) = lbl(ρ2),
(2) lbl(ρ1) ∩ lbl(ρ2) = ∅⇒ ρ1 + ρ2 = ρ1 ∩ ρ2,
(3) lbl(ρ1) ⊆ lbl(ρ2)⇒ ρ1 + ρ2 = ρ2,
(4) lbl(ρ2) = lbl(ρ3)⇒ (ρ1 + ρ2) ∩ (ρ1 + ρ3) = ρ1 + (ρ2 ∩ ρ3).

Proof. Part (1) follows by 3.7.1, and (2) is a consequence of the fact that if lbl(ρ1)∩lbl(ρ2) = ∅
then equation (3.1) ⟨l ∶ σ⟩ + ⟨l′ ∶ τ⟩ = ⟨l ∶ σ⟩ ∩ ⟨l′ ∶ τ⟩ repeatedly applies. Part (3) follows by
3.7.3.

To see part (4) we can assume by 3.7.4 that ρ1 = ⟨li ∶ σ1,i ∣ i ∈ I⟩, ρ2 = ⟨lj ∶ σ2,j ∣ j ∈ J⟩
and ρ3 = ⟨lk ∶ σ3,k ∣ k ∈K⟩. Since lbl(ρ2) = lbl(ρ3) we have that J =K, so that:

ρ1 + ρ2 = ⟨li ∶ σ1,i, lj ∶ σ2,j ∣ i ∈ I ∖ J, j ∈ J⟩ by 3.7.3

ρ1 + ρ3 = ⟨li ∶ σ1,i, lj ∶ σ3,j ∣ i ∈ I ∖ J, j ∈ J⟩ by 3.7.3

ρ2 ∩ ρ3 = ⟨lj ∶ σ2,j ∩ σ3,j ∣ j ∈ J⟩ by 3.7.2

Again by 3.7.2, 3.7.3 and the fact that σ1,i ∩ σ1,i = σ1,i we conclude that (ρ1 + ρ2) ∩ (ρ1 + ρ3)
and ρ1 + (ρ2 ∩ ρ3) are both equal to

⟨li ∶ σ1,i, lj ∶ σ2,j ∩ σ3,j ∣ i ∈ I ∖ J, j ∈ J⟩.

About Lemma 3.10.2 above note that condition lbl(ρ1) ∩ lbl(ρ2) = ∅ is essential, since ∩
is commutative while ρ1 + ρ2 ≠ ρ2 + ρ1 in general, as it immediately follows by Lemma 3.7.3.

We come now to the type assignment system. A basis (also called a context in the
literature) is a finite set Γ = {x1 ∶ σn, . . . , xn ∶ σn}, where the variables xi are pairwise distinct;
we set dom(Γ) = {x ∣ ∃σ. x ∶ σ ∈ Γ} and we write Γ, x ∶ σ for Γ ∪ {x ∶ σ} where x /∈ dom(Γ).
Then we consider the following extension of the system in [BCDC83], also called BCD in
the literature.



12 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Definition 3.11 (Type Assignment). The rules of the assignment system are:

x ∶ σ ∈ Γ
(Ax)

Γ ⊢ x ∶ σ

Γ, x ∶ σ ⊢M ∶ τ
(→ I)

Γ ⊢ λx.M ∶ σ → τ

Γ ⊢M ∶ σ → τ Γ ⊢ N ∶ σ
(→ E)

Γ ⊢MN ∶ τ
Γ ⊢M ∶ σ Γ ⊢M ∶ τ

(∩)
Γ ⊢M ∶ σ ∩ τ

(ω)
Γ ⊢M ∶ ω

Γ ⊢M ∶ σ σ ≤ τ
(≤)

Γ ⊢M ∶ τ

(⟨⟩)
Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨⟩

Γ ⊢Mk ∶ σ k ∈ I
(rec)

Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨lk ∶ σ⟩
Γ ⊢M ∶ ⟨l ∶ σ⟩

(sel)
Γ ⊢M.l ∶ σ

Γ ⊢M ∶ ρ1 Γ ⊢ R ∶ ρ2 (∗)
(+)

Γ ⊢M ⊕R ∶ ρ1 + ρ2
where (∗) in rule (+) is the side condition: lbl(R) = lbl(ρ2).

Using Lemma 3.7.1, the following rule is easily shown to be admissible:

Γ ⊢Mj ∶ σj ∀j ∈ J ⊆ I
(rec′)

Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨lj ∶ σi ∣ j ∈ J⟩
Contrary to this, the side condition (∗) of rule (+) is equivalent to “exact” record typing in
[BC90], disallowing record subtyping in width. Such a condition is necessary for soundness
of typing. Indeed, suppose that Γ ⊢M0 ∶ σ and Γ ⊢M ′

0 ∶ σ′0 but Γ /⊢M ′
0 ∶ σ0; then without

(∗) we could derive:

Γ ⊢ ⟨l0 =M0⟩ ∶ ⟨l0 ∶ σ0⟩ Γ ⊢ ⟨l0 =M ′
0, l1 ∶ σ1⟩ ∶ ⟨l1 ∶ σ1⟩

Γ ⊢ ⟨l0 =M0⟩ ⊕ ⟨l0 =M ′
0, l ∶1∶ σ1⟩ ∶ ⟨l0 ∶ σ0, l1 ∶ σ1⟩

from which we obtain that Γ ⊢ (⟨l0 =M0⟩ ⊕ ⟨l0 =M ′
0, l ∶1∶ σ1⟩).l0 ∶ σ0 breaking subject

reduction, since (⟨l0 =M0⟩ ⊕ ⟨l0 =M ′
0, l ∶1∶ σ1⟩).l0 Ð→∗ M ′

0. The essential point is that
proving that Γ ⊢ N ∶ ⟨l ∶ σ⟩ doesn’t imply that l′ /∈ lbl(R′) for any l′ ≠ l, which follows only
by the uncomputable (not even recursively enumerable) statement that Γ /⊢ N ∶ ⟨l′ ∶ ω⟩, a
negative information.

This explains the restriction to record terms as the second argument of ⊕ : in fact,
allowing M ⊕ N to be well formed for an arbitrary N we might have N ≡ x in λx. (M ⊕ x).
But extending lbl to all terms in ΛR is not possible without severely limiting the expressiveness
of the assignment system. In fact to say that lbl(N) = lbl(R) if N Ð→∗ R would make the lbl
function non computable; on the other hand putting lbl(x) = ∅, which is the only reasonable
and conservative choice as we do not know possible substitutions for x in λx. (M ⊕ x),
implies that the latter term has type ω → ω = ω at best.

As a final remark, let us observe that we do not adopt exact typing of records in general,
but only for typing the right-hand side of ⊕-terms, a feature that will be essential when
typing mixins.

The following two lemmas are standard after [BCDC83].

Lemma 3.12.

⋂
i∈I
(σi → τi) ≤ σ → τ ⇒ ∃J ⊆ I. σ ≤ ⋂

j∈J
σj & ⋂

j∈J
τj ≤ τ

Proof. By induction over the proof of ⋂i∈I(σi → τi) ≤ σ → τ .



MIXIN COMPOSITION SYNTHESIS 13

Lemma 3.13. The following rule is admissible:

Γ, x ∶ τ ⊢M ∶ σ τ ′ ≤ τ

Γ, x ∶ τ ′ ⊢M ∶ σ
Proof. By induction over the derivation of Γ, x ∶ τ ⊢ M ∶ σ. The only non-trivial case is
when Γ, x ∶ τ ⊢M ∶ σ is an instance of (Ax) and M ≡ x. In this case σ = τ and we replace
the axiom by the inference:

Γ, x ∶ τ ′ ⊢ x ∶ τ ′ τ ′ ≤ τ
(≤)

Γ, x ∶ τ ′ ⊢ x ∶ τ

Lemma 3.14 (Generation). Let σ ≠ ω:

(1) Γ ⊢ x ∶ σ⇔ ∃τ. x ∶ τ ∈ Γ & τ ≤ σ,
(2) Γ ⊢ λx.M ∶ σ⇔ ∃ I, (σi)i∈I , (τi)i∈I . Γ, x ∶ σi ⊢M ∶ τi & ⋂i∈I(σi → τi) ≤ σ,
(3) Γ ⊢MN ∶ σ⇔ ∃ τ. Γ ⊢M ∶ τ → σ & Γ ⊢ N ∶ τ ,
(4) Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ σ⇔ ∀i ∈ I ∃ σi. Γ ⊢Mi ∶ σi & ⟨li ∶ σi ∣ i ∈ I⟩ ≤ σ,
(5) Γ ⊢M.l ∶ σ⇔ Γ ⊢M ∶ ⟨l ∶ σ⟩,
(6) Γ ⊢M ⊕R ∶ σ⇔ ∃ ρ1, ρ2. Γ ⊢M ∶ ρ1 & Γ ⊢ R ∶ ρ2 & lbl(R) = lbl(ρ2) & ρ1 + ρ2 ≤ σ.

Proof. All the if parts are obvious. For the only if parts first observe that there is a
one-to-one correspondence between the term constructors and the rules in the type system
but in case of rules (ω), (∩) and (≤). Indeed, rule (⟨⟩) is no exception as the typing
Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨⟩ is derivable using (rec) and (≤) in all cases but when I = ∅, in which
case (⟨⟩) becomes the axiom Γ ⊢ ⟨⟩ ∶ ⟨⟩ and ⟨⟩ is a nullary operator.

Disregarding rule (ω) because of the hypothesis σ ≠ ω, all the statements in this
lemma depend on the remark that any derivation D of Γ ⊢M ∶ σ consists of a finite set of
subderivations Di of judgments Γ ⊢M ∶ σi such that each Di ends by the rule corresponding
to the main term constructor of M , and that in D all the inferences below the Di are
instances of either rule (∩) or (≤). By noting that inferences using (∩) and (≤) commute
that is:

Γ ⊢M ∶ σ′ σ′ ≤ σ
(≤)

Γ ⊢M ∶ σ Γ ⊢M ∶ τ
(∩)

Γ ⊢M ∶ σ ∩ τ

becomes

Γ ⊢M ∶ σ′ Γ ⊢M ∶ τ
(∩)

Γ ⊢M ∶ σ′ ∩ τ σ′ ∩ τ ≤ σ ∩ τ
(≤)

Γ ⊢M ∶ σ ∩ τ
we can freely assume that all (∩) inferences precede (≤) rules, concluding that ⋂i σi ≤ σ.

Given that all the statements of this lemma are deduced by reading backward rules
(Ax), (→ I), (→ E), (⟨⟩), (rec), (sel) and (+). All cases are either standard from [BCDC83]
or are easy extensions thereof, but that of rule (+) in (6) above. In this case we know that
in the derivation of Γ ⊢M ⊕R ∶ σ there are subderivations ending by the inference:

Γ ⊢M ∶ ρi,1 Γ ⊢ R ∶ ρi,2 lbl(ρi,2) = lbl(R)
(+)

Γ ⊢M ⊕R ∶ ρi,1 + ρi,2
where the side condition lbl(ρi,2) = lbl(R) holds for all i ∈ I; then by the remark above we
have that ⋂i∈I(ρi,1 + ρi,2) ≤ σ. Now taking ρ1 = ⋂i∈I ρi,1 and ρ2 = ⋂i∈I ρi,2 we have that:

σ ≥ ⋂i∈I(ρi,1 + ρi,2)
≥ ⋂i∈I(ρ1 + ρi,2) by Def. 3.5.9, since ρi,1 ≥ ρ1 for all i ∈ I
= ρ1 + ρ2 by 3.10.4 since lbl(ρ2) = lbl(ρi,2) for all i ∈ I.



14 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Lemma 3.15 (Substitution).

Γ, x ∶ σ ⊢M ∶ τ & Γ ⊢ N ∶ σ⇒ Γ ⊢M{N/x} ∶ τ.

Proof. By induction over the derivation of Γ, x ∶ σ ⊢M ∶ τ . Observe that the writing Γ, x ∶ σ
implies that x /∈ Γ; on the other hand if Γ ⊢ N ∶ σ is derivable then fv(N) ⊆ Γ, hence
x /∈ fv(N).

Theorem 3.16 (Subject reduction). Γ ⊢M ∶ σ & M Ð→ N ⇒ Γ ⊢ N ∶ σ.

Proof. The proof is by cases of reduction rules, using Lemma 3.14.

(1) Case M ≡ (λx.M ′)N ′. Then N ≡ M ′{N ′/x} by rule (β). By Lemma 3.14.3, there
exists τ such that Γ ⊢ (λx.M ′) ∶ τ → σ and Γ ⊢ N ′ ∶ τ . By Lemma 3.14.2, there exist
I, σi, τi such that Γ, x ∶ τi ⊢M ′ ∶ σi for all i ∈ I and ⋂i∈I(τi → σi) ≤ τ → σ. By Lemma
3.12 this implies that there is J ⊆ I such that τ ≤ ⋂j∈J τj and ⋂j∈J σj ≤ σ. By Lemma
3.13 this implies that Γ, x ∶ τ ⊢ M ′ ∶ σj for all j ∈ J , so that by rule (∩) we have
Γ, x ∶ τ ⊢M ′ ∶ ⋂j∈J σj and hence Γ, x ∶ τ ⊢M ′ ∶ σ by (≤). From this and Γ ⊢ N ′ ∶ τ we
get Γ ⊢M ′{N ′/x} ∶ σ by Lemma 3.15.

(2) Case M ≡ ⟨li = Mi ∣ i ∈ I⟩.lj . Then N ≡ Mj for some j ∈ I by rule (sel). By Lemma
3.14.5 Γ ⊢M ∶ ⟨lj ∶ σ⟩, hence by 3.14.4 for all i ∈ I there exists σi such that Γ ⊢Mi ∶ σi
and ⟨li ∶ σi ∣ i ∈ I⟩ ≤ ⟨lj ∶ σ⟩. Now by the fact that j ∈ I and by Lemma 3.7.1 it follows
that Γ ⊢Mj ∶ σj and σj ≤ σ, hence Γ ⊢Mj ∶ σ by rule (≤).

(3) Case M ≡ ⟨li =Mi ∣ i ∈ I⟩ ⊕ ⟨lj = Nj ∣ j ∈ J⟩. Then by rule (⊕):

N ≡ ⟨li =Mi, lj = Nj ∣ i ∈ I ∖ J, j ∈ J⟩.
By Lemma 3.14.6 there exist the record types ρ1, ρ2 such that:
(a) Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ρ1,
(b) Γ ⊢ ⟨lj = Nj ∣ j ∈ J⟩ ∶ ρ2,
(c) lbl(ρ2) = lbl(⟨lj = Nj ∣ j ∈ J⟩) = {lj ∣ j ∈ J},
(d) ρ1 + ρ2 ≤ σ.
By (3a) and (3b) and by Lemma 3.14.4 we have that for all i ∈ I there exist σi such
that Γ ⊢Mi ∶ σi, with ⟨li ∶ σi ∣ i ∈ I⟩ ≤ ρ1, and similarly for all j ∈ J there are τj such that
Γ ⊢ Nj ∶ τj and ⟨lj ∶ τj ∣ j ∈ J⟩ ≤ ρ2.

Since Γ ⊢ Mi ∶ σi for all i ∈ I, a fortiori it holds for all i ∈ I ∖ J . On the other
hand, by Lemma 3.7.4 we know that ρ2 = ⟨lk ∶ τ ′k ∣ k ∈K⟩ for some K and τ ′k, so that
⟨lj ∶ τj ∣ j ∈ J⟩ ≤ ρ2 implies J ⊇ K and τk ≤ τ ′k for all k ∈ K by Lemma 3.7.1. It follows
that J =K by (3c), and Γ ⊢ Nj ∶ τ ′j for all j ∈ J by rule (≤). Then by rule (rec) and (∩)
we conclude that

Γ ⊢ N ∶ ⟨li ∶ σi, lj ∶ τ ′j ∣ i ∈ I ∖ J, j ∈ J⟩.
Now ⟨li ∶ σi, lj ∶ τ ′j ∣ i ∈ I ∖ J, j ∈ J⟩ = ⟨li ∶ σi ∣ i ∈ I⟩ + ρ2 by Lemma 3.7.3, but since

⟨li ∶ σi ∣ i ∈ I⟩ ≤ ρ1
we have by Definition 3.5.9 that ⟨li ∶ σi ∣ i ∈ I⟩ + ρ2 ≤ ρ1 + ρ2; then we conclude that
Γ ⊢ N ∶ σ by (3d) and rule (≤).



MIXIN COMPOSITION SYNTHESIS 15

3.2. Class and Mixin combinators. The following definition of classes and mixins is
inspired by [CHC90] and [BC90] respectively, though with some departures to be discussed
below. To make the description more concrete, in the examples we add constants to ΛR.

Recall that a combinator is a term in Λ0
R, namely a closed term. Let Y be Curry’s

fixed point combinator: λf.(λx.f(xx))(λx.f(xx)) (the actual definition of Y is immaterial
however, since all fixed point combinators have the same Böhm tree as a consequence of
[Bar84] Lemma 6.5.3, and hence have the same types in BCD by the approximation theorem:
see e.g. [BDS13] Theorem 12.1.17).

Definition 3.17. Let myClass,state and argClass be (term) variables and Y be a fixed
point combinator; then we define the following sets of combinators:

Class: C ∶∶= Y(λmyClass λstate. ⟨li = Ni ∣ i ∈ I⟩)
Mixin: M ∶∶= λargClass.Y(λmyClassλstate. (argClass state) ⊕ ⟨li = Ni ∣ i ∈ I⟩)

We define C and M as the sets of classes and mixins respectively.

To illustrate this definition let us use the abbreviation let x = N in M for M{N/x}.
Then a class combinator C ∈ C can be written in a more perspicuous way as follows:

C ≡ Y(λmyClass λstate. let self = (myClass state) in ⟨li = Ni ∣ i ∈ I⟩). (3.3)

A class is the fixed point of a function, the class definition, mapping a recursive
definition of the class itself and a state S, that is the value or a record of values in general,
for the instance variables of the class, into a record ⟨li = Ni ∣ i ∈ I⟩ of methods. A class C is
instantiated to an object O ≡ C S by applying the class C to a state S. Hence we have:

O ≡ C S Ð→∗ let self = (C S) in ⟨li = Ni ∣ i ∈ I⟩,
where the variable self is used in the method bodies Ni to call other methods from the
same object. Note that the recursive parameter myClass might occur in the Ni in subterms
other than (myClass state), and in particular Ni{C/myClass} might contain a subterm
C S′, where S′ is a state possibly different than S; even C itself might be returned as the
value of a method. Classes are the same as in [CHC90] §4, but for the explicit identification
of self with (myClass state).

We come now to typing of classes. Let R = ⟨li = Ni ∣ i ∈ I⟩, and suppose that C ≡
Y(λmyClass λstate.R) ∈ C. To type C we must find a type σ (a type of its state) and a
sequence of types ρ1, . . . , ρn ∈ T⟨⟩ such that for all 0 < i < n:

myClass ∶ σ → ρi,state ∶ σ ⊢ R ∶ ρi+1.
Note that this is always possible for any n: in the worst case, we can take ρi = ⟨li ∶ ω ∣ i ∈ I⟩
for all 0 < i ≤ n. In general one has more expressive types, depending on the typings of the
Ni in R (see example 3.18 below). It follows that:

⊢ λmyClass λstate.R ∶ (ω → (σ → ρ1)) ∩
n−1
⋂
i=1
((σ → ρi)→ (σ → ρi+1)),

and therefore, by using the fact that ⊢ Y ∶ (ω → τ1) ∩ ⋯ ∩ (τn−1 → τn) → τn for arbitrary
types τ1, . . . , τn (see e.g. [BDS13], p. 586), we conclude that the typing of classes has the
following shape (where ρ = ρn):

⊢ C ≡ Y(λmyClass λstate. ⟨li = Ni ∣ i ∈ I⟩) ∶ σ → ρ (3.4)



16 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

In conclusion the type of a class C is the arrow from the type of the state σ to a type ρ of
its instances.

Example 3.18. The class Num has a method get returning the current state and a method
succ returning the state of the instance object incremented by one. Beside there is a third
method set whose body is the identity function:

Num = Y(λmyClass.λstate.
let self = myClass state in

⟨get = state, set = λstate′.state′, succ = self.set(self.get + 1)⟩

There are several ways in which functional state update can be implemented. One
possibility for a method to update the current state of the object functionally is to return
an updated instance of the object. As will become clear later on, in the context of mixin
applications it is unclear whether the updated object has to be an instance of the early-
bound inner class (Num in the above example) or an instance of the class modified by mixin
applications. The former option loses information whenever an object that is an instance of
a class modified by mixin applications is updated. The latter option breaks compatibility
whenever a mixin incompatibly overwrites a method using record merge, which will be
discussed later on. In conclusion, the decision regarding the instantiation of the updated
object cannot be made a-priori, but depends on the context in which the method that
updates the object is called. Since in the functional setting two object instances of one class
are distinguished only by the underlying state, a method, such as set, that modifies the
underlying object state returns the updated state and leaves instantiation to the caller.

To Type Num, let us call

R ≡ ⟨get = state, set = λstate′.state′, succ = self.set(self.get + 1)⟩
where self ≡ (myClass state). Now we can deduce:

myClass ∶ ω,state ∶ Int ⊢ R ∶ ⟨get ∶ Int, set ∶ Int→ Int, succ ∶ ω⟩ = ρ1.
since myClass ∶ Int → ω,state ∶ Int ⊢ myClass state ∶ ω and therefore self.set(self.get + 1)
is just typable by ω; on the other hand the type of set is any type of the identity, so that
Int→ Int is a possibility.

Given ρ1 we consider the new assumption myClass ∶ Int→ ρ1 by which we obtain the
typing self ≡ myClass state ∶ ρ1 that is enough to get self.set(self.get + 1) ∶ Int and hence:

myClass ∶ Int→ ρ1,state ∶ Int ⊢ R ∶ ⟨get ∶ Int, set ∶ Int→ Int, succ ∶ Int⟩ = ρ2.
Eventually by (3.4) we conclude that Num ∶ Int→ ρ2.

In case of Num we have reached the type ρ2 that doesn’t contain any occurrence of ω in
a finite number of steps. This is because method succ of class Num returns a number; let us
consider a variant Num′ of Num having a method succ that returns a new instance of the
class, whose state has been incremented:



MIXIN COMPOSITION SYNTHESIS 17

Num′ = Y(λmyClass.λstate.
let self = myClass state in

⟨get = state, succ = myClass(self.get + 1)⟩

Let us call R′ ≡ ⟨get = state, succ = myClass(self.get + 1)⟩, where self ≡ (myClass state) as
above. Then

myClass ∶ Int→ ω,state ∶ Int ⊢ R′ ∶ ⟨get ∶ Int, succ ∶ ω⟩ = ρ′1.
By assuming myClass ∶ Int→ ρ′1 and state ∶ Int, we have that self ∶ ρ′1 and hence self.get ∶ Int.
It follows that myClass(self.get + 1) ∶ ρ′1 so that

myClass ∶ Int→ ρ′1,state ∶ Int ⊢ R′ ∶ ⟨get ∶ Int, succ ∶ ρ′1⟩ = ρ′2.
In general, putting ρ′0 = ω and ρ′i+1 = ⟨get ∶ Int, succ ∶ ρ′i⟩ we have for all i:

myClass ∶ Int→ ρ′i,state ∶ Int ⊢ R′ ∶ ⟨get ∶ Int, succ ∶ ρ′i⟩ = ρ′i+1.
From this by (3.4) we conclude that Num′ ∶ Int → ρ′i for all i. We note that this time,
differently than in case of Num, we cannot get rid of occurrences ω in the ρ′i.

A variant of this typing uses the type constants Odd and Even called semantic types
in [Reh13] where they are used in the intersection types Int ∩Odd or Int ∩ Even (see also
below Section 5.3). Let us suppose that we have axioms x ∶ Int ∩Odd ⊢ x + 1 ∶ Int ∩ Even
and x ∶ Int ∩Even ⊢ x + 1 ∶ Int ∩Odd added to the typing system. Then a more interesting
type for Num′ is

Num′ ∶ (Int ∩Odd→ ⟨get ∶ Int ∩Odd, succ ∶ ⟨get ∶ Int ∩Even⟩⟩) ∩
(Int ∩Even→ ⟨get ∶ Int ∩Even, succ ∶ ⟨get ∶ Int ∩Odd⟩⟩).

Although Num′ is closer to what is done with object-oriented programming, in the
context of mixin application, introduced in the remainder of this section, we shall not
consider this kind of recursive definition in this work, as previously explained.

A mixin M ∈M is a combinator such that, if C ∈ C then M C reduces to a new class
C ′ ∈ C. Writing M in a more explicit way we obtain:

M ≡ λargClass.Y(λmyClassλstate.let super = (argClass state) in

let self = (myClass state) in

super ⊕ ⟨li = Ni ∣ i ∈ I⟩)
In words, a mixin merges an instance C S of the input class C with a new state S together
with a difference record R ≡ ⟨li = Ni ∣ i ∈ I⟩, that would be written ∆(C S) in terms of [BC90].
Note that our mixins are not the same as class modificators (also called wrappers e.g. in
[Bra92]). Wrappers bind super to the unmodified class definition applied to self without
taking the fixed point. In our case, super is simply an instance of the unmodified class. The
effect is that we have a static (or early) binding instead of dynamic (or late) binding of self.

Let M ≡ λargClass.Y(λmyClassλstate. (argClass state) ⊕ R) ∈M; to type M we
have to find types σ1, σ2, ρ1 and a sequence ρ21, . . . , ρ

2
n ∈ T⟨⟩ of record types such that for all



18 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

1 ≤ i < n it is true that lbl(R) = lbl(ρ2i ) and setting

Γ0 = {argClass ∶ σ1 → ρ1,myClass ∶ ω,state ∶ σ1 ∩ σ2}
Γi = {argClass ∶ σ1 → ρ1,myClass ∶ (σ1 ∩ σ2)→ ρ1 + ρ2i ,state ∶ σ1 ∩ σ2} for all 1 ≤ i < n

we may deduce for all 0 ≤ i < n:

Γi ⊢ state ∶ σ1 ∩ σ2
(≤)

Γi ⊢ state ∶ σ1
(→ E)

Γi ⊢ argClass state ∶ ρ1 Γi ⊢ R ∶ ρ2i+1 lbl(R) = lbl(ρ2i+1) (+)
Γi ⊢ (argClass state) ⊕ R ∶ ρ1 + ρ2i+1

Hence for all 0 ≤ i < n we can derive the typing judgment:

argClass ∶ σ1 → ρ1 ⊢ λmyClassλstate. (argClass state) ⊕ R ∶

((σ1 ∩ σ2)→ (ρ1 + ρ2i ))→ (σ1 ∩ σ2)→ (ρ1 + ρ2i+1)
and therefore, by reasoning as for classes, we get (setting ρ2 = ρ2n):

⊢M ≡ λargClass.Y(λmyClassλstate. (argClass state) ⊕ R) ∶
(σ1 → ρ1)→ (σ1 ∩ σ2)→ (ρ1 + ρ2) (3.5)

Spelling out this type, we can say that σ1 is a type of the state of the argument-class of M ;
σ1 ∩ σ2 is the type of the state of the resulting class, that refines σ1. Type ρ1 expresses the
requirements of M about the methods of the argument-class, i.e. what is assumed to hold for
the usages of super and argClass in R to be properly typed; ρ1+ρ2 is a type of the record of
methods of the refined class, resulting from the merge of the methods of the argument-class
with those of the difference R; since in general there will be overridden methods, whose
types might be incompatible, the + type constructor cannot be replaced by intersection. On
the other hand, M preserves typings of any label that is not in R.

Lemma 3.19. For any σ and ρ = ⟨l ∶ τ⟩ such that l /∈ lbl(R) we have

⊢M ≡ λargClass.Y(λmyClassλstate. (argClass state) ⊕ R) ∶ (σ → ρ)→ (σ → ρ)

Proof. Let {l1, . . . , ln} = lbl(R). We have ⊢ R ∶ ⟨l1 ∶ ω, . . . , ln ∶ ω⟩. Since l /∈ lbl(R) we obtain
ρ + ⟨l1 ∶ ω, . . . , ln ∶ ω⟩ = ⟨l ∶ τ, l1 ∶ ω, . . . , ln ∶ ω⟩ ≤ ρ. Using the above general type derivation
with σ1 = σ2 = σ, ρ1 = ρ, ρ2 = ⟨l1 ∶ ω, . . . , ln ∶ ω⟩ and ⊢ Y ∶ (ω → (σ → ρ)) → (σ → ρ) we
obtain ⊢M ∶ (σ → ρ)→ (σ → ρ + ρ2) ≤ (σ → ρ)→ (σ → ρ).

Example 3.20. Let us consider the mixin Comparable adding a method compare to its
argument class, which is supposed to have a method get:

Comparable = λargClass.Y(λmyClass.λstate.
let super = argClass state in

let self = myClass state in

super⊕ ⟨compare = λo.(o.get == self.get)⟩)
We write == for a suitable equality operator, which is distinct from the symbol = used in
our calculus to associate labels to their values in a record.



MIXIN COMPOSITION SYNTHESIS 19

For the sake of readability, we take the types σ1 and σ2 of the respective states of the
argument class and the resulting class to be just Int and simply write Int for Int∩ Int which
is the type we assume for state. If we set

Γ0 = {argClass ∶ Int→ ⟨get ∶ Int⟩,myClass ∶ Int→ ω,state ∶ Int}
we have Γ0 ⊢ super ∶ ⟨get ∶ Int⟩ but Γ0 ⊢ self ∶ ω so that Γ0 ⊢ λo.(o.get == self.get) ∶ τ → ω for
any type τ given to o; but τ → ω = ω by Definition 3.4, so that we conclude

Γ0 ⊢ super⊕ ⟨compare = λo.(o.get == self.get)⟩ ∶ ⟨get ∶ Int⟩ + ⟨compare ∶ ω⟩.
Now, taking

Γ1 = {argClass ∶ Int→ ⟨get ∶ Int⟩,myClass ∶ Int→ ⟨get ∶ Int⟩ + ⟨compare ∶ ω⟩,state ∶ Int}
and using the fact that ⟨get ∶ Int⟩ + ⟨compare ∶ ω⟩ = ⟨get ∶ Int⟩ ∩ ⟨compare ∶ ω⟩ ≤ ⟨get ∶ Int⟩ we
have Γ1 ⊢ self ∶ ⟨get ∶ Int⟩, that implies Γ1 ⊢ self.get ∶ Int and therefore Γ1 ⊢ λo.(o.get ==
self.get) ∶ ⟨get ∶ Int⟩→ Bool. By (3.5) we conclude that Comparable has type

(Int→ ⟨get ∶ Int⟩)→ Int→ ⟨get ∶ Int⟩ + ⟨compare ∶ ⟨get ∶ Int⟩→ Bool⟩.
We finally observe that if the argument class C has type Int→ ⟨get ∶ Int, compare ∶ τ⟩ for

some type τ , then we have that Int → ⟨get ∶ Int, compare ∶ τ⟩ ≤ Int → ⟨get ∶ Int⟩, so that the
class C ′ ≡ ComparableC has the correct type Int→ ⟨get ∶ Int⟩+ ⟨compare ∶ ⟨get ∶ Int⟩→ Bool⟩
as the method super.compare is overridden in super⊕⟨compare = λo.(o.get == self.get)⟩. This
is because, even by keeping the typing super ∶ ⟨get ∶ Int, compare ∶ τ⟩ through the derivation,
we obtain that super⊕ ⟨compare = λo.(o.get == self.get)⟩ has type

⟨get ∶ Int, compare ∶ τ⟩+ ⟨compare ∶ ⟨get ∶ Int⟩→ Bool⟩ = ⟨get ∶ Int, compare ∶ ⟨get ∶ Int⟩→ Bool⟩
which is the same as ⟨get ∶ Int⟩ + ⟨compare ∶ ⟨get ∶ Int⟩→ Bool⟩. For a more general typing of
Comparable see Appendix B.

4. Bounded Combinatory Logic

Our main goal is synthesize meaningful mixin compositions. For this purpose, we use the
logical programming language given by inhabitation in BCLk(TC) (bounded combinatory
logic with constructors). Conveniently, necessary type information can be inferred from
intersection types for ΛR. BCLk(TC) is an extension of bounded combinatory logic BCLk(→
,∩) [DMRU12] by covariant constructors. Constructors can be utilized to encode record types
and useful features of + while extending the existing synthesis framework (CL)S [BDD+14].
In this section, we present BCLk(TC) along with its fundamental properties, in particular
decidability of inhabitation.

4.1. BCLk(TC). Combinatory terms are formed by application of combinators from a
repository (combinatory logic context) ∆.

Definition 4.1 (Combinatory Term). E,E′ ∶∶= C ∣ (E E′) where C ∈ dom(∆)

We create repositories of typed combinators that can be considered logic programs
for the existing synthesis framework (CL)S [BDD+14] to reason about semantics of such
compositions. The underlying type system of (CL)S is the intersection type system BCD
[BCDC83], which we extend by covariant constructors. The extended type system TC, while
suited for synthesis, is flexible enough to encode record types and features of +.



20 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Definition 4.2 (Intersection Types with Constructors TC). The set TC is given by:

TC ∋ σ, τ, τ1, τ2 ∶∶= a ∣ α ∣ ω ∣ τ1 → τ2 ∣ τ1 ∩ τ2 ∣ c(τ)
where a ranges over constants, α over type variables and c over unary constructors C.

TC adds the following two subtyping axioms to the BCD system (cf. Definition 3.4)

τ1 ≤ τ2 ⇒ c(τ1) ≤ c(τ2) c(τ1) ∩ c(τ2) ≤ c(τ1 ∩ τ2)
The additional axioms ensure constructor distributivity, i.e., c(τ1) ∩ c(τ2) = c(τ1 ∩ τ2).

The notion of level of a type is used as a bound to ensure decidability of inhabitation,
or equivalently termination of logic programs in (CL)S.

Definition 4.3 (Level). We define the level of a type as follows:

level(ω) = level(a) = level(α) = 0 level(c(τ)) = 1 + level(τ)
level(σ → τ) = 1 +max(level(σ), level(τ)) level(σ ∩ τ) = max(level(σ), level(τ))

We define the level of a substitution S as level(S) = max{level(S(α)) ∣ α ∈ dom(S)}.

Definition 4.4 (Type Assignment BCLk(TC)).
C ∶ τ ∈ ∆ level(S) ≤ k

(Var)
∆ ⊢k C ∶ S(τ)

∆ ⊢k E ∶ σ → τ ∆ ⊢k E′ ∶ σ
(→ E)

∆ ⊢k EE′ ∶ τ

∆ ⊢k E ∶ σ ∆ ⊢k E ∶ τ
(∩)

∆ ⊢k E ∶ σ ∩ τ

∆ ⊢k E ∶ σ σ ≤ τ
(≤)

∆ ⊢k E ∶ τ
For a set of typed combinators ∆ and a type τ ∈ TC we say τ is inhabited in ∆, if there

exists a combinatory term E and a k ∈ N such that ∆ ⊢k E ∶ τ .

4.2. BCLk(TC) Inhabitation. In this section we extend the understanding of BCL(→,∩)
inhabitation [DMRU12] to constructors. First, we extend the necessary notions of paths and
organized types to constructors in the following way.

Definition 4.5 (Path). A path π is a type of the form: π ∶∶= a ∣ α ∣ σ → π ∣ c(ω) ∣ c(π),
where α is a variable, τ is a type, c is a constructor and a is a constant.

Definition 4.6 (Paths in τ). Given a type τ ∈ TC, the set P(τ) of paths in τ is defined as

P(a) = {a} P(σ → τ) = {σ → π ∣ π ∈ P(τ)}
P(α) = {α} P(σ ∩ τ) = P(σ) ∪ P(τ)

P(ω) = ∅ P(c(τ)) =
⎧⎪⎪⎨⎪⎪⎩

{c(ω)} if P(τ) = ∅
{c(π) ∣ π ∈ P(τ)} else

Observe that P(τ) = ∅ iff τ = ω.

Definition 4.7 (Organized Type). A type τ is called organized, if τ ≡ ⋂i∈I πi, where πi for
i ∈ I are paths.

For brevity, we sometimes write ⋂P(τ) for π1 ∩ . . . ∩ πn where P(τ) = {π1, . . . , πn}. If
P(τ) = ∅, then we set ⋂P(τ) ≡ ω.

Lemma 4.8. Given a type τ ∈ TC, the type ⋂P(τ) is organized with ⋂P(τ) = τ .



MIXIN COMPOSITION SYNTHESIS 21

The detailed proof by induction of Lemma 4.8 is in the appendix.

Lemma 4.9. Given a type τ ∈ TC we have ∣⋂P(τ)∣ ≤ ∣τ ∣2, where ∣ ⋅ ∣ denotes the number of
nodes in the syntax tree of a given type.

Proof. By induction using Definition 4.6 we have ∣P(τ)∣ ≤ ∣τ ∣. The only non-trivial cases for
the inductive proof of the main statement are (assuming P(τ) ≠ ∅)

∣⋂P(c(τ))∣ = ∑
π∈P(τ)

(∣π∣ + 2) − 1 = ∣P(τ)∣ + ∣⋂P(τ)∣ ≤ ∣τ ∣ + ∣τ ∣2 ≤ ∣c(τ)∣2

∣⋂P(σ → τ)∣ = ∑
π∈P(τ)

(∣σ∣ + ∣π∣ + 2) − 1 = (∣σ∣ + 1) ⋅ ∣P(τ)∣ + ∣⋂P(τ)∣ ≤ ∣σ → τ ∣2

Due to Lemma 4.9, for any intersection type there exists an equivalent organized
intersection type computable in polynomial time. Note that organized types are not
necessarily normalized [Hin82] or strict [Bak11]. However, organized types have the following
property known from normalized types.

Lemma 4.10. Given two types σ, τ ∈ TC, we have σ ≤ τ iff for each path π ∈ P(τ) there
exists a path π′ ∈ P(σ) such that π′ ≤ π and

● If π ≡ α (resp. a), then π′ ≡ α (resp. a).
● If π ≡ σ2 → τ2, then π′ ≡ σ1 → τ1 such that σ2 ≤ σ1 and τ1 ≤ τ2.
● If π ≡ c(τ1), then π′ ≡ c(σ1) such that σ1 ≤ τ1.

The detailed proof by induction of Lemma 4.10 is in the appendix.
We say a path π has the arity of at least m if π ≡ σ1 → . . . → σm → τ for some

σ1, . . . σm, τ ∈ TC. Additionally, for such a path π we define argi(π) = σi for 1 ≤ i ≤ m and
tgtm(π) = τ . We define Pm(τ) as the set of paths in τ having arities of at least m.

BCLk(→,∩) inhabitation is (k + 2)-ExpTime complete [DMRU12]. The upper bound is
derived by constructing an alternating Turing machine based on the path lemma [DMRU12,
Lemma 11]. Accordingly, we formulate a path lemma for BCLk(TC). Let atoms(τ) be
the set of constants, variables and constructor names occurring in τ . Additionally, for a
substitution S let atoms(S) = ⋃{atoms(S(α)) ∣ α ∈ dom(S)}, and for a repository ∆ let
atoms(∆) = ⋃{atoms(τ) ∣ C ∶ τ ∈ ∆}.

Lemma 4.11 (Path Lemma for BCLk(TC)). The following are equivalent conditions:

(1) ∆ ⊢k C E1 . . .Em ∶ τ
(2) There exists a set of paths

P ⊆ Pm(⋂{S(∆(C)) ∣ level(S) ≤ k,atoms(S) ⊆ atoms(∆) ∪ atoms(τ)}) such that
(a) ⋂π∈P tgtm(π) ≤ τ
(b) ∆ ⊢k Ei ∶ ⋂π∈P argi(π) for 1 ≤ i ≤m

The detailed proof of Lemma 4.11, which is a slight extension of [DMRU12, Lemma 11], is
in the appendix.

In the above Lemma 4.11 we can bound the size of the set P of paths of level at most k.
Let expk be the iterated exponential function, i.e. exp0(n) = n and expk+1(n) = 2expk(n).

Lemma 4.12. There exists a polynomial p such that (modulo =) for any k ∈ N the number
of level-k types over n atoms is at most expk+1(p(n)), and the size of such types is at most
expk(p(n)).



22 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Proof. Since normalizing (i.e. recursively organizing) a type does not increase its level, we
only need to consider normalized types. Fix the set of atoms A with ∣A∣ = n. Let Pk denote
the set of paths of level at most k, and Tk the set of normalized types of level at most k.
We have

∣A∣ = n ≤ n∣Tk∣2 and

∣{σ → π ∣ σ ∈ Tk, π ∈ Pk}∣ ≤ ∣Tk∣ ⋅ ∣Pk∣ ≤ n∣Tk∣2 and

∣{c(π) ∣ c ∈ A, π ∈ Pk}∣ ≤ ∣A∣ ⋅ ∣Pk∣ therefore

∣Pk+1∣ ≤ ∣A∣ + ∣{σ → π ∣ σ ∈ Tk, π ∈ Pk}∣ + ∣{c(π) ∣ c ∈ A, π ∈ Pk}∣ ≤ 3n∣Tk∣2 and

∣Tk+1∣ ≤ ∣{⋂P ∣ P ⊆ Pk+1}∣ ≤ 23n∣T
k ∣2

By induction on k we have that there exists a polynomial p such that

∣Tk∣ ≤ expk+1(p(n) +
k−1
∑
i=0

p(n)
2i
) ≤ expk+1(3p(n))

Let sk be the maximal size of a type of level k with atoms in A. We have

sk+1 ≤ ∣Pk+1∣ ⋅ (2sk + 2) ≤ 3n∣Tk∣2 ⋅ (2sk + 2)
By induction on k we have that there exists a polynomial p such that sk ≤ expk(p(n)).

For the interested reader, only the rank of a given type influences the height of the
exponentiation tower.

Using Lemma 4.11 we can decide BCLk(TC) inhabitation by the alternating Turing
machine shown in Figure 1.

Figure 1: Alternating Turing machine deciding inhabitation in BCLk(TC)

Input ∶ ∆, τ, k
loop ∶

1 choose (C ∶ σ) ∈ ∆
2 σ′ ∶= ⋂{S(σ) ∣ level(S) ≤ k,atoms(S) ⊆ atoms(∆) ∪ atoms(τ)}
3 choose m ∈ {0, . . . ,maximal arity of paths in σ′}
4 choose P ⊆ Pm(σ′)

5 if (⋂π∈P tgtm(π) ≤ τ) then
6 if (m = 0) then accept
7 else
8 forall(i = 1 . . .m)
9 τ ∶= ⋂π∈P arg i(π)
10 goto loop

Theorem 4.13. BCLk(TC) inhabitation in (k + 2)-ExpTime.

Proof. The alternating Turing machine in Figure 1 directly implements Lemma 4.11 and is
therefore sound and complete. To show that the machine operates in alternating (k + 1)-
ExpSpace, we need to bound the size of (organized) σ′, which is (n ⋅ expk+1(p(n)) ⋅



MIXIN COMPOSITION SYNTHESIS 23

expk(p(n)))2 due to Lemmas 4.12 and 4.9. By the identity ASpace(f(n)) =DTime(2O(f(n)))
[CKS81], BCLk(TC) inhabitation is in (k + 2)-ExpTime.

5. Mixin Composition Synthesis by Type Inhabitation

In this section, we present an encoding of record types by TC types that capture mixin
semantics. We use the encoding to define a repository of typed combinators from classes and
mixins that can be used to synthesize meaningful mixin compositions by means of BCLk(TC)
inhabitation. In the following we fix a finite set of labels L ⊆ Label that are used in the
particular domain of interest for mixin composition synthesis.

5.1. Records as Unary Covariant Distributing Constructors. First, we need to
encode record types as TC types. We define constructors ⟪⋅⟫ and l(⋅) for l ∈ L to represent
record types using the following partial translation function J⋅K∶T→ TC as follows:

JωK = ω JaK = a
Jσ → τK = JσK→ JτK Jσ ∩ τK = JσK ∩ JτK
J⟨l ∶ τ⟩K = ⟪l(JτK)⟫ J⟨⟩K = ⟪ω⟫

By definition, we have J⟨li ∶ τi ∣ i ∈ I⟩K = J⋂i∈I ⟨li ∶ τi⟩K = ⋂i∈I ⟪li(JτiK)⟫ if I ≠ ∅.

Lemma 5.1. For any σ, τ ∈ T such that JσK and JτK are defined we have σ = τ iff JσK = JτK.

Proof. Routine induction on ≤ derivation observing that σ, τ do not contain +, J⋅K is homo-
morphic wrt. → and ∩, and atomic records are covariant and distribute over ∩.

The translation function J⋅K is not defined for types containing +. Since + has non-
monotonic properties, it cannot be immediately represented by a covariant type constructor.
Simply applying Lemma 3.7.4 would require to consider all arguments a mixin could possibly
be applied to. Such an unwieldy specification would not be adequate for synthesis. There
are two possibilities to deal with this problem. The first option is extending the type-system
used for inhabitation. Here, the main difficulty is that existing inhabitation algorithms rely
on the separation of intersections into paths [DMRU12]. As demonstrated in the remark
accompanying Lemma 3.9, it becomes unclear how to perform such a separation in the
presence of the non-monotonic + operation. The second option, pursued in the rest of this
section, is to use the expressiveness of schematism provided by BCLk(TC). Specifically,
encoding particular T types containing + that capture mixin semantics as TC types suited
for BCLk(TC) inhabitation. Ultimately, we are able to achieve completeness (cf. Theorem
5.5) wrt. particular mixin typings (cf. Property (⋆)) which restrict the general shape (3.5).
This restriction allows for a concise schematic mixin specification suited for synthesis by
BCLk(TC) inhabitation.

Let M ≡ λargClass.Y(λmyClassλstate. (argClass state) ⊕ R) ∈M be such that for
some σ, ρ1, ρ2, which do not contain +, with lbl(ρ2) = lbl(R) and all ρ ∈ T⟨⟩ we have

⊢M ∶ (σ → ρ ∩ ρ1)→ (σ → ρ + ρ2) (⋆)

We define the TC type

τM ≡ ((JσK→ Jρ1K)→ (JσK→ Jρ2K)) ∩ ⋂
l∈L∖lbl(R)

((JσK→ ⟪l(αl)⟫)→ (JσK→ ⟪l(αl)⟫))



24 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Note that τM contains only labels l ∈ L and type variables αl where l ∈ L because σ, ρ1, ρ2
do not contain type variables (cf. Definition 3.3).

Lemma 5.2 (Translation Soundness). Assume (⋆).
For any substitution S and type τ ∈ T such that JτK = S(τM) we have ⊢M ∶ τ .

Proof. We necessarily have
S(τM) = J((σ → ρ1)→ (σ → ρ2)) ∩ ⋂

l∈L∖lbl(R)
((σ → ⟨l ∶ τl⟩)→ (σ → ⟨l ∶ τl⟩))K for some τl for

l ∈ L ∖ lbl(R). Due to (⋆) with ρ = ⟨⟩ we have ⊢M ∶ (σ → ρ1) → (σ → ρ2), and by Lemma
3.19 we have ⊢ M ∶ (σ → ⟨l ∶ τl⟩) → (σ → ⟨l ∶ τl⟩) for any l ∈ L ∖ lbl(R), thus showing the
claim.

Translation Soundness forces instantiations of τM to remain within typings of M in ΛR.
Negative information, i.e. information about labels absent in R, is encoded by explicitly
capturing all positive information, excluding labels in lbl(R), in instances of

⋂
l∈L∖lbl(R)

((JσK→ ⟪l(αl)⟫)→ (JσK→ ⟪l(αl)⟫))

Schematism, i.e. the possibility to instantiate type variables αl, is essential to capture mixin
behavior. This encoding is possible under the assumption of a finite set of labels L, which is
valid because synthesis does not introduce new labels. The encoding overhead is polynomially
bounded by product of the number of mixin combinators and the number of labels.

Lemma 5.3 (Translation Completeness). Assume (⋆).
For any ρ ∈ T⟨⟩ with lbl(ρ) ⊆ L there exists a substitution S and a type τ ∈ T such that
S(τM) ≤ JτK and τ = (σ → ρ ∩ ρ1)→ (σ → ρ + ρ2).

Proof. Let ρ = ⋂
l∈L
⟨l ∶ τl⟩ for some L ⊆ L. By Lemma 3.7.4 we may assume for each l ∈ L

that τl does not contain +. We define

S(αl) =
⎧⎪⎪⎨⎪⎪⎩

JτlK if l ∈ L ∖ lbl(R)
ω else

and successively applying Lemma 5.1 obtain

S(τM) ≤ J((σ → ρ1)→ (σ → ρ2)) ∩ ⋂
l∈L∖lbl(R)

((σ → ⟨l ∶ τl⟩)→ (σ → ⟨l ∶ τl⟩))K

≤ J((σ → ⋂
l∈L∖lbl(R)

⟨l ∶ τl⟩ ∩ ρ1)→ (σ → ⋂
l∈L∖lbl(R)

⟨l ∶ τl⟩ ∩ ρ2))K

≤ J((σ → ρ ∩ ρ1)→ (σ → ⋂
l∈L∖lbl(R)

⟨l ∶ τl⟩ ∩ ρ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ρ+ρ2 by Lem. 3.10.2

))K

Translation Completeness ensures that each type ΛR of M according to (⋆) is captured
by some instance of τM .

Using the above translation properties, we construct a repository of typed combinators
representing classes and mixins.



MIXIN COMPOSITION SYNTHESIS 25

5.2. Mixin Composition. In this section we denote type assignment in ΛR by ⊢⟨⟩ and fix
the following ingredients:

● A finite set of classes C.
● For each C ∈ C types σC ∈ T, ρC ∈ T⟨⟩ such that JσC → ρCK is defined and
⊢⟨⟩ C ∶ σC → ρC .

● A finite set of mixins M.
● For each M ∈M types σM ∈ T and ρ1M , ρ

2
M ∈ T⟨⟩ such that JσM K, Jρ1M K, Jρ2M K are defined

and for all types ρ ∈ T⟨⟩ we have ⊢⟨⟩ M ∶ (σM → ρ ∩ ρ1M)→ (σM → ρ + ρ2M).
● For each M ∈M the non-empty set of labels LM = lbl(ρ2M) ⊆ L defined by M .

We translate given classes and mixins to the following repository ∆C,ML of combinators

∆C,ML ={C ∶ JσC → ρCK ∣ C ∈ C}
∪ {M ∶ ((JσM K→ Jρ1M K)→ (JσM K→ Jρ2M K))
∩ ⋂
l∈L∖LM

((JσM K→ ⟪l(αl)⟫)→ (JσM K→ ⟪l(αl)⟫)) ∣M ∈M}

Note that we use identifiers C for classes and M for mixins just as symbolic names in
the repository, while they are also typable closed terms in ΛR.

To simplify notation, we introduce the infix metaoperator ≫ such that x≫ f = f x. It
is left associative and has the lowest precedence. Accordingly, x≫ f ≫ g = g (f x).

Although types in ∆C,ML do not contain record-merge, types of mixin compositions in
BCLk(TC) are sound, which is shown in the following Theorem 5.4.

Theorem 5.4 (Soundness). Let M1, . . . ,Mn ∈ M be mixins, let C ∈ C be a class, let
σ ∈ T, ρ ∈ T⟨⟩ be types such that Jσ → ρK is defined, and let k ∈ N.

If ∆C,ML ⊢k C ≫M1 ≫ . . .≫Mn ∶ Jσ → ρK, then ⊢⟨⟩ C ≫M1 ≫M2 ≫ . . .≫Mn ∶ σ → ρ.

Proof. Induction on n using Lemma 5.2 and (→ E).

Complementarily, types of mixin compositions in BCLk(TC) are complete wrt. ΛR

type assumptions for classes and mixins listed above. Specifically, we show in the following
Theorem 5.5 that, assuming arguably natural typings of classes and mixins, we can find
corresponding BCLk(TC)-counterparts of ΛR type derivations.

Theorem 5.5 (Partial Completeness). Let Γ ⊆ {xC ∶ σC → ρC ∣ C ∈ C} ∪ {xρM ∶ (σM →
ρ ∩ ρ1M) → (σM → ρ + ρ2M) ∣ M ∈ M, ρ ∈ T⟨⟩, JρK is defined} be a finite context and let
σ ∈ T, ρ ∈ T⟨⟩ be types such that Jσ → ρK is defined. Let k = max({level(JρCK) ∣ C ∈ C} ∪
{level(Jρ2M K) ∣M ∈M} ∪ {level(JρK)}). Let M1, . . . ,Mn ∈M be mixins.

If Γ ⊢⟨⟩ xC ≫ xρ1M1
≫ . . .≫ xρnMn

∶ σ → ρ, then ∆C,ML ⊢k C ≫M1 ≫ . . .≫Mn ∶ Jσ → ρK.

Proof. Induction on n choosing for each xρM where ρ = ⋂
l∈L
⟨l ∶ τl⟩ the substitution αl ↦ JτlK

for l ∈ L∖LM and αl ↦ ω otherwise to type M ∈ ∆C,ML and using (→ E), (≤), Lemma 5.3.

Note that Theorem 5.5 defines a bound k based on the input. In the following, we use this
bound ensuring that the provided examples are in fact computable. We extend the running



26 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

example by the following mixin Succ2.

Succ2 = λargClass.Y(λmyClass.λstate.
let super = argClass state in

let self = myClass state in

super⊕ ⟨succ2 = let super′ = argClass(super.succ) in super′.succ⟩)
Succ2 adds the method succ2 that is the twofold application of succ. Note that the object
super is updated functionally in succ2. Using the above translation, we obtain

∆
{Num},{Succ2,Comparable}
{get,set,succ,succ2,compare} = {

Num ∶ Int→ ⟪get(Int) ∩ set(Int→ Int) ∩ succ(Int)⟫,
Comparable ∶ ((Int→ ⟪get(Int)⟫)→ (Int→ ⟪compare(⟪get(Int)⟫→ Bool)⟫))
∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ(αsucc)⟫)→ (Int→ ⟪succ(αsucc)⟫))
∩ ((Int→ ⟪succ2(αsucc2)⟫)→ (Int→ ⟪succ2(αsucc2)⟫)),

Succ2 ∶ ((Int→ ⟪succ(Int)⟫)→ (Int→ ⟪succ2(Int)⟫))
∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ(αsucc)⟫)→ (Int→ ⟪succ(αsucc)⟫))
∩ ((Int→ ⟪compare(αcompare)⟫)→ (Int→ ⟪compare(αcompare)⟫))}

We may ask inhabitation questions such as

∆
{Num},{Succ2,Comparable}
{get,set,succ,succ2,compare} ⊢k? ∶ JInt→ ⟨succ ∶ Int, compare ∶ ⟨get ∶ Int⟩→ Bool, succ2 ∶ Int⟩K

and obtain the combinatory term “Num ≫ Comparable ≫ Succ2” as the synthesized result.
From Theorem 5.4 we know

⊢⟨⟩ Num ≫ Comparable ≫ Succ2 ∶ Int→ ⟨succ ∶ Int, compare ∶ ⟨get ∶ Int⟩→ Bool, succ2 ∶ Int⟩
The presented encoding has several benefits with respect to scalability. First, the size

of the presented repositories is polynomial in ∣L∣ ∗ ∣C∣ ∗ ∣M∣. Second, expanding the label
set L can be performed automatically in polynomial time by adding additional components
(JσM K→ ⟪l(αl)⟫)→ (JσM K→ ⟪l(αl)⟫) to each mixin M for each new label l. Third, adding
a class/mixin to an existing repository is as simple as adding one typed combinator for the
class/mixin. Existing combinators in the repository remain untouched. As an example, we

add the following mixin SuccDelta to ∆
{Num},{Succ2,Comparable}
{get,set,succ,succ2,compare} .

SuccDelta = λargClass.Y(λmyClass.λstate.
let super = argClass state in

let self = myClass state in super⊕ ⟨succ = λd.(super.set(super.get + d)⟩))
In ΛR for all types ρ ∈ T⟨⟩ we have

⊢⟨⟩ SuccDelta∶ (Int→ ρ ∩ ⟨get ∶ Int, set ∶ Int→ Int⟩)→ (Int→ ρ + ⟨succ ∶ Int→ Int⟩)



MIXIN COMPOSITION SYNTHESIS 27

We obtain the following extended repository

∆
{Num},{Succ2,Comparable,SuccDelta}
{get,set,succ,succ2,compare} = ∆

{Num},{Succ2,Comparable}
{get,set,succ,succ2,compare}

∪ {SuccDelta ∶ ((Int→ ⟪get(Int) ∩ set(Int→ Int)⟫)→ (Int→ ⟪succ(Int→ Int)⟫))
∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ2(αsucc2)⟫)→ (Int→ ⟪succ2(αsucc2)⟫))
∩ ((Int→ ⟪compare(αcompare)⟫)→ (Int→ ⟪compare(αcompare)⟫))}

Asking the inhabitation question

∆
{Num},{Succ2,Comparable,SuccDelta}
{get,set,succ,succ2,compare} ⊢k? ∶ JInt→ ⟨succ ∶ Int→ Int, succ2 ∶ Int⟩K

synthesizes “Num ≫ Succ2 ≫ SuccDelta”. Note that even in such a simplistic scenario the
order in which mixins are applied can be crucial mainly because ⊕ is not commutative.
Moreover, the early binding of self and the associated preservation of overwritten methods
allows for destructive overwrite of succ by SuccDelta without invalidating succ2 that is
previously added by Succ2. This also may make multiple applications of a single mixin
meaningful.

In order to improve the reading experience, the running example is coherently arranged
in the appendix.

5.3. Semantic Types. An additional benefit of using intersection types and, in particular,
the (CL)S framework is the availability of the so called semantic types [Reh13]. Semantic
types can be used to further specify the semantics of typed combinators in a repository
and restrict/guide the inhabitant search. Semantic types consist of additional constants
a and constructors c(⋅) that arise in the current domain of interest (semantic types are
well suited to capture taxonomies [Reh13]). Native types are augmented by semantic types
using intersection. For example, consider the native type Int. We may be interested in
whether the current value is Even or Odd. Therefore, we may augment the native type
by this information resulting in types of the form Int ∩Even representing even integers or
Int ∩Odd representing odd integers. This becomes increasingly interesting when we have
knowledge about functional dependencies between semantic types in the domain of interest.
In particular, knowing that successors of even integers are odd and vice versa, we may
augment the native type of Num to represent this domain knowledge

Num ∶(Int ∩Even→ ⟪get(Int ∩Even)⟫)
∩ (Int ∩Odd→ ⟪get(Int ∩Odd)⟫)
∩ (Int→ ⟪set((Int→ Int) ∩ (Even→ Even) ∩ (Odd→ Odd))⟫)
∩ (Int ∩Even→ ⟪succ(Int ∩Odd)⟫)
∩ (Int ∩Odd→ ⟪succ(Int ∩Even)⟫)

The above type of Num expresses that the get method returns the semantic type of the
underlying state of the object, the set method does not take the underlying state of the
object into account, and the succ method returns the opposed semantic type. Note that,
if all semantic components are erased, the remaining type of Num is exactly the original
native type.



28 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

In the setting of mixin composition synthesis, semantic types enhance the expressiveness
of the type system. The mixin Succ2 from our running example can be typed in the following
way

Succ2 ∶ (Int ∩Even→ ⟪succ(Int ∩Odd)⟫) ∩ (Int ∩Odd→ ⟪succ(Int ∩Even)⟫)
→ (Int ∩Even→ ⟪succ2(Int ∩Even)⟫) ∩ (Int ∩Odd→ ⟪succ2(Int ∩Odd)⟫)

The above type of Succ2 expresses that given the proper semantic types of succ, the
semantic type of succ2 corresponds to the semantic type of the underlying state of the object,
i.e. the twofold successor of an even (resp. odd) integer is even (resp. odd).

This allows to distinguish methods with different semantics in the domain of interest
but exhibiting identical native types. Consider the following mixin Parity that overwrites
the method succ to be the twofold successor such that the parity of the underlying state
remains the same.

Parity = λargClass.Y(λmyClass.λstate.
let super = argClass state in

let self = myClass state in super⊕ ⟨succ = super.succ2⟩)
Parity can be typed in the following way

Parity ∶ (Int ∩Even→ ⟪succ2(Int ∩Even)⟫) ∩ (Int ∩Odd→ ⟪succ2(Int ∩Odd)⟫)
→ (Int ∩Even→ ⟪succ(Int ∩Even)⟫) ∩ (Int ∩Odd→ ⟪succ(Int ∩Odd)⟫)

Asking the inhabitation question

∆
{Num},{Succ2,Comparable,SuccDelta,Parity}
{get,set,succ,succ2,compare} ⊢k Int ∩Even→ ⟪succ ∶ Int ∩Even⟫

results in “Num ≫ Succ2 ≫ Parity”. Note that due to the early binding, succ2 uses the old
succ method which has the required semantics in order for Succ2 to be applied.

Let us explore the descriptive capabilities of semantic types using a more illustrative
example. Consider the domain of cryptography containing algorithms for encrypting and
signing data. Describing abstract properties such as “encrypted” or “signed” at the lowest
level, e.g. using Hoare logic, requires an enormous amount of work. In practice, such
properties are described textually while the native type, e.g. String, does not capture
particular semantics. Consider the following repository

∆native = {Reader ∶ String→ ⟪get(String)⟫,
Enc ∶ (String→ ⟪get(String)⟫)→ String→ ⟪get(String)⟫,
Sign ∶ (String→ ⟪get(String)⟫)→ String→ ⟪get(String)⟫,
Time ∶ (String→ ⟪get(String)⟫)→ String→ ⟪get(String)⟫}

with the following textual description

● The Reader class provides a get method that returns some plain text data.
● The Enc mixin replaces the get method of a given class with a new get method that returns

the encrypted result of the overwritten get method.
● The Sign mixin replaces the get method appending the signature to the result of the

overwritten get method.
● The Time mixin replaces the get method appending a time-stamp to the result of the

overwritten get method.



MIXIN COMPOSITION SYNTHESIS 29

Unfortunately, the types in ∆ are too general to be used for synthesis of meaningful
compositions. However, we can use semantic types to embed the textual description of
the particular semantics in our domain of interest into ∆native resulting in the following
repository

∆ = {Reader ∶ String→ ⟪get(String ∩Plain)⟫,
Enc ∶ (String→ ⟪get(String ∩ α)⟫)→ (String→ ⟪get(String ∩Enc(α))⟫),
Sign ∶ (String→ ⟪get(String ∩ α)⟫)→ (String→ ⟪get(String ∩ α ∩Sign(α))⟫),
Time ∶ (String→ ⟪get(String ∩ α)⟫)→ (String→ ⟪get(String ∩ α ∩ Time)⟫)}

In the above repository ∆, the mixin Enc replaces any semantic information α of the get
method by Enc(α). The mixin Sign adds semantic information Sign(α) to any previous
semantic information α while also preserving α. The mixin Time adds semantic information
Time while preserving the old semantic information.

If we are interested in a composition that has a get method returning an encrypted plain
text with a time-stamp and a signature, we may ask the following inhabitation question

∆ ⊢k? ∶ String→ ⟪get(String ∩Enc(Plain ∩ Time ∩Sign(Plain ∩ Time)))⟫
The above question is answered by “Reader ≫ Time ≫ Sign ≫ Enc”. If we are interested in
a composition that encrypts the plain-text thrice, we may ask the following inhabitation
question

∆ ⊢k? ∶ String→ ⟪get(String ∩Enc(Enc(Enc(Plain))))⟫
The above question is answered by “Reader ≫ Enc ≫ Enc ≫ Enc”.

6. Conclusion and Future Work

We presented a theory for automatic compositional construction of object-oriented classes
by combinatory synthesis. This theory is based on the λ-calculus with records and record
merge ⊕ typed by intersection types with records and +. It is capable of modeling classes
as functions from states to records (i.e. objects), and mixins as functions from classes to
classes. Mixins can be assigned meaningful types using + expressing their compositional
character. However, non-monotonic properties of + are incompatible with the existing
theory of BCL(→,∩) synthesis. Therefore, we designed a translation to repositories of
combinators typed in BCL(TC). We have proven this translation to be sound (Theorem
5.4) and partially complete (Theorem 5.5). A notable feature is the encoding of negative
information (the absence of labels). The original approach [BDD+15b] exploited the logic
programming capabilities of inhabitation by adding sets of combinators serving as witnesses
for the non-presence of labels. In this work we further refined the encoding by embedding
the distinction between labels that are accessed, modified or untouched by a mixin into the
combinator type directly. In Section 5 we also showed that this encoding scales wrt. extension
of repositories.

Future work includes further studies on the possibilities to encode predicates exploiting
patterns similar to the negative information encoding. Another direction of future work
is to extend types of mixins and classes by semantic as well as modal types [DMR14], a
development initiated in [BDDM14]. In particular, the expressiveness of semantic types can
be used to assign meaning to multiple applications of a single mixin and allow to reason



30 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

about object-oriented code on a higher abstraction level as well as with higher semantic
accuracy.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
[AGO+16] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The Essence

of Dependent Object Types. In Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella,
editors, A List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, pages 249–272. Springer International Publishing, 2016.

[AMO12] Nada Amin, Adriaan Moors, and Martin Odersky. Dependent Object Types. In 19th International
Workshop on Foundations of Object-Oriented Languages, 2012.

[ARO14] Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of Path-dependent Types. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 233–249, New York, NY, USA, 2014. ACM.

[Bak11] Steffen van Bakel. Strict Intersection Types for the Lambda Calculus. ACM Computing Survey,
43(3):20:1–20:49, April 2011.

[Bar84] Henk Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland, 1984.

[BC90] Gilad Bracha and William R. Cook. Mixin-based Inheritance. In OOPSLA/ECOOP, pages
303–311, 1990.

[BCDC83] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A Filter Lambda Model
and the Completeness of Type Assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[BDD+14] Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens, and Jakob Rehof. Combinatory
Logic Synthesizer. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA’14, volume 8802 of
LNCS, pages 26–40. Springer, 2014.

[BDD+15a] Jan Bessai, Boris Düdder, Andrej Dudenhefner, Tzu-Chun Chen, and Ugo de’ Liguoro. Typing
Classes and Mixins with Intersection Types. In Proceedings Seventh Workshop on Intersection
Types and Related Systems, ITRS 2014, Vienna, Austria, 18 July 2014., volume 177 of EPTCS,
pages 79–93, 2015.

[BDD+15b] Jan Bessai, Andrej Dudenhefner, Boris Düdder, Tzu-Chun Chen, Ugo de’ Liguoro, and Jakob
Rehof. Mixin Composition Synthesis Based on Intersection Types. In Thorsten Altenkirch, editor,
13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015, July 1-3,
2015, Warsaw, Poland, volume 38 of LIPIcs, pages 76–91. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

[BDDM14] Jan Bessai, Boris Düdder, Andrej Dudenhefer, and Moritz Martens. Delegation-based Mixin
Composition Synthesis, 2014. URL: http://www-seal.cs.tu-dortmund.de/seal/downloads/
papers/paper-ITRS2014.pdf. Last accessed 2016-04-12.

[BDG07] Viviana Bono, Ferruccio Damiani, and Elena Giachino. Separating Type, Behavior, and State to
Achieve Very Fine-grained Reuse. Electronic proceedings of FTfJP, 7, 2007.

[BDG08] Viviana Bono, Ferruccio Damiani, and Elena Giachino. On Traits and Types in a Java-like
Setting. In Fifth Ifip International Conference On Theoretical Computer Science–Tcs 2008, pages
367–382. Springer, 2008.

[BDS13] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Perspectives
in Logic, Cambridge University Press, 2013.

[Bok15] Grigoriy V. Bokov. Undecidability of the problem of recognizing axiomatizations for propositional
calculi with implication. Logic Journal of IGPL, 23(2):341–353, 2015.

[BPS99] Viviana Bono, Amit Patel, and Vitaly Shmatikov. A Core Calculus of Classes and Mixins. In
ECOOP, volume 1628 of Lecture Notes in Computer Science, pages 43–66, 1999.

[BR13] Steffen van Bakel and Reuben Rowe. Functional Type Assignment for Featherweight Java. In
The Beauty of Functional Code, pages 27–46. Springer, 2013.

[BR15] Denis Bogdanas and Grigore Roşu. K-Java: A Complete Semantics of Java. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, pages 445–456, New York, NY, USA, 2015. ACM.

http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/paper-ITRS2014.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/paper-ITRS2014.pdf


MIXIN COMPOSITION SYNTHESIS 31

[Bra92] Gilad Bracha. The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheritance.
PhD thesis, University of Utah, 1992.

[Bru02] Kim B. Bruce. Foundations of Object-Oriented Languages - Types and Semantics. MIT Press,
2002.

[BY79] Choukri-Bey Ben-Yelles. Type Assignment in the Lambda-Calculus: Syntax and Semantics. PhD
thesis, University College of Swansea, 1979.

[Can79] Howard I. Cannon. Flavors: A Non-hierarchical Approach to Object-Oriented Programming,
1979. URL: http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.

pdf. Last accessed 2016-04-07.
[Car84] Luca Cardelli. A Semantics of Multiple Inheritance. In Semantics of Data Types, volume 173,

pages 51–67, 1984.
[CCH+89] Peter S. Canning, William R. Cook, Walter L. Hill, Walter G. Olthoff, and John C. Mitchell.

F-Bounded Polymorphism for Object-Oriented Programming. In FPCA, pages 273–280, 1989.
[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance Is Not Subtyping. In

POPL’90, pages 125–135. ACM Press, 1990.
[Chu57] Alonzo Church. Application of Recursive Arithmetic to the Problem of Circuit Synthesis. Sum-

maries of the Summer Institute of Symbolic Logic, I:3–50, 1957.
[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the ACM

(JACM), 28(1):114–133, 1981.
[CP96] Adriana B. Compagnoni and Benjamin C. Pierce. Higher-Order Intersection Types and Multiple

Inheritance. Mathematical Structures in Computer Science, 6(5):469–501, 1996.
[DCH92] Mariangiola Dezani-Ciancaglini and Roger Hindley. Intersection Types for Combinatory Logic.

Theoretical Computer Science, 100(2):303–324, 1992.
[DMR14] Boris Düdder, Moritz Martens, and Jakob Rehof. Staged Composition Synthesis. In ESOP,

volume 8410 of Lecture Notes in Computer Science, pages 67–86, 2014.
[DMRU12] Boris Düdder, Moritz Martens, Jakob Rehof, and Pawe l Urzyczyn. Bounded Combinatory Logic.

In Proceedings of CSL’12, volume 16, pages 243–258. Schloss Dagstuhl, 2012.
[DN66] Ole-Johan Dahl and Kristen Nygaard. SIMULA: An ALGOL-based Simulation Language. Com-

mun. ACM, 9(9):671–678, September 1966.
[DS84] L P. Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80 System.

In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 297–302. ACM, 1984.

[Ecm11] Standard Ecma. ECMA-262 ECMAScript Language Specification, 2011.
[EOC06] Erik Ernst, Klaus Ostermann, and William R. Cook. A Virtual Class Calculus. In Conference

Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, pages 270–282, New York, NY, USA, 2006. ACM.

[FOWZ16] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-Directed
Synthesis: A Type-Theoretic Interpretation. In POPL’16, pages 802–815. ACM, 2016.

[FP91] Tim Freeman and Frank Pfenning. Refinement Types for ML. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation, volume 26
of PLDI ’91, pages 268–277, New York, NY, USA, June 1991. ACM.

[GKKP13] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete Completion using
Types and Weights. In SIGPLAN Notices, volume 48, pages 27–38. ACM, 2013.

[HHSW02] Christian Haack, Brian Howard, Allen Stoughton, and Joe B. Wells. Fully Automatic Adaptation
of Software Components Based on Semantic Specifications. In AMAST, volume 2422 of LNCS,
pages 83–98. Springer, 2002.

[Hin82] Roger Hindley. The Simple Semantics for Coppo-Dezani-Sallé Types. In International Symposium
on Programming, volume 137 of LNCS, pages 212–226. Springer, 1982.

[Hin08] Roger Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Science,
vol. 42, 2008.

[HS08] Roger Hindley and Jonathan P. Seldin. Lambda-calculus and Combinators, an Introduction.
Cambridge University Press, 2008.

[HTT87] John F. Horty, David S. Touretzky, and Richmond H. Thomason. A Clash of Intuitions: The
Current State of Nonmonotonic Multiple Inheritance Systems. In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, pages 476–482, 1987.

http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf


32 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A Minimal Core
Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[KL05] Oleg Kiselyov and Ralf Lämmel. Haskell’s Overlooked Object System. CoRR, abs/cs/0509027,
2005.

[LC14] Ugo de’ Liguoro and Tzu-chun Chen. Semantic Types for Classes and Mixins, 2014. URL:
http://www.di.unito.it/~deligu/papers/UdLTC14.pdf. Last accessed 2016-04-12.

[Lig01] Ugo de’ Liguoro. Characterizing Convergent Terms in Object Calculi via Intersection Types. In
TLCA, pages 315–328, 2001.

[LP49] Samuel Linial and Emil L. Post. Recursive Unsolvability of the Deducibility, Tarski’s Completeness
and Independence of Axioms Problems of Propositional Calculus. Bulletin of the American
Mathematical Society, 55:50, 1949.

[LS08] Luigi Liquori and Arnaud Spiwack. FeatherTrait: A Modest Extension of Featherweight Java.
ACM Transactions on Programming Languages and Systems (TOPLAS), 30(2):11, 2008.

[LSZ12] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight Jigsaw - Replacing Inheritance
by Composition in Java-like Languages. Information and Computation, 214:86–111, 2012.

[LV09] Yoad Lustig and Moshe Y. Vardi. Synthesis from Component Libraries. In FOSSACS, volume
5504 of LNCS, pages 395–409. Springer, 2009.

[Mit84] John C. Mitchell. Coercion and Type Inference. In Proceedings of the 11th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL ’84, pages 175–185, New
York, NY, USA, 1984. ACM.

[Mit90] John C. Mitchell. Toward a Typed Foundation for Method Specialization and Inheritance. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, pages 109–124, New York, NY, USA, 1990. ACM.

[Mit96] John C. Mitchell. Foundations for Programming Languages. Foundation of computing series.
MIT Press, 1996.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform Proofs as a
Foundation for Logic Programming. Ann. Pure Appl. Logic, 51(1–2):125–157, 1991.

[Moo86] David A. Moon. Object-oriented Programming with Flavors. In Conference Proceedings on
Object-oriented Programming Systems, Languages and Applications, OOPLSA ’86, pages 1–8,
New York, NY, USA, 1986. ACM.

[MW80] Zohar Manna and Richard Waldinger. A Deductive Approach to Program Synthesis. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–121, 1980.

[OZ05] Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In OOPSLA, pages
41–57. ACM, 2005.

[Pie91] Benjamin C. Pierce. Programming with Intersection Types and Bounded Quantification. PhD
thesis, PhD thesis, Carnegie Mellon University, 1991.

[PR89] Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89,
pages 179–190, New York, NY, USA, 1989. ACM.

[RB14] Reuben Rowe and Steffen van Bakel. Semantic Types and Approximation for Featherweight Java.
Theor. Comput. Sci., 517:34–74, 2014.

[Reh13] Jakob Rehof. Towards Combinatory Logic Synthesis. In BEAT’13, 1st International Workshop
on Behavioural Types. ACM, January 22 2013.

[Rém92] Didier Rémy. Typing Record Concatenation for Free. In POPL’92, pages 166–176, 1992.
[RU11] Jakob Rehof and Pawe l Urzyczyn. Finite Combinatory Logic with Intersection Types. In Pro-

ceedings of TLCA’11, volume 6690 of LNCS, pages 169–183. Springer, 2011.
[RU12] Jakob Rehof and Pawe l Urzyczyn. The Complexity of Inhabitation with Explicit Intersection. In

Kozen Festschrift, volume 7230 of LNCS, pages 256–270. Springer, 2012.
[RV14] Jakob Rehof and Moshe Y. Vardi. Design and Synthesis from Components (Dagstuhl Seminar

14232). Dagstuhl Reports, 4(6):29–47, 2014. http://drops.dagstuhl.de/opus/volltexte/2014/
4683.

[Sch24] Moses I. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen,
92(3):305–316, 1924.

[Sin74] Wilson E. Singletary. Many-one Degrees Associated with Partial Propositional Calculi. Notre
Dame Journal of Formal Logic, XV(2):335–343, 1974.

http://www.di.unito.it/~deligu/papers/UdLTC14.pdf
http://drops.dagstuhl.de/opus/volltexte/2014/4683
http://drops.dagstuhl.de/opus/volltexte/2014/4683


MIXIN COMPOSITION SYNTHESIS 33

[SMvdB97] Bernhard Steffen, Tiziana Margaria, and Michael von der Beeck. Automatic Synthesis of Linear
Process Models from Temporal Constraints: An Incremental Approach. In AAS97, 1997.

[Sta79] Richard Statman. Intuitionistic Propositional Logic is Polynomial-space Complete. Theoretical
Computer Science, 9:67–72, 1979.

[Tho09] Wolfgang Thomas. Facets of synthesis: Revisiting Churchs problem. In Foundations of Software
Science and Computational Structures, pages 1–14. Springer, 2009.

[Wan87] Mitchell Wand. Complete Type Inference for Simple Objects. In LICS, volume 87, pages 37–44,
1987.

[Wan91] Mitchell Wand. Type Inference for Record Concatenation and Multiple Inheritance. Inf. Comput.,
93(1):1–15, 1991.

[WM80] Daniel Weinreb and David A. Moon. Flavors: Message Passing in the Lisp Machine. Technical
Report AI-M-602, Massachusetts Institute of Technology, Cambridge Artificial Intelligence Lab,
1980.

[WY05] Joe B. Wells and Boris Yakobowski. Graph-Based Proof Counting and Enumeration with
Applications for Program Fragment Synthesis. In LOPSTR 2004, volume 3573 of LNCS, pages
262–277. Springer, 2005.



34 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Appendix A.

Proof of Lemma 4.8.

Proof. By definition, ⋂P(τ) is ω or an intersection of paths, therefore it is organized. Due
to the identities σ → ω = ω and ω ∩ ω = ω we have that if P(τ) = ∅ then τ = ω. We show by
induction on the depth of the syntax tree of τ that ⋂P(τ) = τ .

Basis Step: If τ ≡ ω or τ ≡ α or τ ≡ a, then ⋂P(τ) = τ by definition.
Inductive Step:

Case 1.1: τ ≡ τ1 → τ2 and P(τ2) = ∅.
Since P(τ2) = ∅, we have τ2 = ω, therefore τ = ω = ⋂∅ = ⋂P(τ).

Case 1.2: τ ≡ τ1 → τ2 and P(τ2) ≠ ∅.

⋂P(τ) = ⋂{τ1 → π ∣ π ∈ P(τ2)} = τ1 → ⋂P(τ2)
IH= τ1 → τ2 = τ .

Case 2: τ ≡ τ1 ∩ τ2.
⋂P(τ) = ⋂P(τ1) ∩⋂P(τ2)

IH= τ1 ∩ τ2 = τ .
Case 3.1: τ ≡ c(τ1) and P(τ1) = ∅.

⋂P(τ) = c(ω) = τ .
Case 3.2: τ ≡ c(τ1) and P(τ1) ≠ ∅.

⋂P(τ) = c(⋂P(τ1))
IH= c(τ1) = τ

Proof of Lemma 4.10.

Proof. For “⇐” we have σ
Lem. 4.8= ⋂P(σ) ≤ ⋂P(τ) Lem. 4.8= τ using the fact that σ1 ≤ τ1 and

σ2 ≤ τ2 implies σ1 ∩ σ2 ≤ τ1 ∩ τ2. For “⇒” we show by induction on the derivation of σ ≤ τ
that for each path π ∈ P(τ) there exists a path π′ ∈ P(σ) such that π′ ≤ π and the desired
properties hold.

Basis Step: In the following cases we have P(σ) ⊇ P(τ), therefore the desired properties
hold via syntactical identity
● σ ≡ σ ≤ σ ≡ τ
● σ ≡ σ ≤ ω ≡ τ
● σ ≡ ω ≤ ω → ω ≡ τ
● σ ≡ σ′ ∩ τ ′ ≤ σ′ ≡ τ for some σ′, τ ′ ∈ TC
● σ ≡ σ′ ∩ τ ′ ≤ τ ′ ≡ τ for some σ′, τ ′ ∈ TC
● σ ≡ (σ′ → τ ′1) ∩ (σ′ → τ ′2) ≤ σ′ → τ ′1 ∩ τ ′2 ≡ τ for some σ′, τ ′1, τ

′
2 ∈ TC

● σ ≡ c(σ1) ∩ c(τ1) ≤ c(σ1 ∩ τ1) ≡ τ for some σi, τi ∈ TC for 1 ≤ i ≤ n
Inductive Step: Let π ∈ P(τ).

Case 1: σ ≡ σ1 → τ1 ≤ σ2 → τ2 ≡ τ with σ2 ≤ σ1 and τ1 ≤ τ2.
We have P(σ2 → τ2) ∋ π ≡ σ2 → π2 for some path π2 ∈ P(τ2). By the induction
hypothesis there exists a path π1 ∈ P(τ1) such that π1 ≤ π2. Therefore,

P(σ) ∋ σ1 → π1 ≤ σ2 → π2 ≡ π with σ2 ≤ σ1 and π1 ≤ π2
Case 2: σ ≡ σ ≤ τ1 ∩ τ2 ≡ τ with σ ≤ τ1 and σ ≤ τ2.

Since π ∈ P(τ) = P(τ1) ∪ P(τ2), we have π ∈ P(τ1) or π ∈ P(τ2). By the induction
hypothesis in both cases there exists a path π′ ∈ P(σ) such that π′ ≤ π satisfying the
desired properties.



MIXIN COMPOSITION SYNTHESIS 35

Case 3: σ ≡ c(σ1) ≤ c(τ1) ≡ τ with P(τi) = ∅.
Since π ≡ c(ω), we have π′ ≤ π satisfying the desired properties for any π′ ∈ P(σ),
noting that P(σ) ≠ ∅.

Case 4: σ ≡ c(σ1) ≤ c(τ1) ≡ τ with σ1 ≤ τ1 and P(τ1) ≠ ∅.
By Definition 4.6, we have π ≡ c(πτ) for some πτ ∈ P(τ1). By the induction hypothesis
there exists a πσ ∈ P(σ1) such that πσ ≤ πτ . Therefore, P(σ) ∋ c(πσ) ≤ c(πτ) ≡ π.

Case 5: σ ≤ σ1 ≤ τ .
By the induction hypothesis there exists a path π1 ∈ P(σ1) such that π1 ≤ π. Again by
the induction hypothesis there exists a path π′ ∈ P(σ) such that π′ ≤ π1. Therefore,
we have P(σ) ∋ π′ ≤ π1 ≤ π.

Proof of Lemma 4.11.

Proof. (2)⇒ (1) is trivial using the rules (→ E), (≤) and the property (σ1 → τ1)∩(σ2 → τ2) ≤
σ1 ∩ σ2 → τ1 ∩ τ2. For (1)⇒ (2), we use induction on the derivation of ∆ ⊢k C E1 . . .Em ∶ τ .
Wlog. τ ≠ ω and (similar to [DMRU12, Proposition 8]) the derivation ∆ ⊢k C E1 . . .Em ∶ τ
does not contain atoms other than atoms(∆) ∪ atoms(τ).

Basis Step: The last rule is
C ∶ σ ∈ ∆ level(S) ≤ k

(Var)
∆ ⊢k C ∶ S(σ) ≡ τ

. For P = P0(S(σ)) we have

⋂π∈P tgt0(π) = ⋂P = ⋂P0(S(σ)) = ⋂P(S(σ)) Lem. 4.8= S(σ) = τ .
Inductive Step:

Case 1: The last rule is
∆ ⊢k C E1 . . .Em ∶ σ σ ≤ τ

(≤)
∆ ⊢k C E1 . . .Em ∶ τ

.

Follows immediately from the induction hypothesis with ⋂π∈P tgtm(π) ≤ σ ≤ τ .

Case 2: The last rule is
∆ ⊢k C E1 . . .Em ∶ τ1 ∆ ⊢k C E1 . . .Em ∶ τ2

(∩)
∆ ⊢k C E1 . . .Em ∶ τ1 ∩ τ2 ≡ τ

.

By the induction hypothesis, there exist sets
P1, P2 ⊆ Pm(⋂{S(∆(C)) ∣ level(S) ≤ k,atoms(S) ⊆ atoms(∆) ∪ atoms(τ)})
such that ⋂π∈Pj

tgtm(π) ≤ τj and ∆ ⊢k Ei ∶ ⋂π∈Pj
argi(π) for 1 ≤ i ≤m and j ∈ {1,2}.

For P = P1 ∪ P2 we obtain
(1) ⋂π∈P tgtm(π) = ⋂π∈P1

tgtm(π) ∩⋂π∈P2
tgtm(π) ≤ τ1 ∩ τ2 = τ

(2) ∆ ⊢k Ei ∶ ⋂π∈P argi(π) = ⋂π∈P1
argi(π) ∩ ⋂π∈P2

argi(π) for 1 ≤ i ≤ m using the
induction hypothesis and the rule (∩).

Case 3: The last rule is
∆ ⊢k C E1 . . .Em−1 ∶ σ → τ ∆ ⊢k Em ∶ σ

(→ E)
∆ ⊢k C E1 . . .Em ∶ τ

.

By the induction hypothesis, there exists a set
P ′ ⊆ Pm−1(⋂{S(∆(C)) ∣ level(S) ≤ k,atoms(S) ⊆ atoms(∆) ∪ atoms(τ)})
such that ⋂π∈P ′ tgtm−1(π) ≤ σ → τ . Let P = {π ∈ P ′ ∣ σ ≤ argm(π)}. By Lemma 4.10
for each path σ → π ∈ P(σ → τ) there exists a path π′ ∈ P ′ such that tgtm−1(π′) ≤
σ → π and tgtm−1(π′) = argm(π′) → tgtm(π′) with σ ≤ argm(π′) and tgtm(π′) ≤ π,
therefore π′ ∈ P . By Lemma 4.10 we obtain ⋂π∈P tgtm(π) ≤ τ . Additionally, by the
induction hypothesis ∆ ⊢k Ei ∶ ⋂π∈P ′ argi(π) ≤ ⋂π∈P argi(π) for 1 ≤ i ≤ m − 1, and
∆ ⊢k Em ∶ σ ≤ ⋂π∈P argm(π).



36 BESSAI, CHEN, DUDENHEFNER, DÜDDER, DE’LIGUORO, AND REHOF

Appendix B. Running Example

Overview of terms

Num = Y(λmyClass.λstate.
let self = myClass state in

⟨get = state, set = λstate′.state′, succ = self.set(self.get + 1)⟩
Comparable = λargClass.Y(λmyClass.λstate.

let super = argClass state in

let self = myClass state in

super⊕ ⟨compare = λo.(o.get == self.get)⟩)
Succ2 = λargClass.Y(λmyClass.λstate.

let super = argClass state in

let self = myClass state in

super⊕ ⟨succ2 = let super′ = argClass(super.succ) in super′.succ⟩)
SuccDelta = λargClass.Y(λmyClass.λstate.

let super = argClass state in

let self = myClass state in

super⊕ ⟨succ = λd.(super.set(super.get + d)⟩))
Parity = λargClass.Y(λmyClass.λstate.

let super = argClass state in

let self = myClass state in

super⊕ ⟨succ = super.succ2⟩)
Overview of ΛR types for any record type ρ ∈ T⟨⟩

Num ∶ Int→ ⟨get ∶ Int, set ∶ Int→ Int, succ ∶ Int⟩
Comparable ∶ (Int→ ρ ∩ ⟨get ∶ Int⟩)→ (Int→ ρ + ⟨compare ∶ ⟨get ∶ Int⟩→ Bool⟩)
Succ2 ∶ (Int→ ρ ∩ ⟨succ ∶ Int⟩)→ (Int→ ρ + ⟨succ2 ∶ Int⟩)
SuccDelta ∶ (Int→ ρ ∩ ⟨get ∶ Int, set ∶ Int→ Int⟩)→ (Int→ ρ + ⟨succ ∶ Int→ Int⟩)
Parity ∶ (Int→ ρ ∩ ⟨succ2 ∶ Int⟩)→ (Int→ ρ + ⟨succ ∶ Int⟩)



MIXIN COMPOSITION SYNTHESIS 37

Overview of TC types

Num ∶ Int→ ⟪get(Int) ∩ set(Int→ Int) ∩ succ(Int)⟫,
Comparable ∶ ((Int→ ⟪get(Int)⟫)→ (Int→ ⟪compare(⟪get(Int)⟫→ Bool)⟫))

∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ(αsucc)⟫)→ (Int→ ⟪succ(αsucc)⟫))
∩ ((Int→ ⟪succ2(αsucc2)⟫)→ (Int→ ⟪succ2(αsucc2)⟫))

Succ2 ∶ ((Int→ ⟪succ(Int)⟫)→ (Int→ ⟪succ2(Int)⟫))
∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ(αsucc)⟫)→ (Int→ ⟪succ(αsucc)⟫))
∩ ((Int→ ⟪compare(αcompare)⟫)→ (Int→ ⟪compare(αcompare)⟫))

SuccDelta ∶ ((Int→ ⟪get(Int) ∩ set(Int→ Int)⟫)→ (Int→ ⟪succ(Int→ Int)⟫))
∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ2(αsucc2)⟫)→ (Int→ ⟪succ2(αsucc2)⟫))
∩ ((Int→ ⟪compare(αcompare)⟫)→ (Int→ ⟪compare(αcompare)⟫))

Parity ∶ ((Int→ ⟪succ2(Int)⟫)→ (Int→ ⟪succ(Int)⟫))
∩ ((Int→ ⟪get(αget)⟫)→ (Int→ ⟪get(αget)⟫))
∩ ((Int→ ⟪set(αset)⟫)→ (Int→ ⟪set(αset)⟫))
∩ ((Int→ ⟪succ2(αsucc2)⟫)→ (Int→ ⟪succ2(αsucc2)⟫))
∩ ((Int→ ⟪compare(αcompare)⟫)→ (Int→ ⟪compare(αcompare)⟫))

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	1.1. Contributions
	1.2. Organization

	2. Related Work
	2.1. Type Systems for Traits and Mixins
	2.2. Synthesis by Type Inhabitation

	3. Intersection Types for Mixins and Classes
	3.1. Intersection and record types
	3.2. Class and Mixin combinators

	4. Bounded Combinatory Logic
	4.1. BCLk(TC)
	4.2. BCLk(TC) Inhabitation

	5. Mixin Composition Synthesis by Type Inhabitation
	5.1. Records as Unary Covariant Distributing Constructors
	5.2. Mixin Composition
	5.3. Semantic Types

	6. Conclusion and Future Work
	References
	Appendix A. 
	Appendix B. Running Example

